
DJ-1 Interacts with and Regulates Paraoxonase-2, an
Enzyme Critical for Neuronal Survival in Response to
Oxidative Stress
Mohammad Parsanejad1, Noam Bourquard2, Dianbo Qu1, Yi Zhang1, En Huang1,

Maxime W. C. Rousseaux1,3, Hossein Aleyasin1,8, Isabella Irrcher1,4, Steve Callaghan1,

Dominique C. Vaillant1, Raymond H. Kim5, Ruth S. Slack1, Tak W. Mak5, Srinivasa T. Reddy2,

Daniel Figeys6, David S. Park1,7*

1 Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada, 2 Department of Medicine and Department of Molecular and Medical

Pharmacology, David Geffen School of Medicine at Univeristy of California Los Angeles, Los Angeles, California, United States of America, 3 Department of Molecular and

Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America, 4 Department of Ophthalmology, Queen’s University, Kingston, Ontario, Canada,

5 The Campbell Family Institute for Breast Cancer Research, Toronto, Ontario, Canada, 6 Ottawa Institute of Systems Biology (OISB), University of Ottawa, Ottawa, Ontario,

Canada, 7 Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, Korea, 8 Fishberg Department of Neuroscience and Friedman Brain

Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America

Abstract

Loss-of-function mutations in DJ-1 (PARK7) gene account for about 1% of all familial Parkinson’s disease (PD). While its
physiological function(s) are not completely clear, DJ-1 protects neurons against oxidative stress in both in vitro and in vivo
models of PD. The molecular mechanism(s) through which DJ-1 alleviates oxidative stress-mediated damage remains
elusive. In this study, we identified Paraoxonase-2 (PON2) as an interacting target of DJ-1. PON2 activity is elevated in
response to oxidative stress and DJ-1 is crucial for this response. Importantly, we showed that PON2 deficiency
hypersensitizes neurons to oxidative stress induced by MPP+ (1-methyl-4-phenylpyridinium). Conversely, over-expression of
PON2 protects neurons in this death paradigm. Interestingly, PON2 effectively rescues DJ-1 deficiency-mediated
hypersensitivity to oxidative stress. Taken together, our data suggest a model by which DJ-1 exerts its antioxidant
activities, at least partly through regulation of PON2.
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Introduction

PD is a progressive neurodegenerative disorder characterized by

selective loss of the pigmented dopaminergic neurons of the

Substantia nigra pars compacta (SNc) [1], and reduction in striatal

dopamine level. The majority of PD cases do not follow a genetic

inheritance pattern [2]. However, rare familial forms of this

disease with their causative genes have been identified [3,4,5,6].

DJ-1 was identified as one of these PD-related genes [7]. It was

first identified as an oncogene and associated with fertility factors

[8,9]. However, recent evidence in several families showed linkage

of homozygous loss of function mutations in DJ-1 to early onset

PD [7,10]. The mechanisms by which loss of DJ-1 function

promotes PD are unclear. However, it has been most associated

with management of reactive oxygen species (ROS). For example,

our previous data demonstrated that DJ-1 null mice are

hypersensitive to dopaminergic toxin, 1-methyl-4-phenyl-1,2,3,6-

tetrahydropyridine (MPTP) [11]. Consistent with this, numerous

reports utilizing in vitro and in vivo models in both mammalian

and drosophila systems support the idea that DJ-1 plays a

neuroprotective role under pathological conditions where oxida-

tive stress predominates [12,13,14,15,16,17,18,19]. How DJ-1

may regulate ROS is not completely clear. DJ-1 is oxidized on its

cysteine residues which are also critical for the ability of DJ-1 to

manage ROS [20]. DJ-1 also possesses atypical peroxiredoxin

activity, although this activity is weak compared to other

antioxidant enzymes [21]. Others have demonstrated that DJ-1

somehow regulates Nrf2, a master transcription factor for a variety

of antioxidant enzymes [22]. However, whether this is true in

neurons is controversial [23].

Recently, to further examine the underlying mechanism(s) by

which DJ-1 exerts protection, we performed a proteomics

interaction screen for DJ-1 interacting partners. By mass

spectrometric analyses, we identified Paraoxonase-2 (PON2) as a

novel interacting candidate for DJ-1 [24]. PON2 is a member of
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Paraoxonase family of genes (Paraoxonase-1, 2, 3), which are

located as a cluster on chromosome 7 in human and chromosome

6 in mouse. PON2 is ubiquitously expressed in a wide variety of

tissues and localized in cytoplasm and membranous structures,

such as plasma membrane [25], endoplasmic reticulum [26], and

mitochondria [27]. Several in vitro and in vivo studies indicate a

role for PON2 in diminishing oxidative stress [25,28,29,30,31].

For example, PON2 deficient HeLa cells exhibit elevated

intracellular oxidative level which can be reversed by over-

expression of PON2 [25]. PON2 deficiency in mice increases the

risk of oxidative stress-related pathophysiological conditions such

as development of atherosclerotic lesions [27,28]. Furthermore,

numerous studies on several human populations reported the

association of PON2 polymorphisms with severe ischemic stroke

[32], sporadic amyotrophic lateral sclerosis (SALS) [33,34,35],

asthma [36] and Alzheimer’s disease (AD) [37,38]. Polymorphisms

in another PON member, PON1, have also been associated with

susceptibility to PD [39,40]. However, the role of PON2 in the

context of neuronal loss induced by oxidative stress is unknown.

Given the initial interaction data from our proteomics screen,

we examined whether DJ-1 may modulate susceptibility to

oxidative stress through regulation of the PON2 enzyme. We

provide evidence that DJ-1 interacts with and promotes PON2

activity in the presence of oxidative stress and that this mechanism

is one central mechanism by which DJ-1 promotes survival.

Methods

Ethics statement
All animal-related experiments were performed based on the

protocols provided by the Canadian Council on Animal Care

(CCAC), the Canadian Institutes of Health Research, and the

University of Ottawa Animal Care and Veterinary Services

(ACVS). This study was approved by University of Ottawa

Animal Care Committee (ACC). All steps of animal welfare,

maintenance, and medical care were also performed by University

of Ottawa ACVS.

In the present study, mice were not subjected to any experiment

while alive and we ensure that they did not suffer during the

process of sacrifice. In order to sacrifice the mice to extract cells or

tissues for in vitro experiments, they were first injected intraper-

itoneally with Euthanyl, then, after confirming they are not awake,

they were subjected to cervical dislocation.

Proteomic screen
The original proteomic screen, utilized to obtain DJ-1

interacting proteins, was published previously [24]. Briefly,

approximately 16107 of human embryonic kidney 293

(HEK293) cells (approximately 40% confluent) were transiently

transfected by calcium phosphate/DNA co-precipitation method,

where calcium chloride were mixed with the target gene-

expressing plasmid and then diluted with an inorganic phosphate

buffer. The calcium phosphate/DNA precipitate was then

incubated with the cells at 37uC for 12–16 hours. Cells were then

cultured in fresh medium (Dulbecco’s modified Eagle’s medium

(DMEM) +10% fetal bovine serum (FBS)) for further 24 hours.

Cells were then scraped and lysed by lysis buffer (20 mM Tris–

HCl (pH 7.5), 150 mM NaCl, 1 mM EDTA, 1% NP-40, 0.5%

sodium deoxycholate, 10 mg/ml aprotinin, 0.2 mM AEBSF

(Calbiochem)), and cleared from cell debris by centrifugation at

20000 g for 30 min. Cleared cell lysate, containing FLAG-tagged

target protein was exposed to M2-Agarose resin (Sigma-

Aldrich)(the monoclonal anti-Flag M2 antibody covalently bound

to agarose resin) for 1 hour, and the precipitated immune

complexes (target protein and its interacting proteins) were eluted

by 50 mM ammonium bicarbonate, containing 400 mM Flag

peptide. The purified protein complexes were subjected to SDS-

PAGE, detected by colloidal Coomassie staining, and protein

bands from qualified lanes were excised from the gel. These

proteins were treated with DTT, iodoacetamide (to alkylate the

free sulfhydryl groups) and trypsin, and the produced peptides

were then purified from the gel and concentraded and analyzed by

mass spectrometry. As reported earlier [24], the data was

generated using an LCQ Deca mass spectrometer (Thermo

Finnigan). Mascot version 1.9 (Matrix Sciences, www.

matrixscience.com) was used to analyze the obtained spectra by

searching against a human protein sequence database with 122989

entries. This database was generated utilizing the main sources of

human protein sequences including GenBank, TrEMBL, Swis-

sProt, IPI, Ensembl. The settings to run the Mascot were as

follows: search mode: MS/MS Ion, fixed modification: carbami-

domethyl on cysteine, variable modification: oxidation on

methionine, peptide mass tolerance: 2 Da, fragment mass

tolerance: 0.4 Da, maximum missed cleavages: 2, enzyme: trypsin.

The Mascot score is the probability of randomness of the match,

and is reported as -10LOG10(P), where P is the absolute

probability. In other word, the score of 30 means the absolute

probability of 1023.

Cortical neuron culture
Cortical neuron cultures were prepared as described before

[41,42]. Briefly, embryos were extracted at 14.5–15.5 days

gestation. Their cortices were dissected and incubated with

0.50 mg/ml trypsin with shaking for 20 minutes at 37uC in

Hank’s balanced salt solution. Trypsinization was stopped with

0.2 mg/ml trypsin inhibitor and 0.2 mg/ml DNaseI at room

temperature. Cells were spun down at 150xg and triturated in

Neurobasal medium containing 0.2 mg/ml trypsin inhibitor and

0.25 mg/ml DNaseI. Cells were pelleted and resuspended in

Neurobasal medium containing B-27 and N-2 supplements and

0.5 mM glutamine. Cells were then plated in dishes pre-coated

with poly-D-lysine.

PON2 deficient and DJ-1 KO mouse embryonic
fibroblasts (MEFs) culture

To culture MEFs, mouse embryos were extracted at 14.5–15.5

days of gestation, their skin was dissected and cut into smaller

pieces in Hank’s balanced salt solution, and incubated in 0.5 mg/

ml trypsin for 60 minutes at 37uC. Trypsinization was stopped

with 0.2 mg/ml trypsin inhibitor and 0.2 mg/ml DNaseI. Cells

were spun down at 150xg, triturated, resuspended, and cultured in

DMEM medium with 10% FBS.

GST pull down assay, immunoprecipitation (IP) and
immunoblotting

Samples (HEK293 cells for IP of over-expressed proteins and

primary cortical neurons for IP of endogenous proteins) were

washed with phosphate buffered saline (PBS) and harvested and

lysed in lysis buffer (50 mM Tris HCl pH 7.5, 100 mM NaCl,

1 mM EDTA, 1 mM DTT, 0.2% NP-40 and protease inhibitor).

Lysate was cleared of cell debris with centrifugation at 17000xg for

20 minutes and supernatant was used for IP. In the case of GST

pull down assay in cells expressing GST-DJ-1, cleared cell lysate

was incubated with 50 ml glutathione sepharose for 2–4 hours. In

other cases, cell lysate was incubated with 4 mg of Myc antibody

(Santa Cruz Biotechnology) or DJ-1 antibody (Abcam) overnight

and with TrueBlot IgG beads (eBiosciences) for 2 hours.

Protective Role of DJ-1 through Paraoxonase-2
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Precipitated complexes were washed 3 times with lysis buffer and

eluted by boiling in 2x SDS-loading buffer. Proteins were

separated on 10% SDS-polyacrylamide gel and transferred to

nitrocellulose membrane. The membrane was blocked with 1%

milk for 1 hour at room temperature and treated with primary

antibody overnight to probe the target protein. Membrane was

washed 3 times and treated with TrueBlot secondary antibody (to

avoid IgG signal) for 1 hour. Primary antibodies used for Western

blot analyses are: DJ-1 (Abcam), Myc (Santa Cruz Biotechnology),

PON2 (GenScript), b-actin (Sigma).

Membrane extraction and paraoxonase-2 activity using
3-oxo-C12-homoserine lacton

Cells were homogenized in homogenization buffer (5 mM Tris/

HCl pH 7.4, 1 mM CaCl2 and EDTA-free protease inhibitor).

Homogenized cells were pelleted at 17000xg for 30 minutes,

resuspended in extraction buffer (25 mM Tris/HCl pH 7.4,

1 mM CaCl2, 10% glycerol, 1% w/v dodecyl-b-d-maltoside

(DDM) (Sigma-Aldrich Chemicals) and EDTA-free protease

inhibitor (Roche)) and incubated at 4uC with agitation overnight

for complete resuspension. Cell debris was extracted with

centrifuging at 2000xg for 5 min. For PON2 activity, 4 mg of

crude membrane extracts prepared from cultured cortical neurons

or murine embryonic fibroblasts (MEFs) was incubated with

10 mM 3-oxo-C12-homoserine lactone (C12) (Vertex Pharmaceu-

ticals) in a 50 ml volume of 25 mM Tris-HCl, pH 7.4, and 1 mM

CaCl2 at room temperature. Reactions were stopped with an

equal volume of acetonitrile, and 5 ml was used to measure C12 by

quantitative autoinducer bioassay using E.coli MG4 containing

pKDT17 (provided by E. Greenberg, University of Iowa), [22].

The P. aeruginosa lasB gene is activated with 3-oxo-C12-

homoserine lacton (C12). E.coli MG4 containing a plasmid with

lasB::lacZ transcriptional fusion (pKDT17), can be induced by

C12 to activate Beta-galactosidase gene. Beta-galactosidase will

then hydrolyze ortho-Nitrophenyl-b-galactoside (ONPG) to ortho-

nitrophenol with yellow color. The more C12 remaining in the

buffer, the more signal will be produced by beta-galactosidase

activity. For this assay, E.coli MG4 (pKDT17) was divided to 1 ml

aliquots. 0.01 ml of membrane samples (already treated with C12)

was added to each aliquot and incubated for 4 hours at 37uC.

0.1 ml of the culture was added to 1 ml of Z buffer (60 mM

Na2HPO4, 40 mM NaH2PO4, 10 mM KCl, 1 mM MgSO4,

50 mM beta-mercaptoethanol) and vortexed for 10 seconds.

0.1 ml of the mixture was transferred to a 96 well plate in

triplicates and Z buffer only was used as blank. 0.02 ml of ONPG

was added to each well and incubated for 10 minutes at room

temperature. Reaction was stopped with 0.05 ml of 1 M Na2CO3

and ONPG signal was read at 420 nm. [43,44,45,46].

PON2 activity using Dihydrocoumarin as a substrate
Intact cells were washed with PBS and incubated with activity

buffer (50 mM Tris-HCl pH 7.4, 1 mM CaCl2 and 1 mM

Dihydrocumarin (DHC) (Sigma-Aldrich Chemicals) as substrate)

at room temperature. UV absorbance at 270 nm was measured

after 10 minutes incubation. One unit of PON2 activity is equal to

1 mmol DHC hydrolyzed/ml/min [47].

In vitro Adenoviral gene delivery, MPP+ treatment and
survival assessment

Adenovirus vector expressing DJ-1 was produced in house by

subcloning the cDNA of WT DJ-1 into pAdTRACK vector,

where the expression of GFP and DJ-1 is controlled by

independent cytomegalovirus promoters. Adenovirus was pro-

duced and titered as described before [48]. Adenovirus vector

expressing PON2 was kindly provided by Dr. Srinivasa Reddy

(UCLA), where it was also generated by subcloning WT human

PON2 cDNA into pAdTRACK vector [49]. Adenoviral infection

was performed at the time of plating, at a multiplicity of infection

(MOI) of 30 for survival experiments and MOI of 100 for

biochemical analyses. For survival assays, 48 hours after plating,

the cultures were treated with 20 mM of MPP+ (Sigma-Aldrich

Chemicals) for 48 hours as previously described [50,51]. Cultures

were then fixed with 4% Paraformaldehyde (PFA), washed 2 times

with PBS and stained with Hoechst 33258 (0.5 ng/ml). The

percentage of surviving neurons was calculated as the number of

GFP-positive neurons with intact nucleus over the total number of

GFP-positive neurons [52]. For survival assays with no adenoviral

infection, primary cortical neurons obtained from PON2 deficient

or wild type mice were subjected to 10, 20 and 40 mM MPP+

treatment for 48 hours. Cells were lysed and the survival rate was

assessed by direct microscopy and counting intact nuclei.

Statistical analysis
Statistical significance was assessed by Anova and post-hoc test

Tukey on data obtained from three independent experiments. All

data are presented as mean 6 SEM, and significance is marked by

* in case of p,0.05, ** in case of p,0.01 and *** in case of p,

0.001.

Results

DJ-1 interacts with PON2
We previously reported a systems biological approach to

generation of a large scale human protein-protein interaction

map as a tool for understanding proteins functions and the

mechanisms of disease [24]. This map was generated based upon a

screen utilizing a large number of human bait proteins (407 unique

bait proteins) mostly known for their role in diseases such as breast

cancer, colon cancer, diabetes and obesity. These bait proteins

were used to immunoprecipitate potential interacting partners

subsequently identified through mass spectrometric analyses.

Our original data set was filtered with a number of criteria

designed to eliminate false positive and non specific interactions

which eliminated a large number of valid potential interactors.

These exclusion criteria included targets which appeared to

interact with more than 5% of bait proteins. Accordingly, we

reanalyzed our data sets with focus on DJ-1 eliminating these

exclusion criteria. We further analyzed DJ-1 interacting candidates

with proper biochemical interaction studies to further validate any

potential hits obtained through our systems biology directed

screen.

In this study we report the identification and characterization of

a new DJ-1 interacting partner, Paraoxonase-2 (PON2). We

initially identified DJ-1 through peptide analyses using PON2 as

bait (mascot score 30.2, Figure 1A). We next confirmed the

interaction of DJ-1 and PON2 in HEK293 cells. The initial

experiments were performed utilizing expressed DJ-1. Plasmids

expressing GST-DJ-1 were transfected into HEK293 cells and

analyses performed by affinity precipitating with glutathione

sepharose beads and Western blot analyses for endogenous

PON2, utilizing a PON2 antibody. In figure 1B, we show that

expression of GST-DJ-1 but not a GST control plasmid

immunoprecipitates PON2. The reciprocal experiment was also

performed, HEK293 cells were transfected with a vector

expressing Myc-PON2 (M-PON2). PON2 was immunoprecipitat-

ed with a Myc antibody and immunoblotted for endogenous DJ-1

utilizing a DJ-1 antibody (Figure 1C). In figure 1C, we show that

Protective Role of DJ-1 through Paraoxonase-2
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immunoprecipitation with Myc antibody but not IgG control

antibody reveals interaction of PON2 with DJ-1. Finally, we tested

whether both endogenous PON2 and DJ-1 interact in neurons.

We carried out co-immunoprecipitation-Western blot assay using

cultured murine cortical neurons. Endogenous DJ-1 was immu-

noprecipitated with DJ-1 antibody and immunoblotted with

PON2 antibody. As shown in figure 1D, PON2 was co-

immunoprecipitated with DJ-1 antibody but not with IgG control

antibody. Taken together, this indicates that PON2 associates with

DJ-1 in vivo.

Effects of DJ-1 and oxidative stress on PON2 activity
Previous reports have shown that PON2 lactonase activity

increases in response to oxidative stress [53]. Given that DJ-1

interacts with PON2, we hypothesized that DJ-1 modulates PON2

activity in this paradigm. To test this hypothesis, we measured

PON2 lactonase activity in cortical neurons derived from DJ-1

wild-type (WT) or knockout (KO) embryos treated with MPP+

(20 mM), for 12 hours. MPP+ is a complex I inhibitor which leads

to oxidative stress and death of a number of different neurons

[54,55,56,57,58]. PON2 lactonase activity was first measured by

assessing the percentage of hydrolysis of PON2 specific substrate,

3-oxo-C12-homoserine lactone (C12) by PON2 [28]. As shown in

figure 2A, PON2 activity is significantly elevated after MPP+

treatment in wild-type neurons. Remarkably, DJ-1 deficiency not

only blocked PON2 basal lactonase activity, but also blocked

MPP+-induced enzymatic activity. We then confirmed this result

using a second assay protocol which involves hydrolysis of

dihydrocoumarin (DHC), a lactone which can be hydrolyzed by

PON2 [47,53,59]. Similarly, with this assay, oxidative stress

induced PON2 activity only in WT neurons and not in DJ-1

deficient neurons (Figure 2B). To further confirm this observation,

we measured hydrolysis of DHC in another cell type challenged

with a different oxidative reagent. Indeed, PON2 activity was also

elevated in response to oxidative stress induced by hydrogen

peroxide (100 mM for 24 hours) in WT murine embryonic

fibroblasts (MEFs) but not in DJ-1 KO MEFs (Figure 2C). This

supports the idea that DJ-1 regulates PON2 activity in multiple

cellular contexts and ROS conditions. Finally, we determined

whether low PON2 activity observed under conditions of DJ-1

deficiency could be rescued by DJ-1 expression. Accordingly, we

expressed DJ-1 or GFP in DJ-1 WT or KO MEFs (Figure 2D).

DJ-1 KO MEFs expressing GFP have less PON2 activity

measured by C12. This activity in DJ-1 KO MEFS expressing

DJ-1 increases by almost 59%. Taken together, these results

indicate that loss of DJ-1 impairs PON2 activity and that this loss

can be rescued by DJ-1 re-expression.

Importantly, we also determined the effects of DJ-1 expression

in PON2 deficient (PON2 def) cells. We expressed DJ-1 or GFP as

control in PON2 WT or deficient MEFs (Figure 3B), and PON2

activity was measured as described above. As shown in figure 3A,

DJ-1 expression in PON2 WT MEFs induced PON2 activity by

almost 51% compared to GFP control group. However, the

induced activity observed in PON2 deficient MEFs was dramat-

ically lower (less than 5%). The small amount of background

lactonase activity observed in PON2 deficient cells may be the

contribution of other PON members [60,61,62,63,64,65], or the

fact that PON2-def mice are reported to having up to 5% of

leakiness based on the mouse construction method [66], although

this is unclear at the moment. These results indicate that the

lactonase activity induced by DJ-1 is almost exclusively through

PON2.

DJ-1 does not affect PON2 protein level in neurons
DJ-1 is reported to interact with RNA and/or localize to the

nucleus [67,68]. Accordingly, it is possible that DJ-1 acts through

regulation of transcription/translation/stabilization of PON2 and

that direct interaction demonstrated above, is not necessary for the

modulation of PON2 by DJ-1. To examine this possibility, we

treated cortical neurons obtained from DJ-1 WT or KO embryos

with MPP+ (20 mM) for 0, 6, 12 and 24 hours and compared their

PON2 protein levels using western blot analysis. Our data

demonstrates that there is no significant difference in PON2

protein level between DJ-1 WT and KO neurons. In addition,

Figure 1. DJ-1 and PON2 interact. (A) DJ-1 full length protein sequence. Peptide observed from DJ-1 after using PON2 as bait is highlighted.
Mascot peptide score is 30.2. (B) HEK293 cells expressing GST-DJ-1 or GST as control were lysed and GST-DJ-1 was precipitated by glutathione
sepharose beads and analyzed with Western blotting using PON2 antibody. (C) HEK293 cells were transfected with plasmid expressing Myc-PON2 (M-
PON2). Cells were lysed and Myc-PON2 was precipitated with Myc antibody. Isolated complexes were analyzed with Western blotting using DJ-1
antibody. (D) DJ-1 was pulled down by DJ-1 antibody from cell lysate extracted from cultured cortical neurons. Immune complexes were analyzed
with Western blotting using PON2 antibody.
doi:10.1371/journal.pone.0106601.g001
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PON2 protein level does not change in response to MPP+ induced

oxidative stress (Figure 3C). This observation rules out the

possibility that DJ-1 increases PON2 activity through increasing

PON2 protein levels.

PON2 protects against MPP+-induced neuronal death
Loss of DJ-1 results in hypersensitization to a number of death-

inducing oxidative stress stimuli. If the regulation of PON2 by DJ-

1 is biologically significant we would anticipate that a) PON2 loss

would also sensitize neurons to oxidative stress and b) PON2

expression would rescue the sensitization to stress induced by loss

of DJ-1. This would also suggest PON2 as a downstream target of

DJ-1. To test this hypothesis, we first treated PON2 WT or

deficient cortical neurons with 0, 10, 20 and 40 mM MPP+ for

48 hours and assessed the neuronal cell survival by nuclear

integrity. Our data shows that PON2 deficient neurons are

significantly hypersensitive to MPP+ treatment when compared to

neurons from WT littermate controls (Figure 4A). To confirm the

protective function of PON2, we expressed Myc-PON2 along with

GFP, or GFP alone as control in WT or PON2 def cortical

neurons. The cells were exposed to 20 mM MPP+ for 48 hours and

their survival was assessed by counting proportion of GFP positive

cells with intact nuclei to total GFP positive cells, as described

previously [11]. Our data demonstrate that PON2 expression

rescues PON2 deficiency-mediated hypersensitivity to MPP+

(Figure 4B). Finally, we examined whether PON2 expression can

also rescue DJ-1 loss-mediated hypersensitivity to MPP+. To test

this, we expressed PON2 and GFP, or GFP alone as control by

adenoviral infection in DJ-1 WT or KO cortical neurons. After

treatment with MPP+ (20 mM) for 48 hours, the cell survival was

assessed as above. Consistent with our hypothesis, PON2

expression protects neurons against MPP+ and can also reverse

the hypersensitivity observed with DJ-1 loss (Figure 4C).

Discussion

Several studies have demonstrated the link between DJ-1 and

oxidative damage in neurodegeneration [11,12,13,18,19,69]. The

purpose of the present study was to investigate the mechanism(s)

underlying the capacity of DJ-1 to mediate survival. In an initial

Figure 2. DJ-1 and oxidative stress modulate PON2 activity. (A) Cultured WT and DJ-1 KO cortical neurons were treated with MPP+ (20 mM)
for 12 hours and cells were washed and membrane was extracted. Crude membrane was exposed to the substrate C12 for 60 minutes and the
percentage of remaining C12 was measured. (B) Cultured WT and DJ-1 KO cortical neurons were treated with MPP+ (20 mM) for 24 hours. Neurons
were then exposed to DHC for 10 minutes and the amount of hydrolysis of DHC was assessed with measuring UV absorbance. One unit of PON2
activity is equal to 1 mmol DHC hydrolyzed/ml/min. (C) WT and DJ-1 KO MEFs were treated with hydrogen peroxide (100 mM) for 24 hours and PON2
activity was measured as described in B. (D) WT and DJ-1 KO MEFs were infected with adenovirus expressing DJ-1 or GFP alone as control. After
48 hours of expression, cells were lysed and exposed to C12 as the substrate for 60 minutes. Percentage of C12 remaining in activity buffer was
measured. Statistical significance was assessed by Anova and post-hoc test Tukey on data obtained from three independent experiments (n = 3). *
denotes p,0.05, ** denotes p,0.01, and *** denotes p,0.001.
doi:10.1371/journal.pone.0106601.g002
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mass spectrometry screen for DJ-1 interacting protein, we

identified PON2 as a candidate interacting partner. We confirmed

this interaction, particularly under endogenous conditions in

primary neurons. The model by which DJ-1 is a critical factor in

regulating PON2 activity is supported by several observations.

First, elevated PON2 activity which occurs in response to MPP+

mediated oxidative stress is dependent upon DJ-1. Multiple cell

types including neurons and MEFs have lowered PON2 activity in

the absence of DJ-1 in response to oxidative stress. This deficiency

can be rescued by DJ-1 expression. Importantly, our results also

suggest that manner by which DJ-1 regulates PON2 is not through

more potentially indirect effects on PON2 stability since DJ-1

deficiency has no effect on PON2 levels. The manner by which

DJ-1 regulates PON2 activity is unclear. Our interaction data

between DJ-1 and PON2 suggest that direct or indirect binding of

the two proteins may be important. However, this must be

confirmed by additional studies which rely on identifying the

interaction domains between DJ-1 and PON2. Whatever the

mechanism, our data clearly shows the importance of DJ-1 in

regulating PON2 lactonase activity.

Second, we show that PON2 itself is critical for regulating

survival in response to conditions of oxidative stress (in particular

induced by MPP+). Neurons deficient in PON2 are more sensitive

to MPP+ treatment which can be rescued by re-introduction of

PON2. These results are consistent with the notion that PON2 is

known to lower ROS [25,28,29,70]. Interestingly, DJ-1 deficient

neurons are also similarly hypersensitive to oxidative stress and this

hypersensitivity can be reversed by PON2 expression. This

observation is consistent with the model by which DJ-1 acts to

increase the activity of PON2. Note that while these observations

imply that DJ-1 is a critical regulator of PON2, it is not an absolute

requirement for PON2 activity. Finally, even though our data

suggest that PON2 is one important factor in the protective effects

of DJ-1, we do not imply that it is the only factor. In this regard,

we recently also identified VHL as an additional DJ-1 interacting

factor[71]. Accordingly, DJ-1 may work through multiple proteins

for its survival functions.

The mechanism by which PON2 lactonase activity relates to

reduced oxidative stress is unclear. One possibility is that the

lactonase activity per se is essential for regulation of death and

oxidative stress. Multiple lines of evidence have shown that

environmental factors such as pesticide exposure can increase the

risk of early onset of Parkinson’s disease [72,73,74]. Paraoxon is an

organophosphorus compounds, active metabolite of the insecticide

parathion, whose toxicity is due to their strong anticholinesterase

action. Evidence has shown that paraoxon can cause apoptotic cell

death in proliferating cells through activation of mitochondrial

pathways [75]. Paraoxon-induced AChE inhibition can aggravate

Figure 3. DJ-1 has no lactonase activity and no effects on PON2 protein level. (A) WT and PON2 deficient MEFs were infected with
adenovirus expressing DJ-1 or GFP. PON2 activity was then measured using C12 as described before. (B) Samples used in panel A was exposed to
SDS-PAGE analysis to assess their levels of DJ-1, PON2 and GFP. (C) Cultured cortical neurons extracted from DJ-1 WT and DJ-1 KO were treated with
MPP+ (20 mM) for different durations. Cells were lysed and PON2 protein level was assessed by western blotting. Statistical significance was assessed
by Anova and post-hoc test Tukey on data obtained from three independent experiments (n = 3). * denotes p,0.05, **denotes p,0.01 and ***
denotes p,0.001.
doi:10.1371/journal.pone.0106601.g003
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Figure 4. PON2 protects neurons against MPP+. (A) Primary cortical neurons obtained from PON2 deficient or wild type mice were subjected to
10, 20 and 40 mM MPP+ treatment for 48 hours. Cells were lysed and viability was assessed by direct microscopy and counting intact nuclei. (B) WT
and PON2 def cortical neurons were transfected with plasmid expressing Myc-PON2 and GFP (under independent promoters), or GFP as control, and
subjected to 20 mM MPP+ for 48 hours. Cells were fixed and the nuclei were stained with Hoechst. Survival percentage represents the ratio of GFP-
expressing cells with morphologically intact nuclei (D, a and b) to the total number of GFP positive cells. (C) WT and DJ-1 KO cortical neurons over-
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experimental Parkinsonism triggered by MPTP in mice [76],

suggesting paraoxonase may play a role in defending against

Parkinson etiologic factors. Therefore, in this scenario, the defined

lactonase activity of PON2 may somehow indirectly lead to

reduced oxidative stress, at least under certain conditions. A

second possibility is that the lactonase activity is somehow separate

from the oxidative capacity of PON2. In support of this

hypothesis, it was reported that the antioxidant capacity could

be dissociated from the lactonase activity [77]. It is interesting to

speculate that perhaps PON2 might modify the antioxidant

capacity of DJ-1 directly. However, our studies indicate that

expression of PON2 by itself in the absence of DJ-1 is protective,

suggesting that this is not the case. Resolution of these questions

will be of critical importance in future studies.

A final interesting point is that while both PON2 and DJ-1 have

been localized to numerous subcellular compartments, both have

been associated with mitochondrial functions. For example, DJ-1

accumulates in mitochondria (presumably outer mitochondrial

membrane) in response to oxidant stress [20,78]. DJ-1 may also be

present in more interior mitochondrial compartments [79]. The

role of DJ-1 in mitochondrial functions has not been fully

understood although it has been suggested to be essential for the

survival promoting capacity of DJ-1 [69]. Similarly, PON2 has

also been reported in the mitochondria where it binds to

coenzyme Q10 [27]. In this regard, it has been shown that

PON2 deficient mice have less complex I and III activity and less

ATP production and also elevated mitochondrial ROS generation

[27]. It is therefore interesting to speculate that perhaps DJ-1 may

interact with PON2 in the mitochondria to regulate antioxidant

stress responses. This is an exciting possibility given the increasing

association of mitochondrial defects with the mechanisms under-

lying PD and the number of PD linked genes including DJ-1

associated with mitochondrial quality control [20,78,80]. In

support of this, we have shown that DJ-1 loss leads to increased

ROS production from isolated mitochondria [80]. Whether this

relates to the function of DJ-1 on PON2 will also be of interest in

future studies.

In summary, we demonstrate that DJ-1, a Parkinson’s disease

related gene, interacts with PON2 in neurons and cell lines. This

interaction appear to modulate PON2 activity as DJ-1 KO cells

have less basal PON2 activity and do not respond to oxidative

stress as DJ-1 WT cells do. This effect can be reversed by

expression of DJ-1. In addition, expression of PON2 in DJ-1 KO

neurons is more protective against Parkinson’s model of neuronal

death than expression of DJ-1 in PON2 deficient background.
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