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Abstract

Objective: To investigate whether bioelectrical impedance analysis could be used to identify overweight individuals at
increased cardiometabolic risk, defined as the presence of metabolic syndrome and/or diabetes.

Design and Methods: Cross-sectional study of a Scottish population including 1210 women and 788 men. The diagnostic
performance of thresholds of percentage body fat measured by bioelectrical impedance analysis to identify people at
increased cardiometabolic risk was assessed using receiver-operating characteristic curves. Odds ratios for increased
cardiometabolic risk in body mass index categories associated with values above compared to below sex-specific
percentage body fat thresholds with optimal diagnostic performance were calculated using multivariable logistic regression
analyses. The validity of bioelectrical impedance analysis to measure percentage body fat in this population was tested by
examining agreement between bioelectrical impedance analysis and dual-energy X-ray absorptiometry in a subgroup of
individuals.

Results: Participants were aged 16-91 years and the optimal bioelectrical impedance analysis cut-points for percentage
body fat for identifying people at increased cardiometabolic risk were 25.9% for men and 37.1% for women. Stratifying by
these percentage body fat cut-points, the prevalence of increased cardiometabolic risk was 48% and 38% above the
threshold and 24% and 19% below these thresholds for men and women, respectively. By comparison, stratifying by
percentage body fat category had little impact on identifying increased cardiometabolic risk in normal weight and obese
individuals. Fully adjusted odds ratios of being at increased cardiometabolic risk among overweight people with percentage
body fat $25.9/37.1% compared with percentage body fat ,25.9/37.1% as a reference were 1.93 (95% confidence interval:
1.20–3.10) for men and 1.79 (1.10–2.92) for women.

Conclusion: Percentage body fat measured using bioelectrical impedance analysis above a sex-specific threshold could be
used in overweight people to identify individuals at increased cardiometabolic risk, who could benefit from risk factor
management.
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Introduction

Thresholds of body mass index (BMI) are used worldwide to

identify people who are normal weight, overweight or obese.

Although it is recognised that obesity, defined by a BMI $30 kg/

m2 in Europeans, is a cause of impaired health and disease [1],

BMI does not provide information on fat mass or percentage, or

fat distribution which are more strongly related to cardiometabolic

risk than BMI [2].

As BMI measurement is a poor predictor of cardiometabolic

risk, other simple alternative anthropometric measures have been

tested, and waist circumference (WC), either alone or in

combination with other anthropometric measurements is consid-

ered more useful for identifying individuals at increased cardio-

metabolic risk [3,4] than BMI [5]. However, WC has not been

widely adopted in clinical practice both because it is inconvenient

for patients and health professionals, and the variability introduced

by different measurement sites and imprecision of measurement

leads to poor reproducibility [6]. Poor reproducibility is particu-

larly important if dichotomous cut-points are used to define at risk

groups for further assessment [7,8].

PLOS ONE | www.plosone.org 1 September 2014 | Volume 9 | Issue 9 | e106134

http://creativecommons.org/licenses/by/4.0/
http://www.orcades.ed.ac.uk/orcades/index.html
http://www.cso.scot.nhs.uk/
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0106134&domain=pdf


The limitations of BMI and WC, coupled with a need for quick

and accurate measurements in clinical practice, have led to

renewed interest in alternative measurements of body composi-

tion, such as bioelectrical impedance analysis (BIA). BIA works by

determining the electrical impedance of a small constant

alternating current passing through the body [9] and can be

measured by a variety of devices. Population-specific models have

been created to use an individual’s impedance value to estimate

percentage body fat (%BF) [10,11]. Unlike for BMI, %BF

thresholds have not been ascertained that identify high risk

subgroups. Since BIA is a simple, non-invasive, inexpensive and

portable body composition method, it may be a useful screening

technique when used in combination with BMI to identify

individuals who are at increased cardiometabolic risk and need

further investigation. Our aim was therefore to test whether %BF

measured by BIA would provide a useful addition to measurement

of BMI to identify individuals who are at increased cardiometa-

bolic risk, defined by the presence of the metabolic syndrome

(using international consensus criteria [12]) and/or diabetes. The

validity of BIA to measure %BF was tested by examining

agreement between BIA and dual-energy X-ray absorptiometry

(DXA) considered to be the ‘‘gold standard’’ [13] in a subgroup of

individuals.

Materials and Methods

Between 2005 and 2011, individuals with at least one

grandparent from the North Isles of Orkney were recruited to

participate in the Orkney Complex Disease Study (ORCADES), a

genetic epidemiology study [14]. Ethical approval was given by the

North of Scotland multi-centre research ethics committee and all

participants provided written informed consent. Recruitment was

achieved through a variety of measures, including requests for

volunteers through advertisements in the local newspaper and on

the local radio; posters in public places; talks to organisations and

community leaders; and requesting contact information of eligible

individuals from volunteers. Weight and height were measured

with footwear removed and in light clothing. Waist measurement

was performed using a rigid tape measure at the midpoint between

the lower rib and iliac crests. BIA was conducted using a foot-to-

foot Tanita UM-014 bioimpedance analyser (Tokyo, Japan) where

the individual stood barefoot on metal plates in light clothing and

%BF was recorded. DXA measurements were taken using a

Hologic QDR4500 scanner (Bedford, MA). The scan was

completed with the individual in light clothing and in a supine

position. Blood samples were collected after an overnight fast.

Increased cardiometabolic risk status was defined as having one

or both of diabetes and metabolic syndrome (see below for

definition). Diabetes was defined as the presence of self-reported

diabetes and/or HbA1c levels $6.5%. The metabolic syndrome

was defined using the International Diabetes Federation consensus

definition criteria for systolic and diastolic blood pressure ($

130 mmHg and $85 mmHg, respectively), high density lipopro-

tein (HDL; #1 mmol/l in men and #1.3 mmol/l in women),

glucose ($5.6 mmol/l), triglycerides ($1.7 mmol/l) and WC ($

94 cm in men and $80 cm in women) [12]. People treated with

hypertension medication were assumed to meet the blood pressure

criteria. Lipid lowering drugs that may influence HDL or

triglyceride levels were not used widely in this population therefore

their use was not considered in the analysis. Individuals above the

thresholds for three or more of the above factors were considered

to have the metabolic syndrome.

Data analysis
Demographic and clinical variables that were not normally

distributed were reported as median (interquartile range); other-

wise variables were reported as mean 6 standard deviation.

Receiver-operating characteristic (ROC) curves were used to

generate an optimum sex-specific %BF threshold. ROC curves

were also generated for BMI to enable comparison of the area

under the curve (AUC). The prevalence of increased cardiometa-

bolic risk in this population with %BF below and equal to or above

the ROC-identified thresholds, stratified by BMI in conventional

categories (,25, 252,30 and $30 kg/m2), was calculated.

Multivariable logistic regression was used to calculate odds ratios

and 95% confidence intervals (ORs 95%CIs) for increased

cardiometabolic risk for %BF and BMI categories, adjusting for

age and smoking status. Due to the small number of individuals

with %BF ,25.9/37.1% and BMI $30 kg/m2, and %BF $25.9/

37.1% and BMI ,25 kg/m2 these groups were not included in the

analysis. Multivariable logistic regression was also used to estimate

the OR for increased cardiometabolic risk for the high compared

to low %BF groups among people with BMI 252,30 kg/m2. All

analyses were stratified by sex.

A subgroup of individuals with DXA measurements were used

to examine the agreement between BIA and DXA in this

population, stratified by sex. BIA and DXA measurements were

not always conducted on the same day therefore these analyses

were limited to individuals whose weight was within two kilograms

to minimise variation caused by changes in body mass. Demo-

graphic characteristics were compared between the subgroup and

the rest of the population using two-sample t-tests for normally

distributed characteristics and Mann-Whitney U-test for non-

normally distributed data. ROC analysis was used to establish

appropriate %BF thresholds for both BIA and DXA. Difference in

mean %BF was calculated as %BFBIA-%BFDXA. Data were

normally distributed so paired t-tests were conducted and p-values

reported. P-value ,0.05 was considered significant. Limits of

agreement were calculated as mean difference 6 two standard

deviations and Bland-Altman plots of individuals’ mean %BF

against the difference of the two %BF measurements were drawn

[15].

All analysis was conducted using Stata v11 (College Station,

Texas).

Results

Demographic and clinical information for the study population

of 1998 individuals whose age ranged from 16–91 years is shown

in Table 1. Almost one-third of the population had increased

cardiometabolic risk with higher prevalence among men than

women. BMI and %BF were strongly correlated (R = 0.81 in men,

0.84 in women). AUCs for being at increased cardiometabolic risk

were very similar for BMI and %BF in men (BMI: 0.76 (95% CI:

0.73 to 0.79), %BF: 0.77 (0.73 to 0.80)) and women (BMI: 0.77

(0.75 to 0.80), %BF: 0.77 (0.74 to 0.80)).

Optimum thresholds for identifying individuals at increased

cardiometabolic risk from %BF were 25.9% for men and 37.1%

for women. Approximately half (51%) of individuals at increased

cardiometabolic risk had a BMI ,30 kg/m2. The majority of

these individuals had a BMI in the ‘overweight’ category (252,

30 kg/m2). In individuals with BMI 252,30 kg/m2, the preva-

lence of increased cardiometabolic risk in those with %BF above

the threshold was double the prevalence in those with %BF below

the threshold (Table 2).

Both crude and adjusted odds of increased cardiometabolic risk

were significantly higher for all groups when comparing with %BF

Percentage Body Fat and Cardiometabolic Risk
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,25.9/37.1% and BMI ,25 kg/m2 as the reference group

(Table 3). As expected, the highest odds were found when

individuals with %BF $25.9/37.1% and BMI $30 kg/m2 were

compared with the reference group. Odds of increased cardiome-

tabolic risk were higher when comparing individuals who were

above the %BF threshold with BMI 252,30 kg/m2 with the

reference group than when comparing below the %BF threshold

and BMI 252,30 kg/m2 with the reference group. Similar

relationships were found in both men and women.

In the overweight group (BMI 252,30 kg/m2), the adjusted

ORs for increased cardiometabolic risk for the group with %BF $

25.9/37.1% were 1.93 (1.20 to 3.10) for men and 1.79 (1.10 to

2.92) for women compared to the group with %BF ,25.9/37.1%.

Agreement of BIA and DXA
The subgroup included in the comparison of BIA with DXA

data had a slightly lower proportion of men than in the rest of the

population and mean age was slightly higher. In men, there were

no significant differences between age, weight, BMI and %BF in

the subgroup with DXA data available and the rest of the

population. Conversely, all of the mean and median values were

significantly different between the subgroup and the rest of the

population in women. However, when the ROC analysis was

conducted using only this subgroup of individuals, the %BF

thresholds measured using BIA to identify individuals at increased

cardiometabolic risk were very similar to those identified using the

whole population (25.7% in men and 37.2% in women in the

subgroup, compared with 25.9% in men and 37.1% in women in

the whole population).

BIA slightly overestimated %BF measured by DXA in men, and

BIA underestimated %BF measured by DXA in women (Table 4).

However, the limits of agreement were wide in both men and

women. Figure 1 suggests that in both sexes BIA may overestimate

%BF slightly more as mean %BF increases although there were no

strong trends in either sex. Using ROC analysis, optimum

Table 1. Characteristics of study population, stratified by sex.

Men Women

N (%) 788 (39.44) 1210 (60.56)

Age (years) 54.29614.81 53.45615.11

Height (cm) 175.1766.45 161.2266.04

Weight (kg) 85.92612.58 71.40614.40

BMI (kg/m2) 27.59 (5.03) 26.41 (6.61)

%BF (%) 26.5366.72 36.5567.33

WC (cm) 98.62611.86 89.22613.56

SBP (mmHg) 134.33 (16.89) 127.11 (19.63)

DBP (mmHg) 77.3569.59 74.2569.21

Hypertension medication (%) 166 (21.07) 237 (19.59)

Glucose (mmol/l) 5.3 (0.7) 5.1 (0.6)

Triglycerides (mmol/l) 1 (0.8) 0.9 (0.6)

HDL (mmol/l) 1.3260.37 1.6160.43

Increased cardiometabolic risk (%): 293 (37.37) 322 (26.95)

Type 2 diabetes (%) 49 (6.22) 51 (4.22)

Metabolic Syndrome (%) 282 (35.97) 307 (25.69)

Current smokers (%) 65 (8.40) 97 (8.12)

Values are reported as mean 6 standard deviation, except BMI, glucose and triglycerides which are reported as median (interquartile range). Increased cardiometabolic risk
is defined as having diabetes and/or the metabolic syndrome. Proportions are reported for hypertension medication, increased metabolic risk, type 2 diabetes, metabolic
syndrome and smoking status as n (%). %BF = percentage body fat; BMI = body mass index; DBP = diastolic blood pressure; HDL = high density lipoprotein; SBP = systolic
blood pressure; WC = waist circumference.
doi:10.1371/journal.pone.0106134.t001

Table 2. Number of individuals and prevalence of being at increased cardiometabolic risk in individuals whose %BF is above and
below the sex-specific threshold, stratified by BMI and sex.

Increased cardiometabolic risk

Men Women

%BF,25.9% %BF$25.9% %BF,37.1% %BF$37.1%

BMI ,25 kg/m2 11 (6.96%) 3 (50.00%) 22 (5.34%) 4 (17.39%)

BMI 252,30 kg/m2 53 (23.56%) 85 (48.02%) 34 (18.89%) 101 (37.97%)

BMI$30 kg/m2 4 (66.67%) 137 (64.32%) 2 (33.33%) 159 (51.62%)

%BF = percentage body fat; BMI = body mass index.
doi:10.1371/journal.pone.0106134.t002

Percentage Body Fat and Cardiometabolic Risk
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thresholds were generated for use of DXA to identify those at

increased cardiometabolic risk, in addition to those for BIA. The

DXA threshold for men was 1.2% lower than that for BIA

(24.7%), whereas the DXA threshold generated for women was

1.4% higher than that for BIA (38.6%). When comparing the

efficacy of the two to similarly identify individuals, 107 individuals

were categorised as above the threshold for BIA but not for DXA,

and 69 individuals were above the DXA threshold but not the BIA

threshold. This equates to 18.4% of the subgroup population in

which classification by the two measures differed. In men and

women the proportion of individuals the measures did not agree

on were 20.7% and 17.0%, respectively, which suggests that the

two measures show slightly better agreement when identifying

women at increased cardiometabolic risk, than men.

Discussion

Our findings suggest that %BF measured using BIA above a

sex-specific threshold could be used in the overweight group

(defined by BMI 252,30 kg/m2) to identify individuals at

increased cardiometabolic risk. Sex-stratified AUCs for obesity

defined by %BF, based on population specific cut-points (25.9%

for men and 37.1% for women), and BMI defined as $30 kg/m2

were very similar. Prevalence of increased cardiometabolic risk

was highest among people with BMI $30 kg/m2 and was lowest

in the group with BMI ,25 kg/m2. Prevalence of increased

cardiometabolic risk among the BMI 252,30 kg/m2 group was

intermediate between the other BMI categories and application of

%BF thresholds allowed stratification into lower and higher risk

subgroups within this BMI category.

Previous studies have shown that a large proportion of people

with normal or overweight BMI have metabolic abnormalities

[16,17]. WC is known to be valid either as an alternative to, or in

addition to, BMI and it has been shown to correlate with

cardiometabolic risk factors [3,18–21]. The variability and lack of

reproducibility of waist measurements [6,20,22], and the practical

difficulties of measuring waist mean that it is not widely used in

clinical practice.

Consistent with our findings, several previous studies have

found there to be little or no difference in associations between

BMI and %BF and various cardiometabolic risk factors [23–30].

Three of these studies were performed in Japanese populations

and a fourth one, in an American population, suggested that there

may be ethnic differences in the strength of association between

BMI and %BF and cardiometabolic risk factors.

The use of %BF compared to BMI when assessing cardiometa-

bolic risk factors has been investigated in four European studies

[27–30]. Bosy-Westphal and colleagues reported AUCs for

metabolic syndrome (defined as two or more of elevated blood

pressure, triglycerides or glucose) among 335 Germans of 0.694

and 0.800 for BMI, and 0.691 and 0.698 for %BF (measured by

air displacement plethysmography) for men and women, respec-

tively [27]. Dervaux et al, in a French population of 649 subjects,

found that an increase of one standard deviation of BMI showed a

non-statistically significantly 20% higher increase in odds of

metabolic syndrome than a one standard deviation increase of

BIA-measured %BF [28]. Two studies use dichotomous thresholds

for %BF to examine cardiometabolic risk. In a Spanish population

(n = 6123), Gómez-Ambrosi and colleagues, used air displacement

plethysmography to measure %BF and found there was a

difference in risk factor patterns including C-reactive protein,

total, low and high-density lipoprotein levels and systolic and

diastolic BP between ‘non-obese by BMI and non-obese by %BF’

individuals and ‘non-obese by BMI but obese by %BF individuals’

[29]. Phillips and colleagues investigated differences between

‘obese by BMI and obese by %BF’ and ‘non-obese by %BF and

obese by BMI’ in a European population with metabolic

syndrome, measuring %BF by BIA [30]. They found there to be

higher levels of several risk factors in the ‘obese by BMI and obese

by %BF’ group compared to the ‘non-obese by BMI and obese by

%BF’. These studies, in agreement with the present study, suggest

that the complementary use of both BMI and measurement of

%BF would improve detection of individuals at greater cardio-

metabolic risk over the sole use of BMI.

Validity of BIA compared with DXA
In our study BIA was found to overestimate %BF compared to

DXA in men and underestimate %BF in women, and 18.6% of

the population would be classified into different risk groups by the

two measures. Several studies used similar BIA equipment (foot-to-

foot Tanita analysers) to this study in European populations with

inconsistent results reporting no difference, overestimation and

underestimation of %BF by BIA compared to DXA in various

studies of men and women [31–35]. In previous studies, the limits

of agreement range from approximately 10% to 16% [32–34] and

were 15.7% in men and 16.2% in women in our study. The

variation between studies may reflect differences in age distribu-

tion or the type of equipment used with the additional potential

effect of changes over time between the two measurements in our

study.

It appears that there are sex differences in the agreement of BIA

and DXA in this population, therefore further investigation is

warranted into the reliability of the use of BIA at an individual

level. It may be sufficient to ensure that there are sex-specific

Table 3. Crude and adjusted odds ratios (OR), with 95% confidence intervals, of being at increased cardiometabolic risk with %BF
above and below sex-specific thresholds (25.9% for men, 37.1% for women) and BMI ,25 kg/m2, 252,30 kg/m2 and $30 kg/m2

compared with %BF,25.9/37.1% and BMI ,25 kg/m2.

Men Women

N Crude OR Adjusted OR* N Crude OR Adjusted OR*

%BF ,25.9/37.1% & BMI ,25 kg/m2 160 1.00 (ref) 1.00 (ref) 422 1.00 (ref) 1.00 (ref)

%BF ,25.9/37.1% & BMI 252,30 kg/m2 225 4.12 (2.07–8.17) 4.44 (2.07–9.51) 181 4.13 (2.34–7.30) 3.61 (1.99–6.56)

%BF $25.9/37.1% & BMI 252,30 kg/m2 179 12.49 (6.33–24.65) 9.75 (4.51–21.05) 269 10.85 (6.61–17.81) 6.47 (3.84–10.88)

%BF $25.9/37.1% & BMI$30 kg/m2 213 24.41 (12.44–47.91) 20.18 (9.53–42.76) 309 18.92 (11.66–30.70) 15.82 (9.63–25.98)

%BF = percentage body fat; BMI = body mass index.
*adjusted for age and smoking status.
doi:10.1371/journal.pone.0106134.t003

Percentage Body Fat and Cardiometabolic Risk
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thresholds appropriate to the type of body composition measure

used – for example in this population, as BIA underestimates %BF

in women, the DXA thresholds for increased risk are higher than

the equivalent BIA threshold.

Strengths and limitations
There are a number of strengths of this study. The large sample

size enabled stratification by sex and use of both BIA and DXA

measurements allowed their comparison in a subgroup of

participants. The range of age and BMI of the participants is

very broad although sensitivity analysis including only individuals

with BMI 18–40 kg/m2 and aged 18–80 years gave similar results.

Mean BMI is very similar between the participants of the

Scottish Health Survey, a nationally representative sample, and

participants in this study [36]. However, as this study features an

isolated, island population, it may be difficult to extrapolate these

results to other populations, in which diet and lifestyles are

different. Additionally, generalisation of body fat cut-points to a

population which is not of white European origin is unlikely to be

valid. Although the small numbers of people with BMI ,25 kg/

m2 and %BF equal to or above sex specific thresholds in this

population suggest that BIA is likely to be of limited value in

people with normal BMI further research in different populations

is needed to confirm this finding.

Figure 1. Bland-Altman plots showing the limits of agreement between percentage body fat measured by bioimpedance analysis
(%BFBIA) and percentage body fat measured by dual-energy X-ray absorptiometry (%BFDXA) in men (a, n = 363) and women (b,
n = 596). Mean difference is calculated by %BFBIA-%BFDXA and the limits of agreement are calculated by mean difference 6 two standard deviations.
The solid line represents the mean difference and the dashed lines represent the limits of agreement.
doi:10.1371/journal.pone.0106134.g001

Table 4. Agreement between BIA and DXA, stratified by sex.

Men Women

N (%) 363 (37.85) 596 (62.15)

%BFBIA 26.0266.26 35.7067.09

%BFDXA 24.7165.46 36.6466.27

Mean difference (BIA-DXA) 1.31 (0.90 to 1.71)* 20.94 (21.27 to 20.62)*

Limits of agreement 26.55 to 9.17 27.14 to 9.02

Mean values of %BFBIA (%BF measured by BIA) and %BFDXA (%BF measured by DXA), and the mean difference are reported as mean 6 standard deviation. Limits of
agreement were calculated as the mean difference 6 2 standard deviations. P-values were calculated by a paired t-test. %BF = percentage body fat; BIA = bioimpedance
analysis; DXA = dual-energy X-ray absorptiometry. *P,0.001.
doi:10.1371/journal.pone.0106134.t004

Percentage Body Fat and Cardiometabolic Risk
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BIA was selected as the primary exposure of interest for this

analysis due to its increased feasibility and affordability for use in

clinical practice and population studies, when compared with

techniques such as DXA or air displacement plethysmography.

However, BIA has many limitations. As %BF is calculated by a

regression equation, the reliability of the estimate depends on the

accuracy of the regression equation and therefore on similarity to

the reference population. Foot-to-foot BIA may be further limited

due to the single frequency impedance measure which may not be

as precise as impedance values measured at multiple frequencies

[37]. Additionally, as BIA calculates fat-free mass and fat mass by

quantifying total body water, estimated %BF may be affected by

food or fluid intake prior to measurement, hydration status, recent

physical activity and certain medical conditions. Although a

measure of body fat that is independent of total body mass might

be preferable to derived measures such as BIA for assessing

cardiometabolic risk such measures are not currently available for

use in clinical practice.

It may also be appropriate to refine cut-points for different

populations, for example to develop age and ethnic-specific cut-

points. In order to provide simple, clinically useful measures we

chose to define binary cut-points of body fat, similar to the binary

categories used for BMI. The use of continuous measures in a

computer based risk algorithm could potentially provide improved

discrimination than that offered by definitions of threshold values

although algorithms would still need to be calibrated appropriately

for different populations. Some of the differences observed

between BIA and DXA may have been due to the different

timings of BIA and DXA measurements. We attempted to address

this issue by limiting the comparisons to individuals whose body

weight was within two kilograms at each measurement; however

changes in %BF may have occurred over time.

Finally, it is important to acknowledge the value of identifying

the presence of metabolic syndrome has been challenged and the

debates over how it should be defined. However it is accepted that

this cluster of risk factors are useful in identifying people at high

risk of developing cardiovascular disease and that effective

interventions are available to reduce risk [38].

Conclusion

When planning the use of limited resources it is important that

efficient approaches are used to identify individuals at increased

cardiometabolic risk. Although WC adds valuable information to

BMI its measurement has not been widely incorporated into

clinical practice. In our study, %BF measured by BIA identified

individuals at increased cardiometabolic risk among people with

BMI 252,30 kg/m2 suggesting that BIA could provide a useful

screening tool in clinical practice to identify people of European

ancestry in this BMI category who should have their risk factors

measured and managed. Further research into the value of %BF

measured by BIA as a marker of metabolic health would be

beneficial.
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