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Abstract

Identification of important nodes in complex networks has attracted an increasing attention over the last decade. Various
measures have been proposed to characterize the importance of nodes in complex networks, such as the degree,
betweenness and PageRank. Different measures consider different aspects of complex networks. Although there are
numerous results reported on undirected complex networks, few results have been reported on directed biological
networks. Based on network motifs and principal component analysis (PCA), this paper aims at introducing a new measure
to characterize node importance in directed biological networks. Investigations on five real-world biological networks
indicate that the proposed method can robustly identify actually important nodes in different networks, such as finding
command interneurons, global regulators and non-hub but evolutionary conserved actually important nodes in biological
networks. Receiver Operating Characteristic (ROC) curves for the five networks indicate remarkable prediction accuracy of
the proposed measure. The proposed index provides an alternative complex network metric. Potential implications of the
related investigations include identifying network control and regulation targets, biological networks modeling and
analysis, as well as networked medicine.
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Introduction

Complex network theory and its applications have been popular

topics in recent years [1–8]. Many real-word systems can be

described by complex networks and investigated through complex

network theory, such as social systems, biological systems. Gene

regulatory networks, signal transduction networks, neural net-

works, protein-protein interaction networks, metabolic networks

are typical biological networks, which have been extensively

investigated in related areas [9–15].

Complex networks consist of nodes and edges. An edge denotes

the interaction between two nodes, which can be directed or

undirected. Many biological networks are directed ones. For

example, in gene regulatory networks, nodes represent genes or

transcription factors, edges represent the interactions between

transcription factors and the regulated genes, or between

transcription factors. Over the last decade, identification of

important nodes in complex networks has been an intriguing

topic [16–32]. For example, in social networks, provided that one

knows which nodes are the most important ones, one can control

these nodes in priority to prevent the spread of infectious diseases

[16]. However, it is still a challenge to determine which nodes are

important in a complex network. Traditionally, degree is

frequently used to characterize the importance of a node [1–

3,6–8,16]. The other indexes include the betweenness [19],

closeness [1], k-shell [7], principal component centrality [17]

based on adjacency matrix of the network, semi-local centrality

[20], motif centrality [25–30], PageRank [21] and others therein.

For undirected networks, some researchers believe that the most

connected nodes are the most influential [1–3]. But recently,

Kitsak et al. [31] investigated the spreading dynamics on four real-

world complex networks. They found that for networks with a

single initial spreader, k-shell can predict the outcome of spreading

dynamics more reliably than degree and betweenness. Following,

Chen et al. [20] proposed a semi-local centrality, which considers

the degrees of both the nearest and next nearest neighbors of a

node. The semi-local centrality can more effectively characterize

influential spreaders in complex networks than the degree and

betweenness. Recently, following the method in [31], we identified

influential spreaders in artificial random, small-world and scale-

free networks. Some general conclusions have been obtained [32].

However, though there are numerous results reported on

undirected networks, few results have been reported on directed

biological networks [25–30]. In 2004, Sporns et al. [27] proposed

a concept of motif fingerprint in brain networks, which counts the

appearances of each node in network motifs with a given size as a

measure. In 2007, based on the motif fingerprints and some of the

other centrality measures, Sporns et al. [28] investigated the

identification and classification of hubs in some brain networks.

Also in 2007, based on the concept of network motif, Koschützki

et al. [25,26] proposed some new motif-based measures for gene

regulatory networks. They took the occurrences of each node in

PLOS ONE | www.plosone.org 1 August 2014 | Volume 9 | Issue 8 | e106132

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0106132&domain=pdf


the 3-node feed-forward loop (FFL) as a measure, after further

considering the direction of each edge, another two extended

measures were proposed. Interesting results on finding the global

regulators in the gene regulatory network of E. coli have been

reported.

In this paper, based on the occurrences of each node in all 2-

node, 3-node and some 4-node network motifs and the PCA, we

aim at developing a new method to characterize node importance

in directed biological networks. To evaluate the performance of

the new index, the in-degree, out-degree, total degree, PageRank,

motif centrality and betweenness are considered to compare with

the proposed one. Investigations on five real-world biological

networks illustrate the performance of the proposed measure.

Materials and Methods

Network Motifs and Motif Detection
In 2002, Alon et al. proposed the concept of network motif,

which is defined as subgraph that appears in a network

significantly more than in randomized ones [9,11–13]. Network

motifs are building blocks of complex biological networks [11].

Functions of some motifs have been extensively investigated. For

example, for the FFLs, researchers have theoretically and

experimentally found its functional and structural advantages

[33–37]. Two-node motifs include the double negative feedback

loop, double positive feedback loop, and that with auto-activation

or repression loops [38,39]. Three-node motifs include the FFLs,

the repressilator and so on [39,40], with some of them as shown in

Fig. 1. Fig. 1 (a) shows the Drosophila developmental transcrip-

tional networks with 119 nodes and 306 directed edges [13].

Fig. 1(b) shows some representative 2, 3 and 4-node motifs. The

motifs in Fig. 1(b) is coded as Mij, where the subscript i denotes

the size of the motif, j is the motif ID number, which is a decimal

number that transformed from the adjacency matrix of the motif

(For details, one can refer to Mfinder tool guide [41]).

To detect network motifs, Milo et al. [11] scanned all possible i-
node subgraphs in a network and its randomized counterparts,

and defined network motifs as subgraphs for which the probability

of occurrences in the real network are greater than that in

randomized ones. Since 2002, many motif detection algorithms

and softwares [41–46] have been developed. For example, gSpan

[43], Mfinder [41], FANMOD [45], Mavisto [46] and mDraw

(http://www.weizmann.ac.il/mcb/UriAlon). In the following, we

use mDraw to detect network motifs. For each network, we

generate 100 randomized networks. Number of a subgraph in the

real-world network is denoted as Nreal. The average number in

100 random networks is denoted as Nrand, with standard deviation

denoted by Sd. The Zscore measures the significance of the

subgraph [11], which is defined as Zscore = (Nreal2Nrand)/Sd.

Another index U is defined as the number of times a subgraph

appears in the investigated network with distinct sets of nodes. In

this paper, subgraphs with Zscore$2, U$4 and Nreal2Nrand$

0.1Nrand are identified as motifs.

A new measure of node importance based on network
motifs

Based on network motifs, we develop a new measure to

characterize node importance in directed biological networks.

Biological networks consist of some motifs, which act as functional

units of the complex networks. For example, it has been found that

the FFLs play functional roles in gene regulatory networks, such as

an incoherent FFL can act as a fold-change detector [9,35]. Some

other 3-node motifs and the 4-node bi-fan motif M4204 are also

found to play functional roles in biological systems [9,14].

Therefore, nodes that frequently involved in network motifs may

be more important. If a node involves in several different types of

network motifs, then this node may potentially have multi-

functional roles. Keeping the idea in mind, some related measures

have been proposed to investigate the biological networks [25–30].

We noted that in some works, network motifs are treated as

Figure 1. A real-world biological network and some network motifs. (a) A Drosophila developmental transcriptional network with 119 nodes
and 306 directed edges. (b) Some representative 2, 3 and 4-node motifs.
doi:10.1371/journal.pone.0106132.g001
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subgraphs, such as the works of Rubinov et al. [30] and Wuchty

et al. [42].

Hereinafter, different from the works in [25–30], based on all 2,

3 and some 4-node motifs in directed networks, we propose a new

integrative measure. Specifically, suppose we have a directed

network with n nodes, and there are totally m types of 2, 3 and 4-

node motifs. We denote the occurrences of node i in the j-th type

of motif as uij, i = 1,…, n, j = 1,… m. Then, we derive a matrix

A = (uij)n6m for the network. In real-world networks, the impor-

tance of different types of motifs are varied. Therefore, we endow

each motif with a weight wj, j = 1, 2,…,m, where wj~cj=
Pm

k~1 ck,

here, ck(k = 1, 2,…,m) denotes the number of the k-th type of motif.

Subsequently, we derive a revised matrix

B~(bij)n|m~(b1,b2,:::,bm)~(wjui j)n|m:

Based on B and the idea of the PCA [47–49], we construct the

following index to obtain node importance score:

I score ~
Xm

j~1

ajbj , ð1Þ

where a~(a1,a2,:::,am)T are parameters to be determined. The

best index vector Iscore should have high distinguish ability among

different nodes. Therefore, the variance of Iscore should be as large

as possible. Taking B1,:::,Bm as random variables, which represent

the weighted counts of a node in the m types of motifs. For a

certain network with size n, the n6m matrix B = (b1, b2,…, bm) is

an observation matrix of the m dimensional random vector

B~(B1,B2,:::,Bm)T. The covariance matrix of B can be estimated

by its observation matrix B. Denote the covariance matrix of B as

S, then

Var(B)&Var(B)~S~
1

n{1
(BTB{nBB

T
),

where B is the column mean vector of B, n is network size. It is

noted that S is just the unbiased estimator of Var(B) [48]. Based

on the above notations, we have a stochastic form of Iscore as

I score ~aTB. The variance of I score can be estimated by

Var(I score )~Var(aTB)~aT Var(B)a&aTSa:

To determine the unique optimal vector a, we restrict aTa~1:
Thus, a can be determined through the following constrained

extremal problem:

max aTSa

s:t: aTa~1: ð2Þ

To solve the optimization problem (2), by the Lagrangian

multiplier method, we construct the following Lagrangian

function.

L(a,l)~aTSa{l(aTa{1): ð3Þ

And let

LL
La ~2(S{lE)a~0,

LL
Ll ~1{aTa~0:

(
ð4Þ

where E is the identity matrix. It follows from Eq.(4) that l and a
are just the eigenvalue and eigenvector of matrix S. Under Eq.(4),

Var(I score )&aTSa~laTa~l. Therefore, the optimal l and a
are just the biggest eigenvalue and the corresponding unit

eigenvector of S. Denote the eigenvalues of S as

l1§l2§:::§lm§0, then the optimal l~l1. From the theory

of the PCA, the ratio l1=
Pm

i~1 li can reflect the contribution of

I score , or how much information in B can be extracted by I score .

So far we have determined a. For a concrete network, replacing

bj in Eq.(1) with concrete values, one determines the observation of

I score as Iscore. Finally, the nodes in the network can be ranked

according to Iscore. Nodes with larger Iscore values are more

structurally important. Based on Iscore and some well-defined

distances, such as the well-known Euclidean distance, the n nodes

can be classified into several clusters, where nodes in the same

cluster are similarly important.

To sum up, for a network with n nodes, the procedures of the

proposed measure are as follows.

1) Detect 2, 3 and 4-node network motifs in the network.

2) Count the occurrences of each node in m types of motifs, and

derive a n6m matrix A.

3) Perform data processing on A, such as weighting and

standardizing matrix A, then we obtain a matrix B. Compute the

covariance matrix S of B.

4) For S, compute the biggest eigenvalue l and the

corresponding unit eigenvector a.

5) Compute Iscore according to (1) and rank the n nodes

accordingly.

An illustrative example
To illustrate the procedures of the proposed method, we give a

simple example. The simple artificial network contains 6 nodes,

and the topology of the network is shown in Fig. 2 (a). Suppose

there are three motifs in the network, namely, M338, M3108, M26,

as shown in Fig. 2(b). Fig. 2(c) lists the members of the three

motifs. Occurrences of nodes in each motif are summarized in

Fig. 2(d). As we see, the occurrences of M338, M3108, M26 are 8,

2 and 2, respectively. Therefore, the weights of M338, M3108,

M26 are v1~2=3, v2~1=6, v3~1=6: Subsequently, we derive

matrix B and its covariance matrix S.

B~(b1,b2,b3)~

4 1=6 0

2=3 1=6 1=6

4 1=3 1=3

2 0 0

10=3 1=6 0

2 1=6 1=6

2
666666664

3
777777775

,
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S~

1:7778 0:0667 0:0000

0:0667 0:0111 0:0111

0:0000 0:0111 0:0185

2
64

3
75:

The eigenvalues of S are l1~1:7803, l2~0:0257, l3~0:0014,
and the unit eigenvector corresponding to l1 is:

a~(0:9993, 0:0377, 0:0002)T:

Thus, we have

I score ~0:9993b1z0:0377b2z0:0002b3: ð5Þ

The contribution of Iscore is l1=(l1zl2zl3)~98:50%. That is,

98.50% information that contained in b1, b2, b3 can be extracted

by Iscore. Therefore, Iscore can optimally rank the 6 nodes.

Substitute b1, b2, b3 in matrix B into Eq.(5), we have

I score ~(4:0034,0:6725,4:0098,1:9986,3:3372,2:0049)T:

From Iscore, the third value is the biggest. Therefore, we can

judge that node v3 is the most important one, and then v1, the least

important node is v2. If one simply considers the total occurrences

of a node in all the motifs, then v2 and v4 would be treated as

equally important. Whereas, from the proposed method, v4 is

more important than v2, which is reasonable in that the

occurrences of M338 are significantly more frequent than the

other motifs. Based on Iscore and through cluster analysis, the six

nodes can be classified into three clusters, where v1, v3, v5 are

members of the most important cluster; v4, v6 are members of the

less important cluster; while v2 is the single member of the

unimportant cluster.

Data descriptions
The five real-world biological networks include the C. Elegans

Neural (CEN) network [50,51], the E. Coli Transcriptional (ECT)

regulatory network from the RegulonDB database [52], the Yeast

Transcriptional (YT) regulatory network [53], the Drosophila

Developmental Transcriptional (DDT) network [13], and the

Human Signal Transduction (HST) network [13]. We note that

the investigated networks are with high quality and have been

frequently used as models to detect network motifs [9,11–13].

Simple statistical indexes for the five networks are summarized

in Tab. 1. Numbers of nodes for these networks range from 119 to

1706. Numbers of edges range from 306 to 3870. The five

networks are with abundant network motifs, such as the FFL

M338, M346, the bi-fan M4204. It is noted that, we have

considered all 2, 3-node motifs, but for simplicity, we have only

considered three 4-node motifs: M4204, M4328 and M4904. There

are totally 199 connected 4-node subgraphs, and there are many

4-node motifs in the five networks. For example, in the CEN and

ECT, there are seven 4-node motifs. Since the bi-fan M4204 and

the bi-parallel M4904 have been frequently investigated under

various context [9], they are common motifs in many different

real-world networks [11], and the 4-node chain M4328 may play

crucial roles in signal transduction pathways, we will only consider

these three 4-node motifs. From Tab. 1, the CEN has the most

abundant of motifs. Subgraph M26 is only a motif in the CEN and

ECT, and the actually numbers are 233 and 10, respectively. The

M4328 is only a motif in the HST, the actual number is 1570.

There are no 3-node motifs in the HST. Whereas, for most of the

networks, the FFL and bi-fan are motifs. The YT only consists of

the FFL and bi-fan.

Results

Identifying important nodes in the five networks
Following the procedures as the illustrative example, one can

obtain the order factor for each network. Noted that the

occurrences of different motifs have different order of magnitude,

we have performed standardized transformations to matrix B.

Moreover, we denote the columns of matrix B as the vector bij,
where i and j have the same meaning as that in Mij.

Figure 2. An illustrative example. (a) A simple network with six nodes. (b) Subgraphs that are assumed to be motifs in network (a). (c) Members
that compose the three types of motifs. (d) Appearances of nodes in each motif as shown in panel (b). (e) Frequency histograms for the six nodes. (f)
Cluster analysis reveals that the six nodes can be remarkably classified into three classes. v1, v3, v5 are the most important nodes, and v2 forms the
least important group, v4, v6 form another group, which is more important than v2.
doi:10.1371/journal.pone.0106132.g002
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The Iscore for the five networks are obtained as follows.

I score
CEN ~0:2654b26z0:3866b338z0:3924b346

z0:3901b3108z0:3658b3110z0:3285b3238

z0:3280b4204z0:3529b4904:

ð6Þ

I score
ECT ~0:3778b26z0:0:5250b338z0:5352b346

z0:5434b4204:
ð7Þ

I score
DDT ~0:5585b338z0:5721b346z0:6006b3108: ð8Þ

I score
HST ~0:5841b4204z0:5696b4328z0:5782b4904: ð9Þ

I score
YT ~0:7071b338z0:7071b4204: ð10Þ

Replacing bij with concrete values in matrix B for each network,

one obtains the importance score for each node. Average Iscore

values for the five networks are shown in Tab. 1. Based on Iscore,

we can characterize the node importance and classify the nodes for

each network via cluster analysis. The basic idea of cluster analysis

is as follows [48]. According to Iscore, the Euclidean distance

between any two nodes can be obtained. Firstly, two nodes with

the shortest distance are merged as one group, each of the rest

nodes forms a group. Then, one merges node groups via the single

linkage method, until all nodes are finally merged into one cluster.

This cluster processes can be mimicked by a dendrogram. From

cluster analysis, one can classify nodes into groups, with similar

important nodes in the same group. Furthermore, from the

dendrogram, one can intuitively get some knowledge about the

structural features of the network.

Fig. 3 shows the dendrogram for the top-30 nodes of the five

networks. We can see that these nodes can be roughly classified

into three or four groups, detailed information of the top-30 nodes

in the CEN, ECT, YT and their corresponding rankings by the

other methods are summarized in Tabs. 2–4. The corresponding

information for the DDT and HST are shown in Table S1 and S2.

In each table, we have shown the in and out-degree as well as their

rankings by the other methods. Here, Rtotal is based on the total

degree, Rp is based on the PageRank, Rmc is based on the motif

centrality, and Rbet is based on the betweenness. The motif

centrality only considers the FFL, since there are no such motif in

the HST, it fails to work in the HST. For each network, the last

group contains the largest amount of nodes, while the most

important group G1 contains only one to three nodes. From Fig. 3,

for the five biological networks, only a few nodes are far more

important than the others. There are clear hierarchical structures

in these networks, which indicates that the proposed measure may

also act as an effective hierarchical index.

Functional characteristics of the top-ranked nodes
In the following, for the CEN, ECT and YT, we discuss whether

the identified structurally top-ranked nodes are functionally

important.

For the CEN, the identified top-30 nodes are shown in Tab. 2.

The top-7 nodes are AVER, AVBR, AVEL, AVDR, AVDL,

AVBL and AVAL, which are all command interneurons.

Additionally, the AVAR, PVCL and PVCR are another three

command interneurons, which are all top-ranked. The AVAs,

AVBs, AVDs, and PVCs are four bilaterally symmetric interneu-

ron pairs with large diameter axons that run the entire length of

the ventral nerve cord, and providing inputs to the ventral cord

motor neurons. The AVAs locate at the lateral ganglia of head of

the C. elegans, functioning as driver cell for backward locomotion

[54]. The AVEs can drive backward movement of the animal

along with AVAs, AVDs and A-type motor neurons [54]. The

AVDs function as touch modulator for backward locomotion

induced by head-touch. The PVCs are ventral cord interneurons,

a harsh touch defect can be caused in the absence of PVC neurons

Table 1. Statistical indexes for the five directed biological networks.

Network CEN ECT DDT HST YT

Node 280 1706 119 227 685

Edge 2194 3870 306 312 1052

Ave. in-degree 7.8357 2.2685 2.5714 1.3744 1.5358

Ave. out-degree 7.8357 2.2685 2.5714 1.3744 1.5358

Ave. total degree 15.6714 4.5369 5.1428 2.7489 3.0715

Ave. Iscore 5.6753 35.9339 2.0367 12.3849 7.2407

M26 233 10 - - -

M338 1453 1196 174 - 62

M346 552 226 26 - -

M3108 385 - 16 - -

M3110 175 - - - -

M3238 48 - - - -

M4204 2274 29535 - 280 1812

M4328 - - - 1570 -

M4904 2253 - - 275 -

‘‘-’’ denotes no such item.
doi:10.1371/journal.pone.0106132.t001
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[54]. From Tab. 2, the AVER has the largest Iscore value 54.90,

the in and out-degree of AVER are 33 and 18, which are not the

largest. However, from our investigation, the AVER is the most

important nodes in the CEN, which demonstrates that the Iscore is

different from the degree measures. The PageRank fails to identify

most of the command interneurons as even among the top-50

level. The betweenness ranks many of the command interneurons

out of the top-20 level. The results for the CEN indicate Iscore can

help to identify the actual important nodes.

For the ECT, the identified top-30 nodes are shown in Tab. 3.

In 2003, Martı́nez-Antonio et al. [55] identified global regulators

in an ECT network. There are 18 global regulators in the network,

namely, CRP, IHF, FNR, fis, arcA, lrp, hns, narL, ompR, fur,

phoB, cpxR, soxR, soxS, mlc, cspA, rob, purR. Among which, the

CRP, FNR, IHF, fis, arcA, narL, lrp are seven key regulators,

which can regulate the expression of 51% of genes in E. coli [55].

From Iscore, eight of the top-12 nodes (CRP, FNR, arcA, IHF, fis,

narL, lrp, fur) are global regulators. The in-degree ranks most of

the eight global regulators at the tail. The out-degree and total

degree rank most of the eight global regulators at the top-10 level.

According to the PageRank, motif centrality and betweenness, 2, 1

and 3 of the identified top-ranked global regulators are out of the

top-10 level. The global regulator CRP is the most important

nodes, which represents the cAMP receptor protein. The CRP can

regulate cAMP, and genes regulated by the CRP are mostly

involved in energy metabolism [56]. The CRP has the largest out-

degree 496. But its in-degree is only 1. Though 280: csgE has the

second largest in-degree 12, it is not top-30 ranked. From Tab. 3,

the top-30 nodes can be classified into four clusters. The

unimportant cluster contains the largest amount of nodes. The

first three clusters are almost all global regulators. The observa-

tions from the ECT indicate that the proposed measure can help

to find global regulators.

For the YT, the top-30 nodes are shown in Tab. 4. STE12 and

TEC1 are two most important nodes, with the Iscore values 489.54

and 482.02, with the out-degree 71 and 44, and with the in-degree

both 0. STE12 and TEC1 are two transcription factors. It has

been reported that the STE12 controls two distinct developmental

programs of mating and filamentation, therefore, it is a key

regulator of cell fate determination [57]. Although the TEC1 gene

has been reckoned as involving in the activation of expression of

Tyl and the adjacent genes, it is not essential in the control of

mating or sporulation processes [58]. It is intriguing to clarify why

TEC1 is so frequently involved in network motifs and acts as

Figure 3. Cluster analysis for the identified top-30 nodes in the five networks based on the Iscore.
doi:10.1371/journal.pone.0106132.g003
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building blocks of the YT network. From the results of the out-

degree, total degree, PageRank, motif centrality and betweenness,

most of the nodes in G4 are equally important, and thus have great

differences from Iscore.

Performance evaluation based on ROC curves
To evaluate the performance of Iscore, we perform ROC

analysis. ROC curve is frequently used to evaluate the perfor-

mance of a new test in the field of signal processing and medical

diagnostic tests [59]. For a network with n nodes, the procedures

of ROC analysis are as follows. Suppose the nodes can be classified

into two groups: important and unimportant, and we know the

actual classification. For a new index, the n nodes are with values

in the interval [a, b], for any threshold value T[½a,b�, one can

reclassify the n nodes into two classes. Comparing the actual

classification with the new classification, several indexes can

measure the accuracy of the new index, which are defined as

follows [59].

P1~
n2

n2zn4
, ð11Þ

P2~
n1

n1zn3

, ð12Þ

P3~
n1zn4

n
, ð13Þ

where n2 denotes the number of false positive nodes, which are

considered important in the new classification but actually

unimportant. n4 gives the number of true negative nodes, where

the nodes are both unimportant in the two classifications.

Similarly, n1 and n3 denote the number of true positive and false

negative nodes, respectively. P1, P2 are therefore called false and

true positive rates, respectively. P3 is called the accuracy of the

new index. Given a T, one obtains a point (P1, P2). For T[½a,b�,
plotting the corresponding points in two dimensional coordinate

system, we derive the ROC curve. The area under the curve

(AUC) of ROC equals the probability that a classifier will rank a

randomly chosen positive instance higher than a randomly chosen

negative one [59], which can reflect the identification accuracy of

the new index. The larger AUC, the more accurate of the index.

Furthermore, the point in the upper left corner of a curve

corresponds to the optimal threshold T, which gives the new

classification of nodes with the highest P3.

Hereinafter, based on the available information of some of the

investigated networks and ROC curves, we evaluate the perfor-

mance of Iscore and the other indexes. In the following, for

simplicity, we transform node ranks into fractional ones (range in

(0, 1]). For nodes with rank k, its fractional ranks are the ratio of

the number of nodes with ranks no more than k to n. Obviously,

nodes with smaller fractional ranks are more important. For the

CEN, on one hand, we have mentioned that the 10 command

interneurons are known to be very important. If we take them as

important nodes, one derives the ROC curves for each index, as

shown in Fig. 4(a). From Fig. 4(a), the in-degree, total-degree,

Iscore and motif centrality all can well identify the command

interneurons, the AUC (trapezoidal method) for these indexes are

0.9991, 0.9985, 0.9974, 0.9967, which are all above 0.99. The

Iscore is a little better than the motif centrality. The out-degree,

PageRank and betweenness are all worse than the other indexes.

On the other hand, neurons in the C. Elegans can be classified into

interneurons, motor neurons, sensory neurons, where 117 neurons

function as interneurons. If we take the 117 interneurons as

important nodes, one obtains another ROC curve for each index,

as shown in Fig. 4(b), where all the seven measures have roughly

similar performance. The Iscore is a little better than the out-

degree, in-degree, PageRank and betweenness. For the ECT,

there are 7 key and totally 18 global regulators, which are actually

important in the network. If we take the 7 key global regulators

and 18 global regulators as actually important nodes, we derive

two ROC curves for each index, as shown in Fgs.4(c) and (d). In

Fig. 4(c), the AUC for the seven indexes are 0.9996, 0.4385,

0.9996, 0.9997, 0.9983, 0.9987 and 0.9239. Except the in-degree

and betweenness, all the indexes can well identify the key global

regulators. Iscore is a little better than the other indexes. From

Fig. 4(d), the out-degree, total-degree, PageRank and motif

centrality are with quite large AUC. The AUC for the Iscore is

0.8628, which is only higher than that for the in-degree and

betweenness, however, when T = 0.0036, the Iscore can classify the

nodes in the ECT with P3 = 99.30%.

For many biological networks, the actual classifications, known

as gold standards, are not available. Fortunately, researchers have

proposed several methods to evaluate the new test, such as

constructing composite reference standards from available multi-

ple tests [60,61]. A single ranking from either the in, out, total

degrees, PageRank, motif centrality or betweenness is imperfect

and can not act as a gold standard. Subsequently, for each

network, we construct a composite reference standard based on

the six rankings (Five in the HST), and evaluate the accuracy of

Iscore. Specifically, in the composite reference standard, a node is

defined as important if either one of the six rankings is among the

top-T0, where T0 is a threshold, which can be taken as 10%, 20%

and so on. Thus, given a T0, we derive a dichotomous reference

classification of nodes in the network, either positive (important) or

negative (unimportant). According to the ranking from the Iscore,

we take several threshold values T to reclassify nodes, and finally

derive the ROC curves for each network, as shown in Fig. 5.

Figs. 5(a) and (b) show the cases with T0 = 10% and T0 = 20%,

respectively. In Fig. 5(a), the AUC for the five networks are

0.8977, 0.8237, 0.9406, 0.8499 and 0.7878, respectively. The

points in the upper left corner of the ROC curves in Fig. 5(a)

correspond to T = 20%, 5%, 10%, 10%, 5%, which lead to the

highest P3. For example, for the DDT, when the top-10% nodes

are classified as important ones, the classification from the Iscore

has the best consistency with the reference classification, the P3

can achieve 94.96%. For T0 = 20%, the AUC for the five networks

are 0.8740, 0.8884, 0.9521, 0.8955 and 0.7418, respectively.

Under two different T0 and for different networks, the AUC are all

above 0.74. Especially, in the DDT, the AUC is above 0.94, which

indicates high identification accuracy of the proposed measure.

It is noted that, for the DDT, HST and YT, since we still do not

know how many nodes are actually important, it is difficult to

compare among different measures via ROC curves. We also note

that the ROC analysis without gold standards may subject to bias

of the composite reference standard. However, since the composite

reference standards for the five networks are based on six or five

existing measures, it is trustworthy to treat them as reference

standards. In conclusion, ROC analysis indicates the proposed

measure is a remarkable alternative index to identify structurally

important nodes in directed networks.

Topological neighborhoods of several special nodes
From the ROC analysis in the CEN and ECT, some measures

are better than the Iscore in identifying the command interneurons

or global regulators. Hereinafter, through the specific analysis on
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topological neighborhoods of several nodes, we further illustrate

the merits of the proposed measure. According to Iscore, some hubs

may be not important, whereas some non-hub nodes may be

identified as very important ones. There are many highly

connected but not highly ranked nodes, such as 946: soxs in the

ECT; 22: b-catenin and 68: fak in the HST; 209: GCN4 and 332:

MBP1-SWI6 in the YT. Examples of nodes with low degrees but

ranked at top-20 include 333: cysG and 534-536:nirB-nirD in the

ECT; 546: SSA4 and 587:TKL2 in the YT.

Figure 4. ROC curves based on the available information in the CEN and ECT. (a) Performance of different indexes in identifying (a) the 10
command interneurons in the CEN, (b) the 117 interneurons in the CEN, (c) the 7 key global regulators in the ECT, (d) the 18 global regulators in the
ECT.
doi:10.1371/journal.pone.0106132.g004

Figure 5. Evaluation of Iscore via ROC curves with composite reference standards for the five networks. (a) T0 = 10%. A node is defined as
important if either its rankings by the in, out, total degree, PageRank, motif centrality or the betweenness are at the top-T0 level. (b) Similarly to (a),
but with T0 = 20%.
doi:10.1371/journal.pone.0106132.g005
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In the following, we take node 209 and 546 in the YT as two

representative examples. Node 209 has out-degree 53 and in-

degree 0, which is the second most important node according to

the out and total degree, while its ranking is 62 according to Iscore.

Node 546 is with the in and total degree 4, the ranking is 28

according to the total degree, but it is ranked as the eighth most

important node by the Iscore. Figs. 6 (a) and (b) visualize the

topological neighborhoods of the two nodes with their nearest and

second nearest neighbors. From the topological neighborhoods of

the two nodes, there are 81 nodes involved in the neighborhood of

node 209, which are connected by 111 directed edges that

centered at node 209, while 114 nodes and totally 182 directed

edges consist of the neighborhood of node 546. The connection

density of the neighborhood of node 209 is much lower than node

546. Moreover, from Fig. 6 (b), one can easily see that node 546 is

directly regulated by four hub nodes and acts a bridge or

bottleneck of the topological neighborhood. More importantly, the

four hub neighbors of node 546 are just the top-4 nodes. Though

node 209 can regulate 53 nodes, but its neighbors are neither hubs

nor important nodes. Furthermore, node 546 involves in 1203 bi-

fan subgraphs in its topological neighborhood, while there are only

39 such subgraphs for node 209, which indicate node 546 may

play more functional roles in the system. Therefore, node 546 may

be more important than 209. Finally, from the roles of biological

functions, node 209 represents GCN4. It has been found that the

GCN4 gene is conserved in S. cerevisiae, K. lactis, and E. gossypii

[62]. SSA4 is widely conserved in human, chimpanzee, Rhesus

monkey, dog, cow, mouse, rat, chicken, zebrafish, fruit fly, C.

elegans, S. cerevisiae, and A. thaliana [62]. The cross species

conservation of a gene indicates that it has been maintained by

evolution despite speciation. It has been widely believed that

mutation in a highly conserved gene can lead to a non-viable life

form, or a form that is eliminated through natural selection

[62,63]. SSA4 is more widely cross species conserved, which also

indicates that SSA4 is more important than GCN4. Summing up,

it is sufficient that the non-hub node 546 is actually more

important than the hub node 209.

From the above analysis, it seems that node 546 similarly

functions as nodes with high betweenness in undirected networks.

However, we note that there are great differences between

directed and undirected networks. In the YT, the node 209 has

only 53 outgoing edges and the node 546 has only 4 ingoing edges,

the betweenness [19] of the two nodes are both zeros, which are

the least important nodes according to it. Therefore, the Iscore is

different from the classical betweenness. Furthermore, since the

YT is a directed network, the betweenness of 96.06%(658/685)

nodes are zeros, it fails to act as an effective ranking measure. It is

noted that node 293: IME1 has the largest betweenness in the YT,

whereas, it is not highly ranked according to Iscore. Fig. 6 (c) shows

the topological neighborhood of node 293. Node 293 is with 5

ingoing and 13 outgoing edges, but it is not frequently involved in

network motifs. In conclusion, from the topological neighborhoods

of several concrete nodes, we can further conclude that the

proposed measure has its merits.

Discussion

Biological networks are typical real-world complex networks. It

has been reported that a single measure is insufficient to

distinguish lethal nodes clearly from viable ones in some biological

networks [26,64]. Therefore, it is intriguing to find some more

effective measures to characterize node differences in biological

networks. In this paper, based on the integration of the

occurrences of each node in 2, 3 and some 4-node network

motifs, we have proposed a new measure to characterize node

importance in biological networks. Based on ROC curves and the

analysis of the topological neighborhoods of several specific nodes,

we have compared the obtained results with that from the degree,

PageRank, motif centrality and betweenness.

In the CEN and YT, when the command interneurons,

interneurons, key global regulators and global regulators are

treated as actually important nodes, we compared the perfor-

mance among different measures. The proposed measure has

good performance in the two networks. The in-degree is good at

identifying command interneurons in the CEN, but it is bad at

finding global regulators in the ECT. The out-degree displays the

contrary tendency as the in-degree. Though the PageRank can

effectively identify the global regulators in the ECT, it is the worst

measure in identifying command interneurons or interneurons in

the CEN. Similarly, the betweenness is also not a good measure in

the two networks. Therefore, the in-degree, out-degree, PageRank

and betweenness are not robust indicators of important nodes in

different networks. The Iscore provides an alternative robust

measure for different types of biological networks.

Since the current knowledge on the five networks are limited,

we note that it is still an open problem to further mining the

advantages of the new measure. The number of command

interneurons in the CEN and global regulators in the ECT are

much fewer than the network sizes, the ROC analysis may suffer

the effect of noise both in the interaction data and computation

processes. We note that some other approaches may be used to

further investigate the merits of the new measure, such as rich-cub

analysis [8,65–69]. For simplicity, we simply examine the

connectivity densities among the same amount of top-ranked

nodes according to different measures in the ECT and HST, as

shown in Fig. 7. Here, r(h) is defined as the ratio of the total

actual number of edges to the maximum possible number of edges

among the top-100h% nodes. In Fig. 7, different curves corre-

spond to different indexes. From Fig. 7, we can see that for many

indexes, top-ranked nodes tend to be with higher connectivity

densities than nodes ranked at the tail. The motif centrality fails to

work in the HST, since the FFL is not a motif in such network.

Moreover, comparing among different indexes, the Iscore is very

good at finding the cluster with high connectivity densities. That is,

the connectivity density among a few motif-rich nodes are higher

than the same number of top-ranked nodes by the other indexes.

For example, in the HST, the connectivity density among the top-

10% (h~0:1) motif-rich nodes is above 0.10, while the top-10%

large-degree nodes are with r(h) below 0.08.

It has been reported that many bio-molecular networks are

disassortative, which have negative Pearson correlation coefficients

(PCCs) [6]. For example, the PCCs of the CEN and YT are 2

0.0537 and 20.3496. The disassortativity indicates that large-

degree nodes would connect with low-degree ones rather than

with each others. Whereas, nodes with high Iscore involve in many

network motifs. Motif-rich nodes tend to form small connected

subgraphs. Thus, the Iscore may be helpful to find clusters with

high connectivity density in disassortative networks.

Finally, we note that this paper only considers five real-world

biological networks, it is intriguing to further investigate the

performance of the Iscore in some artificial networks, such as

artificial scale-free, small-world networks and networks with

community structures. It is noted that for networks with large

cliques at the periphery, nodes in the cliques may have very high

Iscore values, and therefore, these nodes may be highly ranked.

Therefore, for such networks, the identified highly ranked clusters

are probably just the large cliques. We will further investigate the

related questions in our future works.
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Conclusions

In this paper, based on network motifs and multivariate

statistical analysis, we have proposed a novel measure to

characterize node importance in directed biological networks.

The new measure enable us to further mining undiscovered

characteristics of nodes in directed biological networks. Through

the new measure, we have investigated five real-world biological

networks, which include a neural network, three transcriptional

regulatory networks and one signal transduction network. These

networks vary in sizes and link densities, and consist of various

types of network motifs.

Based on the proposed measure, we have identified important

nodes in the five networks. Our investigations suggest that the

Figure 6. Topological neighborhoods of several nodes. (a) Topological neighborhood of a hub but not top-ranked node: node 209 in the YT.
(b) Topological neighborhood of a non-hub but top-ranked node: node 546 in the YT. (c) Topological neighborhood of a not top-ranked node but
with the highest betweenness: node 293 in the YT.
doi:10.1371/journal.pone.0106132.g006

Figure 7. The curves of connectivity density r(h) against h for different ranking measures in the ECT and HST.
doi:10.1371/journal.pone.0106132.g007
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most important nodes in biological networks only take up a small

fractions, but many of them are with important biological

functions in real-world biological systems. Moreover, ROC

analysis reveals that the proposed measure is a rather stable

indicator of important nodes, and with very high prediction

accuracy. Furthermore, the proposed measure can well charac-

terize non-hub but very evolutionary conserved functional

important nodes, and simultaneously, exclude hubs but not so

functionally important nodes from the top rankings. Finally, we

have discussed that the proposed measure may be used to reveal

clusters with high connectivity density in disassortative networks.

From these statistical analysis, we conclude that the proposed

measure has some unique merits and it can be acted as an

alternative network metric.

Although we have mainly investigated some directed biological

networks, the proposed measure can be extended to some other

networks, such as electrical networks, social networks. It is also

noted that the proposed measure can be extended to involve more

types of network motifs, but with the increasing of motifs, the

computational complexity will be increased. Moreover, if the FFL

is the unique network motif in a directed network, the proposed

method will degenerate into the motif centrality [25]. Lastly, we

note that this paper provides an alternative way to characterize

node features, it is still an open problem to find more effective

ranking measures for nodes in directed biological networks, since it

is generally difficult to obtain the actual rankings and a single

measure is often insufficient to perfectly characterize all nodes.

The related researches can help us to identify the actual key nodes

in real-world systems. Real-world implications of identifying the

key nodes include the finding of network control and regulation

targets. For example, we can explore disease-associated or essential

genes in cellular networks [70–72] for pharmacological or re-

engineering purpose.
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