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Abstract

Graph representations have been widely used to analyze and design various economic, social, military, political, and
biological networks. In systems biology, networks of cells and organs are useful for understanding disease and medical
treatments and, in structural biology, structures of molecules can be described, including RNA structures. In our RNA-As-
Graphs (RAG) framework, we represent RNA structures as tree graphs by translating unpaired regions into vertices and
helices into edges. Here we explore the modularity of RNA structures by applying graph partitioning known in graph theory
to divide an RNA graph into subgraphs. To our knowledge, this is the first application of graph partitioning to biology, and
the results suggest a systematic approach for modular design in general. The graph partitioning algorithms utilize
mathematical properties of the Laplacian eigenvector (m2) corresponding to the second eigenvalues (l2) associated with
the topology matrix defining the graph: l2 describes the overall topology, and the sum of m29s components is zero. The
three types of algorithms, termed median, sign, and gap cuts, divide a graph by determining nodes of cut by median, zero,
and largest gap of m29s components, respectively. We apply these algorithms to 45 graphs corresponding to all solved RNA
structures up through 11 vertices (,220 nucleotides). While we observe that the median cut divides a graph into two
similar-sized subgraphs, the sign and gap cuts partition a graph into two topologically-distinct subgraphs. We find that the
gap cut produces the best biologically-relevant partitioning for RNA because it divides RNAs at less stable connections while
maintaining junctions intact. The iterative gap cuts suggest basic modules and assembly protocols to design large RNA
structures. Our graph substructuring thus suggests a systematic approach to explore the modularity of biological networks.
In our applications to RNA structures, subgraphs also suggest design strategies for novel RNA motifs.
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Introduction

Ribonucleotide Acid (RNA) has become a prominent subject in

modern biology, due to recent discoveries of RNA’s vital roles in

regulating gene expression, which come in addition to well-known

roles in protein synthesis [1,2,3]. Based on these new discoveries,

new applications are being pursued in areas such as therapeutic

biotechnology, by using RNA’s editing, silencing, and other

regulatory capabilities to activate and deactivate genes, deliver

drugs, and design new nanomaterials [4,5]. Like other molecules,

all of these functions of RNA are closely tied to the three-

dimensional structures that RNAs adopt. Thus, to explore these

new potential functions of RNA, it is essential to understand the

principles of RNA’s architecture. Such an understanding can

naturally lead to RNA design as well, another area of intense

current interest.

At the heart of RNA structure is its modularity [6,7,8]. RNA’s

diverse structures are generated by the combination of recurrent

modules on three different levels: sequence (1D), secondary (2D),

and tertiary (3D) structures. RNA is a single-stranded polymer

whose sugar-phosphate backbone with contains four primary

building blocks, Adenine (A), Guanine (G), Uracil (U) and

Cytosine (C). Modified bases also occur. This single-stranded

polymer folds upon itself, to form GC, AU, or GU (‘‘wobble’’) base

pairs which define double-helical regions (‘‘stems’’), imperfect with

single-stranded regions named ‘‘hairpin loops’’, ‘‘internal loops’’,

and ‘‘junctions’’, with one, two, or more adjacent helical arms,

respectively on the 2D (or base-pairing) level. Through other

interactions in space, complex 3D structures form. Several 3D

modules called motifs (e.g., coaxial helix, A-minor, ribose zipper,

kissing hairpin, right-angles, twist-joint and double twist-joints

motifs) have been identified by manual and computational

inspection from experimentally resolved structures.

Such modularity and hierarchy offers us a solid ground for

conceptual and mathematical methods, such as graph theory, to

investigate RNA’s structural repertoire. Graph theory is a well-

established field of mathematics, which has been used extensively
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in a variety of economic, social, engineering, biological, and

medical contexts to describe and analyze complex networks

[9,10,11,12]. Essentially, the foundations of graph theory can be

used to enumerate and analyze combinatorial properties of

networks [13,14,15,16]. In the field of RNA structure, Waterman

pioneered the development of the graphical representation of

RNA primary/secondary network on the base level [17], and

Shapiro and coworkers extended a tree representation of RNA

secondary network at the base-pair level to measure structural

similarity [18]. More recently, Schlick and coworkers developed

the RNA-As-Graph (RAG) framework and web resource (http://

www.biomath.nyu.edu/rna) to represent global RNA topologies as

graphs (see Figure 1) [19,20]. RAG has been pursued to

enumerate, analyze, and predict RNA topologies, expanding our

understanding of RNA’s structural repertoire. Interesting applica-

tions include prediction of RNA-like topologies [20,21,22,23],

prediction of non-coding RNA [24,25], in silico modeling of the

in vitro selection process for RNA design [26,27,28], analysis of

large viral RNA [29,30], and riboswitch analysis and design

[31,32] (see reviews [33,34]). Recently, RAG 2D graph represen-

tations have been extended to 3D, and the substantial reduction in

conformational space size has been exploited to enhance the

sampling of 3D topologies to predict helical arrangements of RNA

[35,36].

In RAG, RNA structures are simplified as tree or dual graphs

by translating RNA modules to graph theory objects such as

vertices and edges. When helices are translated to edges and other

modules are translated to vertices, RNA structures are represented

as tree graphs (see Figure 1A). Using graph theory, all possible 2D

topologies of RNAs can be enumerated [19,20].

The Laplacian matrix of a graph provides a quantitative

framework to describe the topology. In particular, the second

eigenvalue of the Laplacian matrix has been used as a topological

descriptor of RNA [20,21]. The enumerated repertoire of tree-

graph motifs has made possible classification of these motifs as

existing (experimentally found) and hypothetical. Using the

Laplacian eigenvalues as variables, we have used clustering

analysis of RNA graphs to predict which of the remaining

hypothetical motifs are ‘‘RNA-like’’ [19,20,21]. RNA-like graphs

have been investigated to design targeted pools for in vitro

selection [28] and have been merged to design larger RNA-like

topologies [23].

Here, we present another application of graph theory to explore

the modularity of RNA structures by partitioning RNA graphs

using graph theory methods. The analysis of RNA structures at

large has identified modular RNA structures, which are composed

of repetitive motifs, in which patterns appear hierarchically from

2D to 3D structural levels [7]. Thus, a build-up of existing modules

is a natural way to produce new structures by fragment assembly

approaches, as we have done previously [21,37]. However, so far,

only a limited number of known motifs have been found by

manual inspection, and there is no systematic way to divide whole

RNAs into pieces for fragment assembly. Toward this goal, we

apply graph partitioning methods to RNA tree graphs. Our

computational approach divides large RNA structures into small

recurrent motifs based on spectral graph partitioning.

The mathematical theory of graph partitioning is well

developed [38], but the application of the graph partition

algorithm to biology has not been attempted as far as we are

aware. Because the topological properties of RNA graphs can be

described by the second eigenvalue (l2) of the Laplacian matrix,

we utilize the eigenvector (m2) of the Laplacian matrix corre-

sponding to l2. This eigenvector m2 provides us information on

how to divide a graph into smaller fragments that minimize

topological dependencies between fragments. We utilize the zero-

sum and property of the m2 elements. We split vertices 1 to n at k
into two disjointed sets {i1,…,ik} and {ik+1,…,in} by m29s sorted

elements {ni1, ni2, …,nik,…, nin} where ni1#ni2…#nik #…#nin

and k is determined by a splitting value s such that nik#s. We use

three standard choices for the splitting value s to define three

partitioning algorithms: median, sign, and gap. For the median

and sign cuts, we select the splitting value s as the median of

eigenvector elements or as 0, respectively, where in the latter

negative values are separated from positives. For the gap cut, the

splitting value s is in the largest gap in the sorted list of m2

components. We apply these three methods to all existing graph

topologies discovered experimentally up through 11 vertices. Our

analysis of the 45 RNA graphs from 4 to 11 vertices shows that the

gap cut partitions structures into the most topologically distinct

pieces. All resulting subgraphs correspond to existing motifs. Thus,

the gap cut appears the most natural for RNA substructuring. Our

iterative gap partitioning approach further suggests a systematic

procedure to divide a large RNA structure into small RNA motifs

and assemble the resulting modules to large RNAs. Permutations

of sequences corresponding to the building blocks in the desired

order could be used to suggest candidate sequences corresponding

to target motifs.

This paper is organized as follows. We begin by describing

methods including mathematical formulation of RNA graphs,

Laplacian matrices and spectrum, three graph partition algorithms

(median, sign and gap cuts) based on the second Laplacian

eigenvector m2, and the RNA data set that we use. We then

present results for the topological aspects described by the second

Laplacian eigenvector, partitioning results for RNA graphs, and

iterative partitioning results. The final discussion provides future

directions of the work.

Methods

RNA graphs, Laplacian eigenvalues, and eigenvectors
We represent RNA as a graph G using RAG tree representation

(see Figure 1A). In the RAG tree graphs, RNA 2D structural

elements – stems, loops, bulges, and junctions – are converted into

2D graphical objects with the following rules:

(1) an edge (2) represents a double-stranded helical stem with

more than one base pair.

(2) a vertex (N) represents a single strand that occurs in segments

connecting 2D structural elements such as bulges, loops, and

junctions. Here, a bulge motif is considered to be an internal

symmetric or asymmetric loop with more than one

unmatched nucleotide or one unstable base pair.

Figure 1 shows three examples – a linear structure 6_1, a 3-way

branched structure 6_2, and a 4-way structure 6_5. The RAG

graph index shows the total number of vertices and the topological

complexity: RAG graph 6_1, 6_2, and 6_5 have six vertices and

the subscribed numbers (1, 2, and 5) shows the increased

complexity. We label the graph vertices by the order of vertices

corresponding to sequences from a 59 end to a 39 end.

For a graph G = (V,E) where V is the set of labeled vertices and

E is the set of edges, we define the associated Laplace matrix

(called the Laplacian) L = (mij) = A{D, where A is an adjacency

matrix and D is a diagonal matrix, as the n6n matrix where
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Figure 1. RNA-As-Graph (RAG) tree representation of RNA secondary structures and graph partitions using the second Laplacian
eigenvector. (A) Examples of RNA secondary structures, their corresponding RAG tree graphs, Laplacian matrices, and the second eigenvectors: (a)
signal recognition particle (PDB code: 2XXA, Graph ID: 6_1); (b) glycine riboswitch (PDB code: 3OWZ, Graph ID: 6_2); (c) RNase P (PDB code: 3Q1Q,
Graph ID: 6_5). (B) Graph partitioning using the cut values of the median, sign, or the largest gap of the second Laplacian eigenvector with examples
of three RAG graphs 6_1, 6_2, and 6_5.
doi:10.1371/journal.pone.0106074.g001
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mij~

d(i) if i~j

{1 if (i,j)[E

0 if (i,j) 6[E

8><
>:

and the value d(i) is the total number of edges from vertex i and n
is the total number of vertices (n = |V|). See Figure 1A for the

Laplacian matrices for three graph examples.

Since the Laplacian matrix L is symmetric, the eigenvalues of

the Laplacian matrix (l1, l2, …ln) are non-negative with the

smallest eigenvalue l1 = 0. In the field of the spectral graph

theory, the Laplacian eigenvalues and eigenvectors have been

extensively studied since they describe combinatorial or topolog-

ical properties of a graph. In particular, the second smallest

eigenvalue, l2, and its corresponding eigenvector, m2, provide

information about topological compactness and the partitioning

properties of graphs, respectively. The second eigenvalue l2 is

positive for any connected graph and increases with the

compactness of a graph (see Figure 1A). The second eigenvector

m2 = (v1,v2,:::,vn) corresponding to l2 provides local information

on the connectivity of each vertex; it also provides information on

how to subdivide a large RNA into smaller fragments that

minimize dependencies between fragments (see below for details).

Note that the sum of elements of m2 is 0 (
Pn
i~1

vi~0) because

vector m1 = (1,1,…,1) is an eigenvector of the Laplacian corre-

sponding to the first eigenvalue (l1 = 0) and the eigenvectors of a

symmetric matrix are orthogonal, i.e., the inner product of

(1,1,…,1) and (v1,v2,:::,vn) is zero.

Graph partitioning algorithm
The basic idea in graph partitioning is to split the vertex set V

into two disjointed sets, A = {i[V : viws} and A~fi[V : viƒsg,
for some given value s. Based on the zero-sum property of the

second Laplacian eigenvector m2, a spectral partitioning technique

can be used to split the graph according to a splitting value s on the

basis of the second eigenvector m2, as elaborated by Spiegelman

and Teng on the spectral partitioning technique [38]. We use

three standard choices for the splitting value s: median, sign, and

gap cuts. For the median cut, we select s as the median of

fv1,v2,:::,vng, namely m, and thus the two sets are {i[V : viwm}

and {i[V : viƒm}. For the sign cut, we select s = 0 and divide V
into {i[V : viw0} and {i[V : viƒ0}. For the gap cut, we list the

eigenvector components fv1,v2,:::,vng in ascending order

fvi1,vi2,:::,ving, where vi1vvi2v:::vvin; we then calculate the

difference of every two neighboring elements

(Dvi1{vi2D,Dvi2{vi3D,:::,Dvi(n{1){vinD), called the ‘‘gap’’, and select

s to be the value defining the largest gap: If Dvij{vi(jz1)D is the

largest gap, then fvi1,vi2,:::,vijg and fvi(jz1),vi(jz2),:::,ving are two

disjointed set of vertices by the gap cut. Furthermore, we apply the

graph-partitioning algorithm iteratively until all substructured

graphs correspond to existing RNAs (the simplest motifs have all

structures experimentally deduced). After one partition, a graph G
becomes two subgraphs, namely, G1 and G2 after one partition.

After k iterations, G becomes G1, G2,…, G2
k until all Gi

correspond to some existing RNA graphs.

RNA data set
We apply the graph partitioning algorithms to 45 RAG tree

graphs with 4 to 11 vertices that have corresponding known

structures in the Protein Data Bank (PDB) database (http://www.

biomath.nyu.edu/rna, N. Baba et al. in preparation). Note that a

graph topology can correspond to multiple RNAs. See Figure 2

for the list of RAG tree graphs and their corresponding secondary

structures and partition results.

Results

Topological aspects described by the second Laplacian
eigenvector

Before describing results of our RNA partitioning, it is useful to

understand the overall topologies of RNA graphs. The second

eigenvalue (l2) and eigenvector (m2) of the Laplacian matrix

constructed from the adjacency and degree matrices of each graph

describe overall graph connectivity. The eigenvalue l2 measures

the graph complexity. For example, Figure 1A shows that a linear

RNA molecule has a smaller l2 value than a branched molecule: a

linear graph 6_1 has l2 = 0.27, while branched graphs 6_2 and

6_5 have l2 = 0.32 and l2 = 0.49, respectively.

The corresponding eigenvector m2 describes the local topolog-

ical aspect of a graph. Thus, symmetry produces same numerical

components. For example, Figure 1A shows that for Graph 6_1, a

simple symmetric linear structure with 6 vertices, m2 elements

increase from {0.56 to 0.56 and have symmetry around 0

({{0.56, {0.41, {0.15, 0.15, 0.41, 0.56}). For Graph 6_2 with a

3-way branch connected with a linear structure, m2 is {{0.42,

{0.28, {0.42, 0.08, 0.42, 0.62}. For the 3-way structure, the

elements are {{0.42, {0.28, {0.42, 0.08}, where the center of

the branch corresponds to {0.28, and the symmetric branches

correspond to {0.42. The last branch connected to a linear

structure is 0.08 with two more vertices with increased elements of

0.42 and 0.62. Graph 6_5, a 4-way branch connected with an

elongated edge, has m2 = {0.32, 0.16, 0.32, {0.38, {0.73, 0.32}.

The vertices 1, 3, and 6, which correspond to the 4-way branch,

have the same element value as 0.32. The central vertex 2 has the

value 0.16 and the linearly connected vertices have decreasing

negative values {0.38 and {0.73. Since local topological features

are reflected by the components of m2, the ordering of elements

can be used to partition graphs.

Topological aspects of subgraphs partitioned by the
median, sign, and gap cuts

From Figure 1B, we see that the partitioning results for the

three methods are overall similar for three sample graphs but differ

in fine details. Figure 1B shows three examples of graphs – RAG

graphs 6_1, 6_2, and 6_5 with partitioning by the median, sign,

and gap cuts. For these three graphs, the median cut partitions

graphs into two subgraphs with the same number of vertices; the

gap cut partitions the graphs into two topologically distinct graphs;

and the sign cut results are same as either the median cut or the

gap cut, depending on the graph topology. For the linear structure

6_1, all three partitioning have the same result: the linear graph

6_1 is divided into two linear structures with the same vertex

numbers ({1,2,3}/{4,5,6}). For the 3-way branched graph 6_2,

the median and sign cuts have the same result, with two vertex sets

Figure 2. Graph partitioning results for RNAs corresponding to RAG tree graphs with vertex number (a) V = 4, 5, or 6, (b) V = 7, (c)
V = 8, (d) V = 9, (e) V = 10, and (f) V = 11. RAG tree graph, Laplacian eigenvector, cut values/results of median/sign/gap partitions, and
corresponding RNA secondary structures are shown.
doi:10.1371/journal.pone.0106074.g002
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with the same number of three vertices ({1,2,3}/{4,5,6}). The gap

cut, however, produces the graph into two distinct topological

features: a 3-way branch with four vertices ({1,2,3,4}) and a linear

structure with two vertices ({5,6}). For a 4-way branch graph 6_5,

the median method partitions the graph into two three-vertex

graphs while the sign and gap methods cut the graph into a 4-way

branch ({1,2,3,6}) and a linear structure with two vertices ({4,5}).

Gap cut: best partitioning algorithm for RNA graphs
These three partitioning methods applied to 45 RAG graphs

from 4 through 11 vertices corresponding to existing RNAs (whose

Figure 3. Iterative gap partitioning results for large RNA with example of the glycine riboswitch (PDB code: 3P49, Graph ID: 10_19).
doi:10.1371/journal.pone.0106074.g003
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experimental structures have been deposited in the PDB database)

produce the results shown in Figure 2. Here, RAG tree graphs, m2,

the cut values, and results for the small (4–6 vertices, Figure 2a),

medium (7–8 vertices, Figures 2b, 2c), and large (9–11 vertices,

Figures 2d–f) graphs are shown. The overall cut patterns are

similar as analyzed for the simple examples above. Namely, the

median cut partitions the graph into two graphs with the same

number of vertices; the gap cut partitions the graph into two

topologically distinct graphs regardless of the vertex numbers of

the partitioned graphs; and the sign cuts coincide with either the

median or gap cuts but usually the gap cut. As a result, among 45

existing RNA graphs, 28 cases yield the same results for all three

methods. For 13 cases (e.g., graphs 6_5, 8_10, 8_14, 9_4, 10_30,

11_89), the sign and gap cuts produce the same partitioning of the

graphs as the high-branched graph plus the linear graphs, while

the median cut breaks the branched graphs corresponding to

junctions. For four cases, graphs 4_2, 6_2, 10_2, and 10_4, the

gap cut keeps the 3-way junction structure and cuts the connected

hairpin or internal loop structures. On the other hand, the sign

and median cuts have the same partitioning results: junctions are

broken to obtain two graphs with equal vertex numbers. Thus,

among the three partitioning methods, the gap cut method is well

suited for partitioning RNA graphs into basic modules of internal

loops, junctions, and hairpins without breaking them, which is

usually energetically favorable.

Iterative gap cuts to partition large RNA
For large RNAs, we apply the gap partitioning iteratively to

analyze how basic modules are assembled to make larger ones. For

example, we partition graph 10_19 corresponding to the glycine

riboswitch (Figure 3), which has two 3-way junctions. After one

step of gap partitioning, the two graphs, 5_2 and 6_2, connected

by the vertex ID 1 result (for the Laplacian eigenvector elements of

RAG ID 10_19, see Figure 2e). The subgraphs 5_2 and 6_2

contain one 3-way junction, and the vertex 1 corresponds to the

RNA single strand connecting these two 3-way junctions. After

two steps of gap partitioning applied to the second-generation

subgraphs 5_2 and 6_2, four third-generation-graphs result: 5_2

becomes 2_1 and 4_2, and 6_2 becomes 5_2 and 2_1. See

Figure 2b for the Laplacian eigenvector elements for graphs 5_2

and 6_2. After the third partitioning of 5_2, we produce five

minimal modules including two 3-way junctions and three hairpin

structures to form the graph 10_19 (Graphs 2_1, 4_2, 4_2, 2_1,

and 2_1).

Such an iterative partitioning of gap cuts also suggests

hierarchical assembly procedures from the basic modules building

up to a large structure by an inverse cutting procedure. For

example, to build up an RNA structure of 10_19, we start with five

graphs with vertex labels in the fourth row in Figure 3: 2_1 (vertex

labels {3,4}), 4_2 (vertex labels {1,2,3,5}), 4_2 (vertex labels

{1,6,7,8}), 2_1 (vertex labels {8,9}), and 2_1 (vertex labels {9,10}).

The first step of assembly suggested by the iterative gap cut

procedure is a combination of graphs 4_2 (vertex labels {1,6,7,8})

and 2_1 (vertex labels {8,9}). From the overlapped vertex labels,

the connection point is also suggested: graphs 4_2 (three-way

junction) and 2_1 (hairpin loop and dangling end) can be merged

through vertex ID 8 to form graph 5_2 (three-way junction and

internal loop). The next step suggests assemblies of 2_1 and 4_2 to

5_2 and 5_2 and 2_1 to 6_2, and the final step is assembly of 5_2

and 6_2, to yield the target graph 10_19. This gap cut/assembly

procedure indicates that the first step in RNA structure assembly is

the connection of junctions to other structures.

Discussion and Conclusions

We have presented graph-partitioning approaches using three

splitting values – median, sign, and gap – based on the Laplacian

eigenvector m2 for understanding modular features of RNA. Our

application of these spectral algorithms to all 45 existing RNA

graphs from 4 through 11 vertices (http://www.biomath.nyu.edu/

rna, N. Baba et al. in preparation) has suggested concrete

substructuring as well as design procedures. Namely, sequences

corresponding to these basic motifs can be combined in a build-up

type optimization we have done for RNAs [21]. Our RAG

database has already catalogued both existing RNA topologies and

hypothetical RNA graphs, and further classified the latter class

into RNA-like or non-RNA-like topologies. For example, there are

42, 100, and 227 graphs with 9, 10, and 11-vertices, respectively,

which do not have corresponding existing RNAs but are

considered RNA-like (or probable) (N. Baba et al, in preparation).

For these RNA-like motifs, a build-up procedure is a reasonable

approach.

The RAG tree graph representation of RNA structures captures

the global helical connectivity and offers mathematical founda-

tions to measure and analyze RNA topologies. While the second

Laplacian eigenvalue l2 describes the overall compactness of the

graph, the elements of second Laplacian eigenvector m2 describe

the topological contributions/locations of each vertex to the

overall motif. For example, a linear structure has simply increasing

or decreasing m2 elements depending on how the vertices are

labeled (see Graphs 4_1, 5_1, 6_1 in Figure 2a, Graph 7_1 in

Figure 2b). In a branched structure, the vertices of branch ends

have the same m2 components (for example, see Vertex ID 1 and 3

of Graph ID 5_2 and 6_2 in Figure 2a).

Thus, partitioning vertices into two groups by the gap cut

algorithm provides a mathematically reasonable and biologically

relevant graph partitioning result. The median cut partitions a

graph into two equal-sized subgraphs. The largest gap cut

partitions a graph into two topologically distinct subgraphs. For

example, graph 6_2 in Figure 2a has two 3-vertex subgraphs, but

the gap cut produces one 4-vertex subgraph with a junction

structure and another 2-vertex subgraph plus a linear structure.

Since junction structures cannot easily be divided energetically,

the gap cut suggests a quantitative and systematic approach to

describe basic modules and their hierarchical assembly. As shown

in the example of the graph of 10_19 in Figure 3, our algorithm

suggests how a large RNA can be built from RNA building blocks.

The gap partitioning can be utilized to design RNA sequences that

fold into the target graph, which could help to expand the

structural repertoire of RNAs.

Our prior design work by build-up has used simple division of

ten dual graphs to predict novel motifs [21]. Already half of them

were experimentally determined by different methods such as X-

ray crystallography, nuclear magnetic resonance spectroscopy, or

comparative analysis of genomic sequences [20]. We further

observed high sequence similarity between designed and actual

RNA sequences, much greater than expected by chance (25%)

[20]. However, such an ad-hoc build-up procedure cannot be used

to design complex pseudoknot structures systematically [20].

The application of our partitioning approach for RNA tree

graphs to RNA design is limited to pseudoknot-free structures.

Since pseudoknot motifs are important for general RNA

applications, build-up approaches based on partitioning algo-

rithms for dual graphs are required. In particular, dealing with

self-loops (edges connecting the same vertex) requires further

development. It may also be possible to approach pseudoknot
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partitioning using modified tree graphs that have additional edges

or graph elements accounting for pseudoknot interactions.

Our work here is the first application of standard graph

partitioning algorithms to the area of biology. The partitioning

procedures can be extended to the design of novel RNA motifs by

assembling modules corresponding to the subgraphs identified

from partitioning, as we have done previously for ten specific

motifs [21]. Of course, topology is just one aspect. Chemistry and

thermodynamics must be considered as well. For example, free

energy calculations and energy landscape analyses are further

needed to screen in-silico designed sequences that fold onto the

target topologies. In our analysis of RNA riboswitch energy

landscapes, for example, we found the distribution and barrier

type of the conformational clusters in riboswitch energy landscapes

to be useful for discriminating various riboswich classes depending

on the thermodynamic control of ligand-binding [31,32].

A generalization of RNA graph partitioning to other areas of

biology can certainly be envisioned. Many biological networks,

such as metabolic pathways associated with biochemical reactions

and regulatory protein interaction networks, have been construct-

ed by organizing building blocks. Thus, the application of graph

partitioning to these systems could define a valuable tool to

identify the modularity of many networks in biology, engineering,

and medicine.
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