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Abstract

Using deformable models to register medical images can result in problems of initialization of deformable models and
robustness and accuracy of matching of inter-subject anatomical variability. To tackle these problems, a novel model is
proposed in this paper by compounding local invariant features and global deformable geometry. This model has four
steps. First, a set of highly-repeatable and highly-robust local invariant features, called Key Features Model (KFM), are
extracted by an effective matching strategy. Second, local features can be matched more accurately through the KFM for
the purpose of initializing a global deformable model. Third, the positional relationship between the KFM and the global
deformable model can be used to precisely pinpoint all landmarks after initialization. And fourth, the final pose of the global
deformable model is determined by an iterative process with a lower time cost. Through the practical experiments, the
paper finds three important conclusions. First, it proves that the KFM can detect the matching feature points well. Second,
the precision of landmark locations adjusted by the modeled relationship between KFM and global deformable model is
greatly improved. Third, regarding the fitting accuracy and efficiency, by observation from the practical experiments, it is
found that the proposed method can improve 6*8% of the fitting accuracy and reduce around 50% of the computational
time compared with state-of-the-art methods.
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Introduction

The majority of medical image processing tasks, including fMRI

analysis [1], 3D reconstruction [2] [3], and medical image

segmentation [4] [5] [6], rely heavily on accurate image co-

registration. To date, many methods exist that can help perform

image co-registration (e.g. [7] [8] [9] [10] [11]). A comprehensive

review summarizing these methodologies has been performed in

[12], which divides them into two main categories; geometric

image features-based and voxel similarity measures-based. Among

these registration methods, active contour models (ACM) [13],

active shape models (ASM) [14] and active appearance models

(AAM) [15] are particularly important methods. They are widely

employed and have greatly improved medical image analysis, due

to their excellent non-rigid deformable performance [16] [17] [18]

[19].

However, there are still several critical issues to be resolved.

Two recent surveys, [20] and [21], summarized the deformable

model and medical image segmentation respectively, and identi-

fied problems, such as model initialization, and the robustness and

accuracy for inter-subject anatomical variability, both of which

need to be improved.

The results of deformable model rely heavily on its initial

position. If the initial position of the model is close to the region of

interest, fitting results will be more accurate and the evolution time

will be shorter. On the other hand, if the initial position is far

away, it can lead to failure, due to the limited local searching

algorithm of deformable models. Therefore, it may be worth

investigating how to guarantee that the initial model is within the

searching range. However, most attempts at improving deform-

able models have ignored this problem and left users to manually

initialize it. Few research projects involve automatic initialization,

and are limited to special applications ([22] [23] [24]) or unique

deformable models ([25] [26]). Garrido and Qerez proposed a

reformulated Hough transform to initialize the deformable model

for cell segmentation [22], but there were some cells which could

not be correctly found in the image, and the algorithm did not

consider the performance of initialization when the target image

was deformed. In [23], the authors implemented a fast 3D

generalized Hough transform based on prior information of heart

position, which is designed for a cardiac model. Wang et al. [24]

proposed to use irises to initialize ASM for use in facial

recognition. The initialization presented in [25] is limited to

ACM and can not be extended to ASM or AAM. In [26], the
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initializing method is constrained to an improved ASM, resulting

in an exhaustively search of a whole image to obtain good

initialization. In [27], a method of automatically initializing a 3D

deformable model is presented by compounding a pictorial

structures model [28] and AAM. However, features used in this

method are less distinctive than that used in our model. The

method proposed in [29] only used Hough transform to determine

the initializing model by a bounding box, where only rough

positions of each landmarks can be located.

Inter-subject anatomical variability may abolish one-to-one

image correspondence between subjects. Thus global deformable

geometrical model will not fit objects well, particularly when the

same anatomical structures are absent in different subjects. Only a

few methods have investigated this problem. [30] improved the

AAM through outlier detection techniques. Toews et al. also

employed local invariant features to train a statistical part-based

model [31]. This model learns the probability of a feature presence

(or absence) from a large image set and matches local invariant

features to a new image allowing fitting. The advantage of this

model is that it does not rely on exact anatomical similarity

between subjects to permit co-registration, as it will typically locate

some corresponding local structures. However, the methodology

used ensures that the images produced may not have clear

anatomical meanings.

In an attempt to address the problems mentioned above, we

propose a novel compounding model by combining a deformable

geometric model and local invariant features. Local invariant

features can extract local structures robustly and consequently

match them more accurately to images from different subjects. In

this paper, we exploit the scale invariant feature transform (SIFT)

[32] to construct our compounding model. It is worth noting that

the proposed model can be easily extended to other local invariant

features. We first build the deformable geometric model, which is

the point distribution model (PDM) in this study, by manually

labeling landmarks and aligning the shape represented by

landmarks in all images of the training set. There are two stages

to choose landmarks. At the first stage, we choose those key points

that correspond to anatomic structures and some special

structures, such as T-junction. At the second stage, we uniformly

choose points between two adjacent landmarks selected in the

previous stage. Then, we extract the SIFT features from the

training images and align them to the PDM. Two PDMs used in

our experiments both have 38 landmarks, in which 8 are key

points and 30 are other landmarks uniformly selected. We have

developed a strategy to preserve the highly-repeatable and highly-

robust SIFT features. Based on these selected SIFT features, an

efficient and automatic learning strategy is developed to build a

Key Features Model (KFM). The KFM is then connected to the

PDM by modeling their geometrical relationship. Based on this

relationship, we develop an automatic strategy, precisely initial-

izing the position of PDM. After the initialization of PDM, more

precise localization of each landmark is also achieved. Finally, the

ultimate positions of landmarks are obtained by iterative search

processes.

Unlike other initialization methods mentioned previously, the

proposed method can initialize global deformable geometrical

models in more extensive ranges, due to its accuracy in matching

local parts. Unlike Toews’s model, the proposed model connects

the local parts with explicit anatomical structures represented by

PDM. Therefore the proposed method can find local parts among

variable inter-subject anatomical tissues, as well as the meaningful

anatomical structures.

Extensively experiments have been carried out to evaluate the

performance of the proposed method. We have collected data

from a large number of cardiac MRI images, consisting of 500

slices from 16 subjects, 10 male and 6 female, aged from 45–64

years. Firstly, we demonstrate the matching accuracy of the

proposed KFM with respect to its repeatability and robustness.

Then the accuracy of initialization and fitting is evaluated. Finally,

our fitting results show the 6:2*8:3% improvements by compar-

ison with an improved ASM [16].

The main conclusions of this paper is three-fold: 1) A KFM is

built to match repeatable local parts among subjects with

anatomical variance, even when no exact one-to-one correspon-

dence exists. 2) An automatically initializing strategy is developed

for the initialization of PDM. 3) An efficient strategy is developed

to precisely localize landmarks of PDM.

Methods

Ethics statement
This study was approved by the Research Ethics Committee of

Zhejiang University of Technology and Hangzhou Shaoyifu

Hospital, China. All subjects used in this paper have been

informed that their data may be published and provided written

informed consent.

Model building
The new model consists of a PDM, a KFM and their geometric

relationship. The PDM is built in an ASM first and the gray-levels

of pixels around the landmarks in the PDM are also modeled. The

KFM is built by extracting SIFT features and choosing high-

repeatable and high-robust ones. This section explains how to

build PDMs and KFMs, and model their geometric relationship.

Point distribution model. A PDM consists of n landmarks

that are the important points to represent the particular parts or

boundary of objects in the training set. The collection of these

landmarks is used to define a shape vector as X~½x0,y0,x1,y1,
� � � ,xn,yn�. These shapes in all training images must be aligned

with respect to a set of axes. The required alignment is achieved by

scaling, rotating, and translating the training shapes so that they

agree as closely as possible. From all aligned shapes, a mean shape

is computed by �XX~
1

N

XN

i~1
X 0i , where X 0i indicates an aligned

shape. Shape dimensions and variations are reduced by using the

Principal Components Analysis (PCA). Thus a new shape is

obtained by:

Xnew~�XXzWb ð1Þ

where b is a t(tƒ2n) dimensional vector containing the PDM’s

parameters, and computed by:

b~WT (X{�XX ): ð2Þ

A new shape Xnew is obtained by varying b within a constrained

range +a
ffiffiffiffi
li

p
, where a is usually set to a value between two and

three. And the new shape should be transformed into a new and

better location on the target image.

To find the accurate position of the new shape, the gray-level

appearance should also be modeled. For each landmark, gray-level

values are drawn from a line. This line passes through the

landmark and is perpendicular to the boundary, which is formed

by the landmark and its neighboring pixels. For j-th landmark in

the i-th image, np extracted gray-level values centered at j-th
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landmark form a gray-level profile, denoted by gi j~½gi j0 ,gi j1 , � � � ,
gi jn

p{1
�. Thus a mean profile is defined as:

�yyi j~
1

N

XN

i~1

dgi j , ð3Þ

where dgi j~½gi j1
{gi j0

, � � � ,gi jn
p{1

{gi jn
p{2
�. The final new

shape is obtained by finding such a shape that the profiles of

landmarks in new image have minimal difference with respect to

their mean profiles and its variations do not exceed the range of b.

Key features model. Given total W images in the training

set, W groups of SIFT features need to be extracted. However,

there are too many SIFT features, even if there are only a few

objects in one image. These features should be selected carefully

and only those highly-robust and highly-repeatable key points can

be used to establish the KFM. There are three steps to choose the

suitable SIFT features.

The first step is to align all W groups of SIFT features to the

mean shape obtained when building the PDM. When building the

PDM, we align shapes on different training images as closely as

possible. This procedure provides a set of transforming parame-

ters. By applying these parameters to corresponding SIFT features,

they can also be aligned to the mean shape of the PDM. If SIFT

features in different images are associated with the same position,

they will be closely located after being aligned.

The second step is to match the SIFT features to obtain highly-

robust matching pairs. Usually, the appearance description of

SIFT features is used to match SIFT features. SIFT features are

local invariant features and their descriptions only represent their

local image information. It may result in mismatched pairs, if there

are similar local structures in two image but at different positions.

After aligning SIFT features, an extra geometric constraint can be

used to improve the matching correctness. Assuming two images

in the training set are denoted as Ii and Ij and their SIFT features

are denoted as f i and f j , respectively. For one SIFT feature in the

image Ij , fi,n, its matched SIFT feature in the image Ij can then be

determined if they meet the following conditions:

min(DDAfin
{Afj

DD2)vTha

min(DDAfin
{Afj

DD2)v0:8|min second (DDAfin
{Afj

DD2)

DDOfin
{Ofjm

DD2vTho

ð4Þ

where Afin
and Ofin

denote the appearance description and

aligned geometric position of fin . The previous two conditions,

suggested in [32], are usually used for SIFT feature matching.

Here an extra condition based on aligned SIFT features is added.

Assuming Ofjm
and Ofin

are the aligned geometric position of fjm

and fin , if they meet the previous two conditions, they are

considered as the potential matching pair. If the geometric

distance between Ofin
and Ofjm

is less than a threshold, they are

regarded as a matching pair. Some examples is shown in Fig. 1,

from which we can observe that the third condition will greatly

improve the matching accuracy.

By using these conditions, SIFT features of each image are

matched to all other images in the training set and a set of

matched pairs can be obtained. We denote Min,jm as the nth SIFT

feature in the ith image being matched to the mth SIFT feature in

the jth image.

The third step is to choose highly-repeatable SIFT features by a

matching propagation procedure. Given a SIFT feature, fin , we

will choose all SIFT features corresponding to the same position in

different images to form a collection Gk. Firstly we initialize Gk by

adding fin into it. And we choose all SIFT features in other images

that match with fin to be members of Gk. For each SIFT feature in

Gk, we then choose all SIFT features in the other image that

matches with it and then add them into Gk; repeating this

procedure, until there are no other SIFT features in all images that

are matched with any features in Gk. Thus a collection of SIFT

features in all images corresponding to the same position as fin can

be obtained. Performing this procedure is necessary and impor-

tant. One SIFT feature in one image may not find matched

features from other training images. When applying matching

propagation, we can obtain as many SIFT features as possible,

corresponding to the same position in all images of the training set.

Supposing we finally obtain K collections and each collection

has tk SIFT features after the above matching propagation

procedure. Since there is only one SIFT feature associated with

one position in one image, tk can reflect the number of images, in

which robust SIFT features can be found at a certain similar

position. The larger value tk is, the higher repeatability the

collection Gk is. To guarantee high-repeatability, the ratio

between tk and the total number of training images must be

larger than a constant value R. R can be adjusted to balance the

number of key points in KFM and the repeatability of the picked

SIFT features. If R is set to a larger value, the number of key

points will be decreased and the repeatability will be increased,

and vice versa. In this study, according to the experiments in the

sub-section of Evaluation of Different Picking Ratios, we suggest

an adequate ratio (e.g. 0.6). An example is shown in Fig. 2, where

the features with higher occurrence ratios are more likely located

at meaningful positions, such as red and green feature points.

According to the three steps detailed above, the highly-robust

and highly-repeatable SIFT features are obtained effectively. We

can then use these SIFT features to build a KFM. A KFM consists

of K sets of SIFT features. In each set, SIFT features locate at the

close positions. The average appearance description of each SIFT

features set, Gk, is computed as:

AGk
~

Xtk

c~1
AGk ,c

tk

ð5Þ

where AGk ,c means the appearance description of the cth SIFT

features in Gk.

If a SIFT feature, fni
, in a test image meets the following

conditions simultaneously, we consider it match to a collection Gk

in KFM:

�ddn,Gk
~DDAfni

{AGk
DD2~ arg

j
min(DDAfnj

{AGk
DD2)

dn,Gc
k
~DDAfni

{AGc
k
DD2~ arg

j,c
min(DDAfnj

{AGc
k
DD2)

ð6Þ

where AGc
k

is the appearance description of the c-th SIFT feature

in Gk. Thus the first equation in (6) means fni
has the most similar

appearance description with AGk
with respect to other SIFT

features in the test image. The second equation in (6) means the

minimal distance between Afni
and appearance descriptions of

SIFT features in Gk is also the minimal distance between the

appearance descriptions of any SIFT features in the test images

and appearance descriptions of SIFT features in Gk.

Statistical geometric relationship between KFM and

PDM. The relationship between the KFM and the PDM is

built through relative displacements between aligned positions of
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SIFT features in the KFM and aligned landmarks in the PDM.

We denote the geometric position of the cth SIFT feature in the

kth SIFT feature set of KFM as Ok,c~fxOk,c
,yOk,c

g and the

position of the lth landmark in PDM as Ll~fxl ,ylg. The

displacement between Ok,c and Ll is then denoted as

ELl ,Ok,c
~fex

Ll ,Ok,c
,e

y
Ll ,Ok,c

g. From the statistical perspective, given

one landmark Ll , we have:

p(Gk,cDLl) ~p(fAk,c,Ok,cgDLl)~p(Ak,cDLl)p(Ok,cDLl)

~
0 if p(Ak,cDLl)~0

p(Ok,cDLl) if p(Ak,cDLl)~1

� ð7Þ

Given a training image, the SIFT feature Gk,c may be present or

not, therefore the probability p(Ak,cDLl) is equal to 1 or 0. The

position of this SIFT feature can be denoted by its displacement

relative to the given landmark Ll , and therefore we have:

p(Ok,cDLl)~p(EGk ,Ll
DLl)~N (mGk ,Ll

,SGk ,Ll
) ð8Þ

where the displacement of one SIFT feature in one set Gk is

assumed to be subjected to bivariate Gaussian distribution, and

EGk ,Ll
denote the displacement between Gk and landmark Ll .

Given a test image, in which the positions of landmarks are

unknown, if the u-th SIFT feature fnu
in this image is found to

match to one SIFT feature in Gk, the matched SIFT features can

be used to determine positions of landmarks.

p(Ll Dfnu ) ~p(Ll DAfnu
,Ofnu

)~p(Ll DOfnu
)

~p(Ll DEGk ,Ll
)!p(EGk ,Ll

DLl)
ð9Þ

Because in (8) positions of SIFT features in Gk can be

determined by its displacement relative to the tth landmark, the

position of this landmark in a test image can accordingly be

determined by its displacement relative to the matched SIFT

feature.

For each set of SIFT features in KFM, there are the relations

denoted by (8) and (9), the position of the landmark in a test image

is therefore determined by all SIFT features each of which is

matched to one of the SIFT feature sets. It is worth noting that

there may not be a matched SIFT feature for every Gk. Finally,

the position of the landmark is calculated by maximizing the joint

distribution determined by all observed matched SIFT features:

Ll~ arg
Ll[R2

max(Pz
k~1p(Ll DEGk ,Ll

)) ð10Þ

where we assume z SIFT features, each of which matched to one

Gk, are found. By using the logarithm of (10) and solving its

extrema, it is possible to obtain the position of landmarks.

Figure 1. Two examples of matching results of the SIFT features. Picture marked by red points and lines illustrates the results of using only
previous two conditions. Pictures marked by green points and lines illustrates the results of using three conditions.
doi:10.1371/journal.pone.0105815.g001

Figure 2. Features in one slice with different occurrence ratios.
The ratios of red, green, blue and yellow features are 0.85, 0.73, 0.52 and
0.31, respectively.
doi:10.1371/journal.pone.0105815.g002
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Extend to other local invariant features and deformable

models. In the proposed model, we only assess the appearance

description and geometric position of local invariant features.

However, it does not depend on special local invariant features.

Therefore the proposed model can be easily integrated with other

local invariant features, such as the maximally stable extremal

regions (MSER) [33] and the speeded up robust features (SURF)

[34]. In the matching propagation steps mentioned in the sub-

section of Key Features Model the appearance description of the

SIFT features can be replaced by another correspondence

description and their matching algorithm can also be followed

with an extra geometric constraint.

The proposed model can also be extended to the other

deformable models with little difficulty. What the proposed model

needs is a reference framework, just like the manually labeled

landmarks in ASM. By using the reference framework, those

extracted local invariant features can be normalized and the extra

geometric constraint can be applied to improve the matching

correctness. The AAM is similar to ASM and naturally has a

reference framework since it also contains a manual labeling step.

If using AAM instead of ASM in the proposed model, we can

follow all the steps detailed previously. For ACM, an extra

learning procedure is required. In this learning procedure, several

reference points need to be labeled to normalize the local invariant

features and the relationship between reference points and local

invariant features will also be learned. The initial position of ACM

can then be determined by the relationship between those

matched local invariant features and interesting objects.

Fitting process
Initialization. For initializing the model in a test image, the

SIFT features are extracted first and matched to the KFM. The

first two matching conditions in (4) are used, which are similar to

the strategies suggested in [32]. Due to the highly robust SIFT

feature sets in the KFM, there are only a few mismatching points.

We employed the method proposed in [35] to eliminate the

mismatching SIFT feature pairs. After obtaining the accurately

matched SIFT feature pairs, we can compute transformation

parameters, �TT , �SS and �HH that transform the average positions of

SIFT features in the KFM towards the positions of SIFT features

in the test image. Thus, by applying these parameters to the mean

shape of PDM, we can initialize the PDM model to an appropriate

position:

X ’~F (�SS, �HH)Xz�TT ð11Þ

where X is the mean shape in the PDM and X ’ is the initialized

model.

Accurately localized landmarks. After obtaining an initial-

ized model X ’, each landmark in X ’ is still located at its rough

position, as the transformation in the previous subsection is a type

of rigid transformation that maintains the original contour of

mean shape X . The position of each landmark can be modified

according to the relationship between the KFM and the PDM

built in the sub-section of Iterative Process to obtain the precise

position.

Assuming there are z matched SIFT features in a new image,

the position of each landmark can be determined by (11).

According to the relationship between the KFM and the PDM,

we can further improve landmark positions by using (10). Then

this landmark will move towards this new position from the old

position in M ’. The PDM, however, is a global constrained model

and the modification of the position of one landmark will influence

other landmarks’ positions, which is very important to keep the

whole model from being abnormal. The positions are modified

according to (12), which is similar to the elastic model. That is to

say, if other landmarks are closer to one landmark, the forcing

movement of these landmarks is larger than that of landmarks

further away. Assuming the new position of the l1th landmark is

fx n
Ol1

,y n
Ol1
g and its old position in M ’ is fx0Ol1

,y0Ol1
g, the modified

position of the l2th landmark caused by the movement of the l1th

landmark can be computed by:

Figure 3. Some examples of cardiac MRI images used in our experiments.
doi:10.1371/journal.pone.0105815.g003

Figure 4. Repetition Ratio of all Key Points in KFMs.
doi:10.1371/journal.pone.0105815.g004
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xn
Ol2

~
min(dist(O’M ’,O

0
l1))

dist(O0l2,O0l1)
(x n

Ol1
{x’Ol2

)zx’Ol2

yn
Ol2

~
min(dist(O’M ’,O

0
l1))

dist(O0l2,O0l1)
(y n

Ol1
{y’Ol2

)zy’Ol2

ð12Þ

where O0l1 means the position of the l1th landmark in the

initialized PDM. On
l1 is the precise location of this point. O’M ’ is

the points set in PDM and min(dist(O’M ’,O
0
l1)) means the minimal

distance between O0l1 and other points in PDM. The distance

between O0l2 and O0l1 is denoted as dist(O0l2,O0l1). fx’Ol2
,

y’Ol2
g is the coordinate of point O0l2. Hence, min (dist(O’M ’,

Ol1))=dist(O0l2,O0l1) means the ratio of distance between the l2th

landmark and l1th landmark related to the minimal distance

between other landmarks and l1th landmarks. Therefore, when

O0l1 is modified to a precise pose, it will influence other landmarks’

positions. Thus, more accurate location for the whole PDM can be

obtained after pinpointing all landmarks.

Iteratively fitting process. After the precise position of each

landmark in the PDM is computed, the same iterative process to

ASM can be used to obtain the ultimate position. After obtaining a

new shape Xi{1 in the i{1th iterative step, the ith new shape is

computed by the following steps:

1. For one landmark, e.g. the jth landmark, in Xi{1, we extract

b|np points’ gray-level values to compute gray profile yi{1, j ,

where b is set to 2–5;

2. Then we compute the difference between the mean profile �yyj ,

obtained by (3) in the training procedure, and any continuous

np{1 items in yi{1, j to find one point centered at which the

difference between continuous np{1 items and �yyj is minimum;

3. Repeating the pervious two steps and obtaining a new set of

points, denoted by X 0i ;

4. Next we transform Xi{1 to Xi according to (1) to make sure

that Xi is closest to X 0i .

Table 1. Number of matching SIFT features.

Group index Maximum number Minimum number Average number

1 22 10 18.2

2 23 8 16.8

3 25 13 20.6

4 16 6 12.5

5 16 8 11.9

doi:10.1371/journal.pone.0105815.t001

Figure 5. Average ratio of correct matching of all five groups of
KFM.
doi:10.1371/journal.pone.0105815.g005

Figure 6. Number of key points in KFM and SIFT features under
different picking ratios.
doi:10.1371/journal.pone.0105815.g006
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These iterative steps usually are time-consumed and need a

hundred iterations to converge if the initial position of PDM is not

ideal. By applying the proposed method, however, the number of

iterations will significantly decrease because each landmark was

located at its precise position. Thus the time cost will be sharply

reduced.

Experiments

We evaluate the proposed method in a set of cardiac MRI

images. Experiments have been carried out from three different

aspects. First, we tested the repetition and robustness of the KFM,

which is the base for the proposed model, determining the

accuracy of initialization and fitting results. Second, the accuracy

of initializing PDMs was evaluated. The accurate initialization will

decrease iterative times and reduce the computational cost.

Finally, we evaluated the speed and accuracy of co-registering

cardiac images. In this study, the SIFT implementation used in

our experiments is publicly available in http://www.cs.ubc.ca/

,lowe/keypoints/.

Datasets
A large number of cardiac MRI images were collected for the

experiments. The data consisted of 200 slices from 16 subjects, 10

male and 6 female, aged from 45–64 years. Five groups of

experiments were carried out based on five randomly selected

image sets. In each group, we randomly select 10 subjects and

approximately 120 slices. Around 60 slices from 5 subjects were

used for model training, and the remainder for testing. Examples

of the experimental images are shown in Fig. 3.

Matching repeatability and robustness of KFM
As the proposed model is based on the highly-repeatable and

highly-robust key points in the KFM, the repetition and robustness

of the KFM are investigated first. In five groups of experiments,

the numbers of key points in each KFM are 28, 26, 31, 20, and 22

respectively. To evaluate the repeatability of the KFM, the SIFT

features were extracted from all images tested, and these features

matched to the corresponding KFM. The number of times that

correctly matching key points in KFM with test images were

accumulated, allowing calculation of the repeated ratio for these

key points. The minimum repetition ratio was 0.53 and the

maximum repetition ratio was 0.96. The repetition ratios of 127

key points in all five KFMs are shown in Fig. 4, proving that

enough repetitions of the KFM could be obtained.

Additionally, we calculated the maximum, minimum and

average numbers of matching SIFT features in a new image.

Table 1 illustrates these numbers for the five experimental groups.

The number of matching SIFT features for each test image ranged

from 10 to 22, with an average of 18.2 in the first experimental

group. This means that at least 10 exactly matched SIFT features

could be found in a new image within the first experimental group.

According to these matched SIFT features, we can accurately

Figure 7. Repetition ratio under different picking ratios.
doi:10.1371/journal.pone.0105815.g007

Figure 8. Average ratio of correct matching under different
picking ratios.
doi:10.1371/journal.pone.0105815.g008

Table 2. Accuracy of initial position.

Group index Ratio of correct initialization Average error

1 0.982 2.98

2 0.976 3.06

3 0.968 3.15

4 0.973 3.04

5 0.965 3.16

doi:10.1371/journal.pone.0105815.t002
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initialize the PDM in accordance with the proposed initializing

strategy.

For further evaluating the matching correctness of KFM, we

compute the average ratio of correct matching, which is defined as

the ratio of correct matching points to all matching points for all

test images. In all five KFMs used in the experiments, the

maximum and minimum average ratios of correct matching are 1

and 0.91, respectively. We illustrate the average ratios in Fig. 5,

which demonstrate the high-robustness of KFM.

From Table 1, we observe that we can obtain enough matching

key points when using the KFM to match SIFT features extracted

from a medical image. SIFT features can achieve good perfor-

mance of matching the same object at different images in a natural

scenario. However, because there are lots of duplicated local

structures and flexible deformation of hearts in different patients’

MRI images, most SIFT features are not as robust as obtained in

natural images. But through the proposed KFM, the most robust

SIFT features can be identified and matched accurately. As shown

in Fig. 5, the accuracy of matching results using KFM is at the

same level as that of matching objects in nature scenarios with

SIFT features. Therefore, our KFM can represent a powerful tool

to find accurately matched points in different patients’ cardiac

images. From Fig. 4 and Fig. 5, it is obvious that each key point in

the KFM has a high matching accuracy with considerable

repeatability.

Toews’s model also matches features extracted from the new

image [31]. However, it has to match all SIFT features extracted

from all training images, which takes a much longer time.

Furthermore, since all SIFT features extracted from training

images are used, more matching errors may be generated. By

comparison with Towe’s model, the proposed KFM only consists

of selected highly-repeatable and highly-robustly local invariant

features, and has potential to reduce the computational power

required while improving matching accuracy.

Evaluation of different picking ratios
As mentioned in the sub-section of Key Features Model, the

picking ratio is an important parameter that balances the

repetition and amount of key points in the KFM. It must be

tested carefully and only the most proper ratio can be adopted. We

evaluate several different picking ratios, such as 0.5, 0.6, 0.7 0.75,

0.8, 0.85 and 0.9. The number of key points and the repeated ratio

under different picking ratios were computed respectively. All

experiments in this section are based on the image dataset from

the first experimental group.

Fig. 6 illustrates the number of key points under different ratios

in KPMs and Fig. 7 shows the repeated ratio of key points under

different picking ratios. The average number of matching SIFT

features in the test image under different picking ratios is shown in

Fig. 8.

In Fig. 6, when the ratio rises from 0.5 to 0.6, the number of key

points sharply decreases, but the decrease of the average number

of matching SIFT features is less. When the ratio keep increasing,

the key points’ amount and the average number are gradually

approaching. This figure implies that the KFMs with low ratio

have low-repeatable key points. Moreover, the low ratio implies

the low repeatability and low accuracy of matching results. Fig. 7

and Fig. 8 illustrate these results.

From Fig. 7 and Fig. 8, when the ratio is far below 0.6, the

repeatability and correct matching rate is too low to ensure that

there are enough correct matching SIFT features in the new

image. If the number of correctly matching SIFT features is not

enough, the initialization will fail. On the other hand, when the

ratio is much larger than 0.6, the accuracy of matching can be

high enough, but the number of matching SIFT features is too

low. Only when the ratio is set to about 0.6, both the repeatability

and the matching accuracy achieves a good level.

Accuracy of automatic initialization
As the first step of the fitting process, the initialization is very

important. The accuracy of initialization directly affects the fitting

results. In the standard ASM, there is no strategy to accurately and

Table 3. Evaluation of pinpointing landmarks.

Group index Max number Min number Average number Average error

1 34 18 28.5 2.56

2 30 18 27.3 2.34

3 33 17 26.2 2.83

4 30 20 25.1 2.67

5 35 21 29.8 2.72

doi:10.1371/journal.pone.0105815.t003

Table 4. Performance comparison between an improved ASM and our model.

Group index Average error of [6] Average error of our model Improvement

1 2.16 1.98 8.3%

2 2.19 2.03 7.3%

3 2.23 2.09 6.2%

4 2.07 1.93 6.7%

5 2.11 1.95 7.6%

doi:10.1371/journal.pone.0105815.t004
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Figure 9. Some fitting results of our model. (Left) Pre-initialized model;(Middle left) Initialized model; (Middle right) Pinpointed model, note that
there are some points that have been accurately located; (Right) Fitting result.
doi:10.1371/journal.pone.0105815.g009

Table 5. Iterative times comparison between an improved ASM and our model.

Group index Iterative times [16] Iterative times (our model)

1 120.2 63.1

2 104.7 60.2

3 114.0 58.7

4 98.6 50.8

5 107.5 52.9

doi:10.1371/journal.pone.0105815.t005
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automatically initialize the PDM. In our experiments, we achieve

enough matched key points with a high enough accuracy to

initialize the PDM by using the KFM. For evaluating the accuracy

of initialization, we employ the average error which is defined in

[24] to calculate the average distance between the manually

labeled shapes and the initialization results.

E~
1

N

XN

i~1

(
1

n

Xn

l~1

dist(Oli,O
0
li)) ð13Þ

where E is the average error, N is the number of test images in one

group of experiments, and n is the number of landmarks. Oli is the

lth landmark point in the manually labeled shape of the ith test

image manually labeled, O
0
li is the lth landmark point in the

resulting shape of initialization for the ith test image.

The ratio of correct initialization is defined as the ration

between correct initialization of the PDM and the number of all

test images. The correct initialization of the PDM is determined

manually. Actually, only these initialized PDMs are treated as

correct initialization, if the number of landmarks, whose distance

to the corresponding manually labeled landmarks is less than five

pixels, is more than half of landmarks in the PDM. Table 2 shows

the average accuracy of initialization.

Precision of pinpointing landmarks
During the process of pinpointing landmarks, the evaluation of

precision is dependent on the distance between the position of

manually labeling landmarks and pinpointing results by the

proposed method. If the distance is less than three pixels, we

believe that a landmark is precisely pinpointed. In all five

experimental groups, the average number of precisely locating

landmarks and the average precision are shown in Table 3. We

also employ (13) to compute the average precision. In all models,

there were 38 landmarks. From Table 3, the maximal and

minimal numbers of precise pinpointing are 35 and 17,

respectively. The average numbers are all more than 25. To the

whole model with 38 landmarks, these precisely located landmarks

are enough to adjust the whole model to a more accurate position

by (12). By comparing with the initialized PDM, we found that the

distance between the new position of the PDM and the manually

labeled landmarks is smaller. As shown in Tabel 3, the reduced

average errors with respect to the average errors obtained in the

previous experiments are ranged from 0.3 to 0.7, which

demonstrates that the process of pinpointing landmarks is effective.

Accuracy of fitting results
We now evaluate the accuracy of the fitting results of our model

by comparison to an improved ASM proposed in [16]. Table 4

shows their fitting results, in which the accuracy is computed by

(13).

Firstly, as Table 4 shows, the average fitting errors resulting

from our model are less than the improved ASM in [16]. The

improvement of automatic initialization ranges from 6.2% to

8.3%. This proves that our proposed model can achieve more

accurate results than that of the improved ASM. Furthermore, due

to accurate initialization and precise pinpointing, it will also

decrease the running time of the fitting process. The average

iterative times can decrease about 50% in the experiments. This

means the computational cost of the proposed model only needs

half the time compared with the improved ASM. We list the

average iterative times in Table 5 for each group of experiment.

Of course, it can also reduce the multi-resolution levels without

significant loss in accuracy for the result. Some typical results are

illustrated in Fig. 9.

Conclusions

This paper proposed a method of a deformable model utilizing

local invariant features for accurate and rapid registration of

cardiac images. The highly-repeatable and highly-robust local

invariant features are chosen from a training set to develop a

KFM. The the relationship between the KFM and the PDM is

obtained statistically. During the fitting process, the PDM is

transformed to its initial position according to the transformed

parameters, by aligning the accurately matched SIFT features

between the KFM and new images. The precise position of the

PDM is further achieved by modifying the landmark coordinates

in the PDM according to the relationship between the KFM and

the PDM. Finally, the ultimate location of the PDM is obtained by

an iterative process with less subsequent reduction in computa-

tional load.

Experiments demonstrate that this model outperforms tradi-

tional SIFT, in the sense of feature matching accuracy and

robustness in cardiac MR images. Furthermore, it also surpasses

other ASM regarding fitting accuracy and speed. Our experiments

demonstrate that the proposed model improves the fitting

accuracy by approximately 6–8% with only half of the compu-

tational cost of a state-of-the-art ASM.
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