
Predicting Physical Time Series Using Dynamic Ridge
Polynomial Neural Networks
Dhiya Al-Jumeily1*, Rozaida Ghazali2, Abir Hussain1

1 Applied Computing Research Group, Liverpool John Moores University, Liverpool, Mersyside, United Kingdom, 2 Faculty of Computer Science and Information

Technology, Universiti Tun Hussein Onn Malaysia, Parit Raja, Batu Pahat, Malaysia

Abstract

Forecasting naturally occurring phenomena is a common problem in many domains of science, and this has been addressed
and investigated by many scientists. The importance of time series prediction stems from the fact that it has wide range of
applications, including control systems, engineering processes, environmental systems and economics. From the
knowledge of some aspects of the previous behaviour of the system, the aim of the prediction process is to determine
or predict its future behaviour. In this paper, we consider a novel application of a higher order polynomial neural network
architecture called Dynamic Ridge Polynomial Neural Network that combines the properties of higher order and recurrent
neural networks for the prediction of physical time series. In this study, four types of signals have been used, which are; The
Lorenz attractor, mean value of the AE index, sunspot number, and heat wave temperature. The simulation results showed
good improvements in terms of the signal to noise ratio in comparison to a number of higher order and feedforward neural
networks in comparison to the benchmarked techniques.

Citation: Al-Jumeily D, Ghazali R, Hussain A (2014) Predicting Physical Time Series Using Dynamic Ridge Polynomial Neural Networks. PLoS ONE 9(8): e105766.
doi:10.1371/journal.pone.0105766

Editor: Daniele Marinazzo, Universiteit Gent, Belgium

Received June 10, 2014; Accepted July 14, 2014; Published August 26, 2014

Copyright: � 2014 Al-Jumeily et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability: The authors confirm that all data underlying the findings are fully available without restriction. The Lorenz attractor is a simulated signal, it is a
supplementary file and simulated based on the information shown in the Plos one paper (Lorenz_original.txt). The sunspot signal can be downloaded from the
following website: http://www.sidc.be/silso/datafiles. The signal is also a supplementary file (sunspot.txt). The mean value of the AE index can be downloaded
from: http://www.ngdc.noaa.gov/docucomp/page?xml = NOAA/NESDIS/NGDC/STP/Indices/iso/xml/G00584.xml&view = getDataView&header = none. The Mean
value of the AE index is also included as a supplementary file(mae78_original.txt). The heat signal is downloaded from http://www.noaanews.noaa.gov/
stories2013/20130806_stateoftheclimate.html. The signal is included as well, as a supplementary file (heatwave.txt).

Funding: This work was supported by Liverpool John Moores University. The funders had no role in study design, data collection and analysis, decision to
publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* Email: D.Aljumeily@ljmu.ac.uk

Introduction

Time series generally refers to a sequence of data points spaced

at time intervals and measured typically at successive times.

Practically, it is a collection of historical data of one system, such as

a stock price, traffic data, and the pollution rates. A time series can

be used in two ways for different purposes:

N Looking backwards – the use of historical data to analyze the

previous behaviour of a system. Applications include diagnosis

or recognition of machine fault or human disease.

N Looking forwards – the use of data to predict or forecast the

future behaviour of a system. Applications include stock or

price prediction, market demand forecast, and natural data

prediction.

Time series analysis comprises of methods that attempt to

understand the behaviour of such time series, often either to

understand the underlying theory of the data points, or to make

forecasts. Time series forecasting is the use of a model to predict

future events or future data points based on known past events. It

is a process that produces a set of outputs by a given set of

historical variables. Forecasting assumes that future occurrences

are based on past or present events, in which some aspects of the

past patterns will continue into the future. Past relationship can

then be discovered through study and observation. In other words,

time series forecasting is discovering the relationship between

present, past and future observations. According to Plummer [42],

the aim of time series forecasting is to observe or model the

existing data series which can be in different forms for example

financial data series (stocks, indices, exchange rates, etc), physically

observed data series (sunspots, weather, etc), and mathematical

data series (Fibonacci sequence, integrals of differential equations,

etc).

Time series forecasting takes an existing series of data Xt-n, …..,

Xt-2, Xt-1, Xt and forecasts Xt+1, Xt+2,….. data values. Theoreti-

cally, these series can be seen as a continuous function of time

variable t. For practical purposes, however, time is usually viewed

in terms of discrete time steps. The size of the time interval

depends on the problem at hand, and can be anything from

milliseconds to hours, days, or even years. If the time series

contains only one component, it is called a univariate time series;

otherwise it is a multivariate time series. In a univariate series, the

input variables are restricted to the signal being predicted, while in

multivariate series, the raw data comes from a variety of indicators

which will form the actual inputs variable. In a multivariate series,

any indicator whether or not it is directly related to the output can

be incorporated as the input variable [43].

PLOS ONE | www.plosone.org 1 August 2014 | Volume 9 | Issue 8 | e105766

http://creativecommons.org/licenses/by/4.0/
http://www.sidc.be/silso/datafiles
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0105766&domain=pdf


Traditional methods for time series forecasting are statistics-

based, including moving average (MA), autoregressive (AR),

autoregressive moving average (ARMA) models, linear regression

and exponential smoothing [1]. These methods do not produce

fully satisfactory results, due to the nonlinear behaviour of most of

the natural occurring time series. Other more advanced

techniques such as neural networks [2], [3], fuzzy logic [4] and

fractals [5] have been successfully used in time series prediction.

Neural networks (NNs) provide a general class of nonlinear

models which have been successfully applied in many engineering

and scientific problems. These include real world problems such as

Time Series Prediction [35–36], speech/character/pattern recog-

nition [37–38], system identification, Medical Image Analysis [34],

System Optimization, Function Approximation and many more

applications. Their numerous application domains fall into many

categories: for example regression and generalization, classifica-

tions, association, clustering, pattern completion, and optimiza-

tion.

The idea of artificial neural networks (ANNs) is to model a

neuron by building interconnected networks, and devise learning

algorithms to work out the ANNs. Often the term ‘Neural

networks’ is used as a broad sense which group together different

families of algorithms and methods.

The application of neural networks in time series prediction has

shown better performance in comparison to statistical methods

because of their nonlinear nature and training capability. In

addition, it has been shown that neural networks are universal

approximators and have the ability to produce complex nonlinear

mappings [6].

Neural networks can be divided into two major types,

feedforward and recurrent networks. Feedforward neural net-

works, such as the multilayer perceptron (MLP) and the radial

basis function (RBF) neural network, have been successfully used

for time series prediction [7]. However, MLPs utilise computa-

tionally intensive training algorithms (such as error back-propa-

gation [8]) and can get stuck in local minima. In addition, these

networks have problems in dealing with large amounts of training

data, while demonstrating poor interpolation properties, when

using reduced training sets. In the case of RBFs, the networks are

trained only once on a large example set taken from the signal

such that the dynamics of the underlying system can be captured.

Therefore, the networks produce sequential outputs in response to

newly arriving data. Therefore, the system can be used when the

dynamics of the time series does not change considerably over

time, a condition which is usually contravened in practice [7].

Recurrent neural networks have advantages over feedforward

networks in that they have the ability to store previous state

information and prevent the need to predict the model order of the

time series [9].

Despite the encouraging results of using artificial neural

networks for time series prediction compared to linear statistical

models, the robustness of these findings has been questioned [10],

due to a number of well-known problems with neural models such

as:

1. Using the same data set, various neural network architectures

can produce different results. The main reason for this

inconsistency in the results relates to the fact that there are

different classes of decision boundaries which different ANN’s

prefer. Multilayer perceptrons, radial basis functions networks

and self-organizing maps when they are trained and tested for

the same database can produce different results since they have

different topologies [11].

2. Neural network architectures suffer from overfitting and as a

result, the size of the network, learning parameters and training

data have to be selected experimentally and carefully in order

to achieve good generalisation, which is critical when using the

network for temporal time series prediction.

3. The inherent nonlinearity and nonstationary of natural time

series can prevent a single neural network from being able to

accurately forecast changes in the training and the testing data.

To overcome the problems associated with neural networks

when used for time series forecasting; in this paper, a novel

application of the Dynamic Ridge Polynomial Neural Networks

(DRPNN) [39] is proposed for the prediction of physical time

series in which the size of the network will be changed during the

learning process using a constructive learning method. The

network will start with a small basic structure, which will grow

as the learning process proceeds until the required approximation

error is achieved.

Feedforward neural networks are Nonlinear Autoregressive

(NAR) models, on the other hand recurrent neural networks are

nonlinear autoregressive moving average models (NARMA). This

means that recurrent neural network have advantages over

feedforward neural network, similar to the advantages in which

autoregressive moving average (ARMA) model posses over

Autoregressive (AR) model [15].

Methods

1. Higher Order Neural Networks (HONNs)
Although most neural network models share a common goal in

performing functional mapping, different network architectures

may vary significantly in their ability to handle different types of

problems. For some tasks, higher order combinations of some of

the inputs or activations may be appropriate to help form good

representations for solving problems. Higher Order Neural

Networks (HONNs) are needed because ordinary feedforward

network like Multilayer Perceptrons (MLPs) cannot elude the

problem of slow learning, especially when involving highly

complex nonlinear problems [16].

HONNs distinguish themselves from ordinary feedforward

networks by the presence of high order terms in the network. In

a great number of Neural Networks models, neural inputs are

combined using the summing operation. HONNs contain not only

summing unit, but also units that multiply their inputs which are

referred to as high order terms or product units. These high order

terms or product units can increase the information capacity of a

network compared to the networks that have summation units

only. The larger capacity means that the same function or problem

can be solved by network that has fewer units. HONNs also make

use of non-linear interactions between the inputs. The networks

therefore expand the input space into another space where linear

separability is possible [17].

This section is concerned with introducing a few types of

HONNs; Functional Link Neural Network, Pi-Sigma Neural

Network, and Ridge Polynomial Neural Network. Each one of

them employs the powerful capabilities of product units with some

combinations with summing units. Their architectures vary the

position where the product units or higher-order terms are used in

the networks. The Functional Link Neural Network utilizes the

higher-order terms at the input layer as inputs to the network in

addition to the original raw inputs. For the Pi-Sigma Neural

Network, the existence of the product unit in the network is at the

output layer, as the output of the network itself. The third HONN

model, the Ridge Polynomial Neural Network made the higher

Predicting Physical Time Series

PLOS ONE | www.plosone.org 2 August 2014 | Volume 9 | Issue 8 | e105766



order terms available as the whole hidden layer of product units

feeding into a subsequent layer of summing units. All these

HONNs models have only one layer of tuneable weights, resulting

in simple weights updating procedure in their training.

1.1 Functional Link Neural Network (FLNN). FLNN was

first introduced by Giles and Maxwell [18]. It naturally extends the

family of theoretical feedforward network structure by introducing

nonlinearities in inputs patterns enhancements [19]. These

enhancement nodes act as supplementary inputs to the network.

FLNN calculates the product of the network inputs at the input

layer, while at the output layer the summations of the weighted

inputs are calculated.

FLNN can use higher order correlations of the input

components to perform nonlinear mappings using only a single

layer of units. Since the architecture is simpler, it is supposed to

reduce computational cost in the training stage, whilst maintaining

good approximation performance [20]. A single node in the

FLNN model could receive information from more than one node

by one weighted link. The higher order weights, which connect the

high order terms of the input products to the upper nodes have

simulated the interaction among several weighted links. For that

reason, FLNN could greatly enhance the information capacity and

complex data could be learnt [20–22].

Fei and Yu [23] showed that FLNN has a more powerful

approximation capability than conventional Backpropagation

networks, and it is a good model for system identification [20].

Cass and Radl [21] used FLNN in process optimization and found

that FLNN can be trained much faster than MLP network without

scarifying computational capability. FLNN has the properties of

invariant under geometric transformations [19]. The model has

the advantage of inherent invariance, and only learns the desired

signal. Figure [1] shows an example of third order FLNN with

three external inputs x1, x2, and x3, and four high order inputs

which act as supplementary inputs to the network.

The output of FLNN is determined as follows:

Y~s W0z
X

j

WjXjz
X
j,k

WjkXjXkz
X
j,k,l

WjklXjXkXlz::::

 !

where s is a nonlinear transfer function, and wo is the adjustable

threshold. Unfortunately, FLNN suffers from the explosion of

weights which increase exponentially with the number of inputs.

As a result, second or third order functional link networks are

considered in practice [24,25].

1.2 Pi-Sigma Neural Network (PSNN). PSNN was first

introduced by Shin and Ghosh [26]. It is a feedforward network

with a single ‘hidden’ layer and product units in the output layer

[27]. PSNN calculates the product of the summing units at the

output layer and pass it to a nonlinear function. PSNN is able to

learn in a stable manner even with fairly large learning rates [28].

The use of linear summing units makes the convergence analysis of

the learning rules for the PSNN more accurate and tractable.

Previous research found that the Pi-sigma neural network is a

good model for various applications. Shin and Ghosh [28]

investigated the applicability of PSNN for shift, scale and rotation

invariant pattern recognition. Results for both function approx-

imation and classification were extremely encouraging when

compared to backpropagation for achieving similar quality

solution. Again, Ghosh and Shin [26] argued that PSNN requires

less memory (weights and nodes), and at least two orders of

magnitude less number of computations when compared to MLP

for similar performance level, and over a broad class of problems.

Figure [2] shows the Pi-Sigma Neural Network structure with a

single output.

The output of the Pi-sigma Network is computed as follows:

Y~s(P
k

j~1

XN

k~1

(wkjxkzwjo))

where wkj is the adjustable weight, xk is the input vector, K is the

number of summing unit, N is number of input nodes, and s is a

suitable nonlinear transfer function. PSNN demonstrated compe-

tent ability to solve scientific and engineering problems [26–28],

however the networks are not universal approximator.

1.3 Ridge Polynomial Neural Network (RPNN). RPNNs

were first introduced by Shin and Ghosh [12]. They are

generalizations of the Pi-Sigma Neural Networks. RPNNs are

constructed by adding different degrees of PSNN as a basic

building block as shown in Figure [3]. They utilise univariate

polynomials and provide efficient and regular structure in

comparison to ordinary higher-order feedforward networks [12].

RPNN can approximate any multivariate continuous functions on

a compact set in multidimensional input space, with arbitrary

degree of accuracy. Similar to the PSNN neural networks, RPNN

has only a single layer of adaptive weights and they preserve all the

advantages of PSNN.

Figure 1. Functional Link Neural Network.
doi:10.1371/journal.pone.0105766.g001

Predicting Physical Time Series

PLOS ONE | www.plosone.org 3 August 2014 | Volume 9 | Issue 8 | e105766



The output of Ridge Polynomial Neural Network is determined

as follows:

f (x)&s
Xk

i~1

Pi(x)

 !

Pi(x)~P
i

j~1
vWj ,XwzWjo

� �
,i~1,:::::,k:

where ,Wj, X. is the inner product between the trainable

weights matrix W, and the input vector X. k is the number of

PSNN blocks used, and s denotes a suitable nonlinear transfer

function.

RPNN provides a natural mechanism for incremental network

growth, by which the number of free parameters is gradually

increased with the addition of Pi-Sigma units of different orders.

Unlike other growing networks such as self-organising neural

networks (SONN) and group methods of data handling (GMDH)

[12], in which their structure have the capability of growing to any

arbitrary number of hidden layers and nodes, RPNN has a well

regulated architecture. The network can be incrementally grown

with the orderly architecture and the network decides which

higher order terms are necessary for the task at hand.

Tawfik and Liatsis [29] have tested the RPNN for one step

prediction of the Lorenz attractor and solar spot time series. They

proved that RPNN has a more regular structure and superior

performance in terms of speed and efficiency when compared to

Multilayer Perceptron. Voutriaridis, et.al [30] found that RPNN

could give satisfactory results when used in function approxima-

tion and character recognition.

2. Dynamic Ridge Polynomial Neural Networks (DRPNNs)
In this section, the structure of the recurrent ridge polynomial

neural network will be shown [40]. Feedforward HONNs can only

implement a static mapping of the input vectors. In order to model

dynamical functions of the brain, it is essential to utilize a system

that is capable of storing internal states and can implement

complex dynamics. Neural networks with recurrent connections

are dynamical systems with temporal state representations.

Because of their dynamic structure, they have been successfully

used to solve a variety of problems.

2.1 The Properties and Network Structure of

DRPNNs. The structure of the DRPNN is constructed from a

number of increasing order Pi-Sigma units with the addition of a

feedback connection from the output layer to the input layer. The

feedback connection feeds the activation of the output node to the

summing nodes in each Pi-Sigma units, thus allowing each

building block of Pi-Sigma unit to see the resulting output of the

previous patterns. In contrast to RPNN, the DRPNN, as shown in

Figure [4], is provided with memories which give the network the

ability to retain information to be used later. All the connection

weights from the input layer to the first summing layer are

learnable, while the rest are fixed to unity.

Consider a DRPNN with M number of external inputs U(n),
and let y(n-1) to be the output of the DRPNN at previous time

step. The overall input to the network are the concatenation of

U(n) and y(n-1), and is referred to as Z(n) where:

Zi(n)~
Ui(n) if 1ƒiƒM

y(n-1) i~Mz1

�
ð1Þ

The output of the kth order DRPNN is determined as follows:

y(n)~�s
Xk

i~1

Pi(n)

 !

Pi(n)~P
i

j~1
hj(n)ð Þ:

hj(n)~
XMz1

i~1

wijZi(n)zWjo

ð2Þ

where k is the number of Pi-Sigma units used, Pi(n) is the output

of each PSNN block, hj(n) is the net sum of the sigma unit in the

corresponding PSNN block, Wjo is the bias, and s is the sigmoid

activation function.

2.2 Learning Algorithm of DRPNN. The DRPNN uses a

constructive learning algorithm based on the asynchronous

updating rule of the Pi-Sigma unit. The network adds a Pi-Sigma

unit of increasing order to its structure when the difference

between the current and the previous errors is less than a

Figure 2. Pi-Sigma Neural Network of K-th order.
doi:10.1371/journal.pone.0105766.g002

Predicting Physical Time Series

PLOS ONE | www.plosone.org 4 August 2014 | Volume 9 | Issue 8 | e105766



predefined threshold value. DRPNN follows the following steps for

updating its weights [40]:

1. Start with low order DRPNN

2. Carry out the training and update the weights

asynchronously after each training pattern.

3. When the observed change in error falls below the

predefined threshold r, i.e., D ec-epð Þ
ep

� �Dvr, a higher

order PSNN is added. Note that ec is the Mean Squared

Error (MSE) for the current epoch, and ep is the MSE

for the previous epoch.

4. The threshold r, for the error gradient and the

learning rate n, are reduced by a suitable factor

respectively.

5. The updated network carries out the learning cycle

(repeat steps 1 to 4) until the maximum number of

epoch is reached.

The weights of the Pi-Sigma unit in the DRPNN are updated

using the Real Time Recurrent Learning algorithm [13]. Instead

of modifying all weights synchronously at each update step, in this

learning algorithm, we choose only one subset of weights (weights

that belong to the latest added PSNN) to tune at a time. A

standard error measure used for training the network is the Sum

Squared Error:

E(n)~
1

2

X
e(n)

2
ð3Þ

Figure 3. Ridge Polynomial Neural Network of N-th.
doi:10.1371/journal.pone.0105766.g003

Figure 4. Dynamic Ridge Polynomial Neural Network of k-th order.
doi:10.1371/journal.pone.0105766.g004

Predicting Physical Time Series

PLOS ONE | www.plosone.org 5 August 2014 | Volume 9 | Issue 8 | e105766



The error between the target and actual signal is determined as

follows:

e(n)~d(n){y(n) ð4Þ

where d(n) is the target output at time n, y(n) is the forecast output

at time n.

At every time n, the weights are updated according to:

DWkl(n)~-g
LE(n)

LWkl

� �
ð5Þ

where g is the learning rate. The value
LE(n)

LWkl

� �
is determined as:

LE(n)

LWkl

� �
~e(n)

Ly(n)

LWkl

ð6Þ

Ly(n)

LWkl

~
Ly(n)

LPi(n)

LPi(n)

LWkl

ð7Þ

where

Ly(n)

LPi(n)
~f 0

Xk

i~1

pi(n)

 !
P
i

j~1
j=i

hj(n)

0
@

1
A ð8Þ

and
LPi(n)

LWkl

~ Wij
Ly(n-1)

Wkl

� �
zZj(n)dik ð9Þ

where dik is the Krocnoker delta. Assume D as the dynamic system

variable (the state of the ijth neuron), where D is:

Dij(n)~
Ly(n)

LWkl

ð10Þ

The state of a dynamical system is formally defined as a set of

quantities that summarizes all the information about the past

behaviour of the system that is needed to uniquely describe its

future behaviour [33]. Substituting Equation (8) and (9) into (7)

results in:

Dij(n)~
Ly(n)

LWkl

~f 0
Xk

i~1

pi(n)

 !
| P

i

j~1
j=i

hj(n)

0
@

1
A WijDij(n{1)zZj(n)dik

� �
ð11Þ

For simplification, the initial values for Dij(n-1) = 0, and Zj(n-
1) = 0.5. Then the weights updating rule is

DWij(n)~ge(n)Dij(n)zaDWij(n-1)

Wij(nz1)~Wij(n)zDWij(n)
ð12Þ

3. Time Series Prediction Using Dynamic Ridge
Polynomial Neural Network

3.1 Time series Used in the Experiments. Four time series

have been used for our experiments, namely the Lorenz attractor,

the Mean value of the AE index, sunspot number, and heat wave

temperature time series.

The Lorenz attractor is a set of three deterministic equations

introduced by Lorenz [31], a meteorologist working on weather

models, when he was studying the nonrepeatability of the weather

patterns. The equations approximate the two-dimensional flow of

a fluid heated along the bottom. The Lorenz attractor can be

obtained by simultaneously solving the following equations:

dX=dt~s({XzY),

dY=dt~{XZztX{Y,

dZ=dt~XY{bZ,

8><
>: ð13Þ

which contain three model parameters. The Prandtl number s,

the relative Rayleigh number t proportional to the applied

difference in temperature and b the geometrical measure. Lorenz

selected the values of 10 and 8/3 for s and b respectively, to

achieve a strong dissipate system, while emphasising that the use of

slightly supercritical Rayleigh numbers may give realistic results

[31]. Figure [5] (a) shows the transient response of Y over a finite

number of observations for s= 10, t= 50 and b = 8/3, while

Figure [5] (b) shows part of the correlogram of the signal. As it can

be noticed, the rate of decrease of the autocorrelation coefficients

starts to change at approximately lag 15 and the signal exhibits

periodical behaviour.

The AE index is the auroral electrojet index determined from

various stations located in the latitude region [32]. At these

stations, the north-south magnetic perturbations are determined as

a function of time and the superposition of the measured data

determines two components, the maximum negative and the

maximum positive excursion in the north-south magnetic pertur-

bations. The difference between the two components is called the

AE index [33].

The correlogram of the mean value of the AE index time series

(refer to Figure [6] (b)) indicates that the autocorrelation coefficient

drops to zero for large values of the lag. As a result, we can

conclude that the time-series is a nonstationary signal. Further-

more, the signal shows periodicities for every 5000 lags.

There are various solar indices that can be used to express the

activity of the sun. However, the International Sunspot Number

(ISN) is considered one of the key indicators since the data is

exceptionally lengthy and collected over a large number of years.

The prediction of sunspot activity data is important for the space

activity as well as the communication and the disaster prevention

[41].

Figure [7] (a) shows part of the sunspot time series while Figure

[7] (b) shows the correlogram of the signal which clearly indicates

that the signal is periodic and similar to the other physical signals,

the correlogram goes to zero for a large value of the lag time.

The Oklahoma City US daily heat wave temperatures for up to

five months from May to September 2012 were used for the

prediction task. The prediction is based on its pattern which is heat

wave temperatures in Fahrenheit. The data was derived from the

National Oceanic and Atmosphere Administration (NOAA, 2012).

Figure [8] (a) shows the heat wave signal while Figure [8] (b) shows

the correlogram of the signal which has no periodic as expected

and goes to zero for a large value of the lag time which indicates

the nonstationary property of the signal.

ð11Þ

Predicting Physical Time Series

PLOS ONE | www.plosone.org 6 August 2014 | Volume 9 | Issue 8 | e105766



3.2 Experimental Designs. The performance of the dy-

namic ridge polynomial neural network was benchmarked with

the performance of the multilayer perceptrons (MLP), the

functional link (FLNN), the pi-sigma (PSNN) and the ridge

polynomial neural networks (RPNN). The prediction performance

of the networks was evaluated using the normalised mean square

of the error (NMSE) and the signal to noise ratio (SNR) matrices as

shown in Table [1].

All the input and output variables were scaled in order to avoid

computational problems and to meet algorithm requirements. A

few reasons for using data scaling is to reduce the range difference

in the data and to process outliers, which consist of sample values

that occur outside the normal (expected) range. Furthermore, the

data is scaled to accommodate the limits of the network’s transfer

function. Manipulation of the data using this process produces a

new bounded dataset. The calculation for the standard minimum

and maximum normalization method is as follows:

x
0
~ max2-min2ð Þ| x{ min1

max1 { min1

� �
zmin2

where x
0

refers to the normalized value, x refers to the observation

value (original value), min1 and max1 are the respective minimum

and maximum values of all observations, and min2 and max2 refer

to the desired minimum and maximum of the new scaled series.

The input-output variables were normalized between the

interval [0.2, 0.8]. The choice of this interval is to avoid difficulty

in getting network outputs too close to the two endpoints of

Sigmoid transfer function.

The data sets used in this work were segregated in time order. In

other words earlier period of data are used for training, and the

data of the later period are used for testing. The main purpose of

sorting them into this order is to discover the underlying structure

Figure 5. (a) Transient response of Y for s = 10, t = 50 and b = 8/3. (b) Part of the correlogram of the signal.
doi:10.1371/journal.pone.0105766.g005

Figure 6. (a) The mean value of the AE index time series. (b) The correlogram of the mean value of the AE index signal.
doi:10.1371/journal.pone.0105766.g006

Predicting Physical Time Series

PLOS ONE | www.plosone.org 7 August 2014 | Volume 9 | Issue 8 | e105766



or trend of the mechanism generating the data, that is to

understand the relationship exist between the past, present and

future data.

For the MLP, FLNN, and PSNN, each signal was divided into

three data sets which are the training, validation and the out-of-

sample which represent 25%, 25%, and 50% of the entire data,

respectively. For the RPNN and DRPNN, the data were

partitioned into two categories: the training and the out-of-sample

data, with a distribution of 75% and 25%, respectively.

Figure [9] illustrates how the neural network is used to learn the

non-stationary time series in which the previous values are used as

input and the aim of the neural network is to predict the future

values.

Results

In this section, the simulation results for the prediction of the

Lorenz attractor, the mean value of the AE index, sunspot

Figure 7. (a) The sunspot number time series from the year 1930 to 2013. (b) The correlogram of the signal.
doi:10.1371/journal.pone.0105766.g007

Figure 8. (a) The heatwave temperature time series. (b) The correlogram of the signal.
doi:10.1371/journal.pone.0105766.g008

Predicting Physical Time Series

PLOS ONE | www.plosone.org 8 August 2014 | Volume 9 | Issue 8 | e105766



number, and heat wave temperature using the dynamic ridge

polynomial neural network will be presented.

The DRPNN was benchmarked with the MLP, FLNN and

PSNN, which were trained with the incremental backpropagation

learning algorithm [14]. Early stopping with maximum number of

3000 epochs was utilised. Each signal was divided into three data

sets: the training, the validation and the out-of-sample data. The

simulation results of the DRPNN were also benchmarked with the

simulation results of the RPNN and the Linear Predictor

Coefficient (LPC) model. For the training of the RPNN and

DRPNN we partitioned the signals into two categories: the

training and the out-of-sample data, as we did not employ early

stopping.

For the DRPNN, we trained the network with a constructive

learning algorithm as demonstrated previously. DPRNN provided

the natural mechanism for incremental network growth. We

started the network with order one, which had one block of Pi-

Sigma Neural Network of order one. The training was carried out

until the monitored error falls below the predefined threshold,

which in this case r. At this time, a second order PSNN was added

and the threshold, r, together with the learning rate, n, was

decreased by a factor dec_r and dec_n respectively. The modified

and updated network continues the learning and again, if the error

fell below the threshold r, a higher order of PSNN block is added.

This process was repeated until the maximum number of epochs

was reached. Note that only the weights of the latest added Pi-

Sigma unit were adjusted during the training and the rest were

kept frozen.

For all neural networks, an average performance of 5 trials was

used. The learning rate was selected between 0.1 and 0.5 and the

momentum term was experimentally selected between 0.4 and 0.9.

Two sets of random weight initializations were employed (in the

range of [20.5, 0.5] and [21, 1]). Our primary interest is to assess

the predictive ability of the DRPNN models against other neural

networks and linear models, therefore, during generalization, we

focus more on how the networks generate the prediction, and the

neural network structure which endows the highest SNR on

unseen data is considered the best model.

Table [2] shows the average performance over 5 simulations for

the various neural network architectures and the linear predictor.

Figure [10] shows part of the prediction of the Lorenz attractor,

the mean value of the AE index, sunspot number, and heat wave

temperature using the DRPNN.

Discussion

As it can be witnessed from Table 2, all neural network

architectures produced good simulation results for the prediction

of the Lorenz attractor. There is a difference of 1.7 dB between the

lowest average simulation produced by the PSNN and the best

average simulation produced by the DRPNN. The average

simulation results indicated that there is slight difference in

performance between the third order FLNN and the third order

DRPNN, however our simulation showed that the maximum

number of trained epochs was necessary for the FLNN to achieve

a good simulation results.

Results from Table 2 also showed that the NMSE produced by

DRPNNs on average is below 0.001 for the prediction of the

Lorenz attractor. Despite the fact that the NMSE for DRPNNs

when used to predict the Lorenz attractor signal is slightly higher

than that of other FLNNs models, the results do not reflect the

significant predictive value offered by DRPNNs. This is because

we are more concerned with the out-of-sample prediction value of

the network using the SNR rather than NMSE. The simulation

results indicated that the linear predictor demonstrated the lowest

value for the prediction of the Lorenz attractor signal using the

NMSE and the SNR quality measures.

It should be pointed out that in this study the parameters of the

dynamic ridge polynomial neural network architectures such as

the number of inputs parameters, the momentum values, etc.

where selected after a few trial and error tests on a limited number

of parameter values. Since the results of the model with non

optimal parameter values selection where significantly good

indicating that the optimized neural network parameters will

definitely lend the trained models as equally good as or even better

performance than those of limitedly trained neural networks

shown in our simulation results.

The simulation results for the prediction of the mean value of

the AE index showed that the DPRNN demonstrated the best

results using the SNR, while the MLP network illustrated the worst

SNR values with 28.3 dB which is lower than the LPC predictor

that demonstrated a SNR value of 31.3648.

The prediction of the sunspot signal illustrated that all neural

network architectures achieved similar value for the SNR with

approximately 25 dB. The linear predictor demonstrated again

the lowest value of 22.6233 dB.

As it can be shown from Table 2, the prediction of heat wave

signals indicated that the LPC predictor showed the best SNR,

while all the neural network architectures failed to achieve a SNR

above 20 dB. However, the NMSE for all the neural network

architectures indicted better values than the NMSE achieved by

the linear predictor.

As it can be noticed from Figure [11], the histograms of the

nonlinear prediction errors for the Lorenz attractor, the mean

value of the AE index and the sunspot signals using the DRPNN

may be considered to show Gaussian distributions. This is an

indication that the DRPNN managed to extract the information

from the signal and hence the good simulation results. Figure [11]

(d) shows the histogram of the error values for the prediction of the

heat wave signal which indicted a random distribution and hence

Table 1. Performance Metrics and their Calculations.

Metrics NMSE SNR

Calculations
NMSE~

1

s2n

Xn

i~1

yi{ŷi

� �2

s2~
1

n{1

Xn

i~1

(yi{�yy)2

�yy~
Xn

i~1

yi

SNR~10 � log10 sigmað Þ

sigma~
m2 � n

SSE

SSE~
Xn

i~1

(yi{ŷyi)
2

m~max(y)

doi:10.1371/journal.pone.0105766.t001

Predicting Physical Time Series

PLOS ONE | www.plosone.org 9 August 2014 | Volume 9 | Issue 8 | e105766



the network could not provide a good simulation value in terms of

the SNR.

The use of Dynamic Ridge Polynomial Neural Networks in

physical time series showed that the network provides a promising

tool to forecasting. The network offers the following advantages:

N It provides better prediction in terms of the SNR in

comparison to other neural network architectures. The

prediction attained by the DRPNNs for the Lorenz attractor

is slightly higher than that of FLNN but significantly better

than the prediction generated by the PSNN, which is about

0.04 dB to 1.7 dB higher. For the prediction of the mean value

of the AE index time series showed significantly improved

results over the MLP and slightly better results than the

RPNN, which is about 0.08 dB to 4.14 dB higher.

N In view of the fact that the behaviour of the physical signal is

related to some past inputs on which the present inputs

depends, it therefore requires explicit treatment of dynamics.

The merit of DRPNN, as compared to the RPNN is its

increased inherited nonlinearity which results from the use of

recurrent neural networks architecture, giving it an advantage

when dealing with time series forecasting.

N The Dynamic Ridge Polynomial Neural network demonstrat-

ed faster training when used to learn the Lorenz attractor

signal in comparison to the MLP, FLNN and PSNN networks.

For the prediction of the mean value of the AE index, the

proposed network showed significantly faster training in

comparison MLP, FLNN and RPNN.

Figure [12] illustrates the signal to noise ratio from the best

result tested on out-of-sample data when used to predict the

Lorenz attractor and the mean value of the AE index. The

performance of the networks was evaluated with the number of

higher order terms increased from 1 to 5 for HONNs, and number

of hidden nodes increased from 3 to 8 for MLP network. The plots

in Figure [12] (a) and Figure [10] (b) indicate that the MLPs and

the FLNNs, respectively, showed no increase in the value of the

SNR for the two signals. However, for the prediction of Lorenz

attractor and the mean value of the AE index using PSNN, the

SNR started to decrease for a 3th order PSNN network. This is

probably due to the utilization of large number of free parameters

for the network of order three and this has led to unpromising

generalization for the input-output mapping.

On the other hand, the plots for RPNN and DRPNN in Figures

[12] (d) and (e), respectively, shows that the networks have learned

the data steadily with the SNR continues to increase along with the

network growth.

Figure [13] shows the best simulation results for all neural

networks for the prediction of the Lorenz attractor, the mean value

of the AE index, sunspot number, and heat wave temperature which

indicates that the DRPNN showed better simulation results using the

Figure 9. Neural network learns the non-stationary signal.
doi:10.1371/journal.pone.0105766.g009

Predicting Physical Time Series

PLOS ONE | www.plosone.org 10 August 2014 | Volume 9 | Issue 8 | e105766



Figure 10. Part of the prediction for the (a) Lorenz attractor time series (b) the mean value of the AE index time series (c) sunspot
number time series (d) heat wave temperature time series.
doi:10.1371/journal.pone.0105766.g010

Table 2. The average simulation results over 5 trials using the benchmarked Neural Networks Structures and the simulation results
using Linear Predictor Coefficient (LPC) model.

Lorenz attractor MLP (Hidden nodes 3) FLNN (Order 3) PSNN (Order 2) RPNN (Order 5) DRPNN (Order 3) LPC

NMSE 0.001924 0.001605 0.002356 0.001998 0.001606 0.0065

SNR (dB) 44.95 45.73 44.06 44.87 45.77 33.4022

Epochs 2860 3000 3000 1681 2496 N/A

The Mean Value of
the AE index MLP (Hidden nodes) FLNN (Order 2) PSNN (Order 2) RPNN (Order 4) DRPNN (Order) LPC

NMSE 0.175805 0.133661 0.115797 0.068515 0.067267 0.0615

SNR (dB) 28.3 29.45 30.08 32.36 32.44 31.3648

Epochs 104 146 34 531 89 N/A

Sunspot Number MLP (Hidden nodes 3) FLNN (Order 3) PSNN (Order 2) RPNN (Order 4) DRPNN (Order 3) LPC

NMSE 0.1319 0.1366 0.132 0.1317 0.1301 0.1241

SNR (dB) 25.16 25.01 25.16 25.17 25.22 22.6233

Epochs 2134 1291 2338 2999 1443 N/A

Heatwave
Temperature MLP (Hidden nodes 3) FLNN (Order 2) PSNN (Order 2) RPNN (Order 3) DRPNN (Order 2) LPC

NMSE 0.4938 0.4903 0.4888 0.4677 0.4713 0.8184

SNR (dB) 18.12 18.15 18.17 18.36 18.32 21.6947

Epochs 3000 2479 873 2357 243 N/A

doi:10.1371/journal.pone.0105766.t002

Predicting Physical Time Series

PLOS ONE | www.plosone.org 11 August 2014 | Volume 9 | Issue 8 | e105766



SNR than the benchmarked networks for the prediction of the

Lorenz attractor and similar results to the performance of the RPNN

for the prediction of the mean value of the AE index.

In our simulation, we investigated a range of values for the

parameters that influence the network performance with stable

results. The results show the same performance figures sustained

across different training and testing sets. The summary is as

follows:

1. The stability of the network with various network architecture: In

this simulation, we tested the network architecture by varying

the number of pi-sigma units from 2 to 5. The results show that

the signal to noise ratio stayed stable as illustrated in Figure

[12].

2. The stability of the network with the number of iterations: In this

experiment, the results remain stable for the training time

between 100 and 3000 epochs. No indication of over training

was noticed and the performance was improved with larger

number of iterations. This behaviour is sustained for the all the

time series used in the simulation.

Conclusions

This paper investigated the predictive capability of the Dynamic

Ridge Polynomial Neural Network, for the prediction of physical

time series signals. The results were benchmarked with the

Multilayer Perceptron and higher order neural networks, as well as

linear predictor. Experimental results showed that DRPNNs

produced improved performance in terms of the SNR. In addition

to generating good performance, which is a desirable property in

nonlinear time series prediction, DRPNNs also used smaller

number of epochs during the training in comparison to the MLPs.

This is obviously due to the presence of only a single layer of

adaptive weights. The enhanced performance in the prediction of

the physical time series using DRPNNs is due to the networks

robustness caused by the reduced number of free parameters

compared to the MLPs.

Figure 11. The histogram of the prediction error for (a) the Lorenz attractor time series; (b) the mean value of the AE index time
series (c) sunspot number time series (d) heat wave temperature time series using the DRPNN.
doi:10.1371/journal.pone.0105766.g011

Predicting Physical Time Series

PLOS ONE | www.plosone.org 12 August 2014 | Volume 9 | Issue 8 | e105766



Figure 12. Performance of all networks with increasing order/number of hidden nodes (a) MLP, (b) FLNN, (c) PSNN, (d) RPNN, (e)
DRPNN.
doi:10.1371/journal.pone.0105766.g012

Predicting Physical Time Series

PLOS ONE | www.plosone.org 13 August 2014 | Volume 9 | Issue 8 | e105766



Supporting Information

File S1 lorenz_original. The Lorenz attractor is a set of three

deterministic equations that is used to create a simulated signal.

The equations approximate the two-dimensional flow of a fluid

heated along the bottom. The Lorenz attractor can be obtained by

simultaneously solving the following equations.

(TXT)

File S2 mae78_original. The AE index is the auroral

electrojet index determined from various stations located in the

latitude region.

(TXT)

File S3 sunspot. The sunspot numbers data is a recording of

observed sunspot activity over a period of time by the World Data

Center for the production, preservation and dissemination of the

international sunspot number.

(TXT)

File S4 heatwave. The heatwave data is a record of global

temperatures over a period of a year by the US national oceanic

and atmospheric administration.

(TXT)

Acknowledgments

This research paper is made possible through the help and support from

everyone at our Applied Computing Research Group.

Thanks to Sam Crate for his help in formatting, proof reading and

assisting in the submission of this paper.

Author Contributions

Conceived and designed the experiments: DA AH RG. Performed the

experiments: DA AH RG. Analyzed the data: DA AH RG. Contributed

reagents/materials/analysis tools: DA AH RG. Contributed to the writing

of the manuscript: DA AH RG.

References

1. Makhoul J (1975) Linear prediction: A tutorial review. Proceedings of the IEEE,

63(4): 561–580.

2. Conner J, Atlas L (1991) Recurrent neural networks and time series prediction.

IEEE International Joint conference on Neural network: I 301–I 306.

3. Rape R, Fefer D, Drnovsek J (1994) Time series prediction with neural

networks: a case of two examples. IEEE Instrumentation and measurement

technology conference: 145–148.

4. Singh S (1998) Fuzzy Nearest Neighbour Method for Time-Series Forecasting.

Proc 6th European Congress on Intelligent Techniques and Soft Computing

(EUFIT’98): 1901–1905.

5. Tokinga S, Moriyasu H, Miyazaki A, Shimazu N (1999) A forecasting method

for time series with fractal geometry and its application. Electronic and

communications in Japan part 3. 82(3) 31–39 p.

6. Draye JS, Pavisic DA, Cheron GA, Libert GA (1996) Dynamic recurrent neural

networks: a dynamic analysis. IEEE Transactions on Systems, Man, and

Cybernetics-Part B. 26(5) 692–706 p.

7. Lee P, Haykin S (1999) A dynamic regularised radial basis function network for

nonlinear, nonstationary time series prediction. IEEE Transactions on Signal

processing. 47(9) 2503–2521 p.

8. Rumelhart DE, Hinton GE, Williams RJ (1986)Learning presentation by back-

propagating errors Nature. 323 533–536.

9. Rao S, Sethuraman S, Ramamurthi V (1992) A recurrent neural network for

nonlinear time series prediction- a comparative study. IEEE 1992 Workshop on

Neural Networks for Signal Processing (NNSP ’92): 531–539.

10. Kuan CM (1989) Estimation of neural network models. PhD Thesis, University

of California, San Diego USA.

11. Versace M, Bhatt R, Hinds O, Shiffer M (2004) Predicting the exchange traded

fund DIA with a combination of genetic algorithms and neural networks. Expert

systems with applications: 417–425 p.

12. Shin Y, Ghosh J (1995) Ridge polynomial networks. IEEE Transactions on

Neural Network. Vol. 6, No. 3. 610–622 p.

13. Williams RJ, Zipser D (1989) A learning algorithm for continually running fully

recurrent neural networks. Neural Computation. 270–280 p.

14. Beale R, Jackson T (1990) Neural Computing: An Introduction. Bristol, Hilger,

15. Connor J, Atlas L (1991) Recurrent Neural Networks and Time Series

Prediction. IEEE International Joint conference on Neural networks: I 301–I

306.

Figure 13. Best simulation result using the SNR.
doi:10.1371/journal.pone.0105766.g013

Predicting Physical Time Series

PLOS ONE | www.plosone.org 14 August 2014 | Volume 9 | Issue 8 | e105766



16. Chen AS, Leung MT (2004) Regression Neural Network for error correction in

foreign exchange forecasting and trading. Computers & Operations Research

31. 1049–1068 p.

17. Pao YH (1989) Adaptive pattern recognition and neural networks. Addison-

Wesley, USA. ISBN: 0-201012584-6.

18. Giles CL, Maxwell T, Learning, invariance and generalization in high-order

neural networks. Applied Optics, vol. 26, no. 23, Optical Society of America,

Washington D. C. 4972–4978 p.

19. Durbin R, Rumelhart DE (1989) Product Units: A Computationally Powerful

and Biologically Plausible Extension to Back-propagation Networks. Neural

Computation, vol. 1. 133–142 p.

20. NOAA (2012) National Ocean and Atmosphere Administration, National

Weather Service - Norman, Oklahoma, from http://www.srh.noaa.gov/oun/

?n = climate-okc-heatwave. Accessed 2014 January 4th.

21. Mirea L, Marcu T (2002) System identification using Functional-Link Neural

Networks with dynamic structure. 15th Triennial World Congress.

22. Cass R, Radl B (1996) Adaptive process optimization using Functional-Link

Networks and Evolutionary Algorithm. Control Eng. Practice, Vol. 4, No. 11.

1579–1584 p.

23. Giles CL, Griffin RD, Maxwell T (1998) Encoding Geometric Invariances in

HONN’’, American Institute of Physics. 310–309 p.

24. Fei G, Yu YL (1994) A modified Sigma-Pi BP Network with Self-feedback and

its Application in Time Series Analysis. Proceedings of the 5th International

Conference, vol. 2243–508F. 508–515.

25. Kaita T, Tomita S, Yamanaka J (2002) On a Higher-order Neural Network for

distortion invariant pattern recognition.Pattern Recognition Letter, 23. 977–984

p.

26. Thimm G (1995) Optimization of High Order perceptron. Swiss federal Institute

of Technology (EPFL).

27. Shin Y, Ghosh J (1991) The Pi-Sigma Networks: An efficient Higher-order

Neural Network for pattern classification and function approximation.

Proceedings of International Joint Conference on Neural Networks, Vol.1:

13–18.

28. Ghosh J, Shin Y (1992) Efficient Higher-order Neural Networks for function

approximation and classification. Int. J. Neural Systems, vol. 3, no. 4. 323–350

p.

29. Shin Y, Ghosh J (1992) Computationally efficient invariant pattern recognition

with higher order Pi-Sigma Networks. The University of Texas, Austin.

30. Tawfik H, Liatsis P (1997) Prediction of non-linear time-series using Higher-

Order Neural Networks. Proceeding IWSSIP’97 Conference.
31. Atiya AF (2000) New Results on Recurrent Network Training: Unifying the

Algorithms and Accelerating Convergence. IEEE Transaction on Neural

Networks, Vol. 11, No. 3. 697–709 p.
32. Lorenz EN (1962) The statistical prediction of solutions of dynamics equations.

Proceedings international symposium on numerical weather prediction,
Meteorological society Japan. 629–635 p.

33. Huang C, Loh C (2001) Nonlinear Identification of Dynamic Systems Using

Neural Networks.Computer-Aided Civil and Infrastructure Engineering16. 28–
41 p.

34. Billings SA, Jamaluddin HB, Chen S (1992) Properties of neural networks with
applications to modeling non-linear dynamical systems. International Journal of

Control,55. 193–224 p.
35. Nanthagopal AP, Sukanesh R (2013) Classification of benign and malignant

brain tumor CT images using wavelet texture parameters and neural network

classifier. Journal of Visualisation, 16 (1). 19–28 p.
36. Wang JJ, Wang JZ, Zhang ZG, Guo SP (2012) Stock index forecasting based on

a hybrid model. Omega-International Journal of Management Science, 40 (6).
758–766 p.

37. Sermpinis G, Dunis C, Laws J, Stasinakis C (2012) Forecasting and trading the

EUR/USD exchange rate with stochastic Neural Network combination and
time-varying leverage. Decision Support Systems, 54(1), 316–329 p.

38. Yao Y, Freeman WJ, Burke B, Yang Q (1991)Pattern recognition by a
distributed neural network: An industrial application Neural Networks, 4(1),

103–121 p.
39. Siniscalchi SM, Yu D, Deng L, Lee CH (2013) Exploiting deep neural networks

for detection-based speech recognition. Neurocomputing, Volume 106. 148–157

p.
40. Ghazali R, Hussain A, Nawi M, Mohamed B, (2009) Non-stationary and

stationary prediction of financial time series using dynamic ridge polynomial
neural network. Neurocomputing, 72. 2359–2367 p.

41. Tang J, Zhang X (2012) Prediction of smoothed monthly mean sunspot number

based on chaos theory. Acta physica sinica, 61 (16), Article Number: 169601.
42. Plummer E (2000) Time series forecasting with feed-forward neural networks:

guidelines and limitations. Msc thesis, Laramie, Wyoming.
43. Cao LJ, Francis E, Tay H (2003) Support Vector Machine With Adaptive

Parameters in Financial Time Series Forecasting. IEEE Transactions on Neural
Networks, Volume 14, Issue 6, November 2003, 1506–1518 p.

Predicting Physical Time Series

PLOS ONE | www.plosone.org 15 August 2014 | Volume 9 | Issue 8 | e105766

http://www.srh.noaa.gov/oun/?n=climate-okc-heatwave
http://www.srh.noaa.gov/oun/?n=climate-okc-heatwave

