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Abstract

Many cellular decision processes, including proliferation, differentiation, and phenotypic switching, are controlled by
bistable signaling networks. In response to transient or intermediate input signals, these networks allocate a population
fraction to each of two distinct states (e.g. OFF and ON). While extensive studies have been carried out to analyze various
bistable networks, they are primarily focused on responses of bistable networks to sustained input signals. In this work, we
investigate the response characteristics of bistable networks to transient signals, using both theoretical analysis and
numerical simulation. We find that bistable systems exhibit a common property: for input signals with short durations, the
fraction of switching cells increases linearly with the signal duration, allowing the population to integrate transient signals
to tune its response. We propose that this allocation algorithm can be an optimal response strategy for certain cellular
decisions in which excessive switching results in lower population fitness.

Citation: Srimani JK, Yao G, Neu J, Tanouchi Y, Lee TJ, et al. (2014) Linear Population Allocation by Bistable Switches in Response to Transient Stimulation. PLoS
ONE 9(8): e105408. doi:10.1371/journal.pone.0105408

Editor: Peter Csermely, Semmelweis University, Hungary

Received May 19, 2014; Accepted July 23, 2014; Published August 20, 2014

Copyright: � 2014 Srimani et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability: The authors confirm that all data underlying the findings are fully available without restriction. An archive of scripts are available on Figshare
with the DOI: http://dx.doi.org/10.6084/m9.figshare.1116073.

Funding: This study was supported by the National Science Foundation (LY, CBET-0953202); National Institutes of Health (LY, 1R01GM098642); North Carolina
Biotech Center (LY, 2012-MRG-1102); DuPont Young Professorship (LY); David and Lucile Packard Fellowship (LY); American Cancer Society (GY, IRG7400l34). The
funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* Email: you@duke.edu

. These authors contributed equally to this work.

¤ Current address: Orthopedic Surgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America

Introduction

To optimally survive, cell populations must appropriately

respond to changes in environmental conditions, such as

availability of nutrients, presence of competition, and perturba-

tions by drugs. These environmental cues often trigger distinct cell

fate responses (e.g., rest vs. grow; live vs. die) in an otherwise

homogeneous cell population. These distinct responses are

important to both the fitness of unicellular microbes and the

proper cellular functions in multicellular organisms, e.g., tissue

homeostasis [1], differentiation [2], and wound healing [3–5].

Despite the diversity of cell fate response systems, many share a

common property: the phenotypic response is controlled by a

bistable switch that assumes one of two stable states (e.g. OFF and

ON). Extensive modeling and experimental studies have been

carried out to understand the generation and modulation of the

bistable systems, primarily on their responses to sustained signals

[6,7]. However, bistable switches can operate under conditions

where the input signals are transient. For example, Bacillus subtilis
shifts from vegetative growth to competence and sporulation in a

nutrient-limited environment [8]. It reverts to the vegetative state

when nutrient is available. If too many individuals revert, the

nutrient level may be insufficient to support them; if too few

individuals revert, the population would fail to fully utilize the

available nutrients. It turns out that the fraction of reverted

individuals is dependent on the nutrient duration, in a process

controlled by a bistable switch involving the regulatory gene SpoA
[9].

Bistable decisions also underlie the development and mainte-

nance of virulence factors in a variety of bacterial pathogens,

including the human pathogens Salmonella typhimurium [10,11]

and Pseudomonas auruginosa [12], as well as the plant pathogen

Dickeya dadantii [13]. A major driver of virulence in all these

species is the expression of a Type III secretion system (T3SS) that

allows the pathogen to inject host cells with protein factors that

enable invasion [14]. Single-cell studies have shown that the T3SS

is often expressed in a bistable manner in response to environ-

mental factors such as salt concentrations [10]. That is, a clonal

population contains a mix of two phenotypic subsets, T3SS+ and

T3SS2. While the T3SS+ subset enables the Salmonella
population to invade the host [15], it has a slower growth rate

(probably due to an increased metabolic burden and the presence

of gene regulons that couple metabolism and virulence) [16,17].

Therefore, a tradeoff is necessary between growth and virulence –

if the T3SS+ fraction is too high, the population cannot multiply

fast enough to withstand host defense mechanisms; if the T3SS+
fraction is too low, the population cannot invade the host cells

effectively. To this end, the bistable system that controls the T3SS

expression may coordinate the population distribution (T3SS+ vs.

T3SS2) based on the favorability of environmental conditions.
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Another example is bacterial programmed altruistic death

(PAD). In response to stress, a fraction of a population undergoes

programmed death, which leads to the release of certain ‘‘public

good’’ molecules and ultimately the stress alleviation, thus

benefiting the survivors [18,19]. For each cell, death is a bistable

decision (a cell either dies or lives). We have previously shown that

an optimal death rate exists for a given stress level. If the death rate

is too low, the population will be unable to alleviate the stress; if

the death rate is too high, the population will be unable to recover,

even after the removal of stress [20]. When a PAD-capable

population is subjected to transient stress, such as periodic

antibiotic dosing, the bistable network might inherently set the

optimal death rate, based on the dosing profile.

Given these phenomena, we wondered how a bistable switch

responds to transient signals. Without loss of generality, each

transient signal can be approximated by a rectangular pulse

(Figure 1A) with intensity S and duration D. If the switch operates

in the absence of noise (in a hypothetical cell population), we

expect a uniform, binary transition (e.g. from OFF to ON) at a

critical stimulus duration, Dcrit, which is a function of the switch

parameters and the signal intensity S. However, in the presence of

cellular noise, Dcrit may vary from cell to cell (Figure 1B). The

superimposing of stochasticity onto bistability leads to the division

of a cell population into two subpopulations, e.g. OFF and ON.

Intuitively, the magnitude of stochastic noise must be restricted

within some intermediate range to ensure the emergence of a

bimodal population: at extremely low noise levels, we would

expect to see a deterministic transition with increasing stimulus. In

contrast, excessively high noise would overwhelm the network

dynamics.

Here we examine how the fraction of activated individuals (the
ON subpopulation) depends on the strength and duration of the
transient input signals. We use theoretical analysis and compu-

tational simulations to investigate the input-output function of

three representative bistable systems with increasing complexity.

In particular, we focused on the effects of varying input signal

parameters and noise levels. We show that increasing the stimulus

duration results in an exponential asymptotic increase in

population activation. When the input duration is short, this

dependence is linear, and this property is maintained for all three

bistable systems. We propose that this linear dependence (activated

fraction vs. signal duration) can function as a survival strategy,

representing an optimal response to transient input signals. We use

a minimal model to demonstrate that when pulse (e.g. nutrient)

duration governs growth rate, over-allocation results in slower

growth due to cells having fewer resources; conversely, under-

allocation results in wasted excess resources. A linear strategy

balances these two detrimental effects, enabling populations to

Figure 1. Stimulation of a bistable network by a pulse input. (A) A pulse input can be specified by its intensity (S) and duration (D). Stimulation
of a stochastic bistable network in an isogenic population using this pulse results in the emergence of two distinct subpopulations (e.g. OFF and ON).
(B) If the activation is deterministic, there exists a critical pulse duration beyond which all individuals in a population will transition between the two
steady states (e.g. from OFF to ON) (top panel). Presence of noise will result in variability in the critical duration: different individuals will be activated
at different thresholds (middle panel). For a short duration, a fraction of a population will be allocated to either steady state. Here, we aim to
investigate this population activation, which we term ‘‘activation probability’’, as a function of both pulse intensity and duration (bottom panel). (C)
Schematic shows the evolution of a population of cells carrying a bistable switch (blue) in response to a pulse input (red). Potential energy landscapes
are shown in black. In the absence of stimulus (1), the population is in the OFF state. When stimulus is applied (2), the potential energy landscape
shifts in favor of the ON state, driving the population toward the ON state. When the stimulus is removed (3), the potential energy landscape reverts
to its initial state, splitting the population into two subpopulations (OFF and ON).
doi:10.1371/journal.pone.0105408.g001
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proliferate faster than either extreme. In this regard, a bistable

switch acts as an integrator, enabling a cell population to assess

transient signals based on intensity and duration and respond

accordingly.

Results

A positive-feedback circuit
We start with a minimal bistable system consisting of a protein

driving its own synthesis, forming a positive feedback loop

(Figure 2A). This system can be modeled with a single ordinary

differential equation (ODE): _xx~ f ( S, D) z a( x) { x. The

three terms on the right hand side of the equation, from left to

right, correspond to external stimulation, nonlinear positive

feedback, and decay, respectively. Without loss of generality, we

choose a( x) ~ 8
3

c x2

3z x2 and the parameter c such that the

system is bistable in the absence of stimulus ( f = 0), with an

unstable steady state at x�~ 1, and _aa( 1) ~ c. A larger value of c
corresponds to stronger positive feedback, which increases the

distance between the two steady states (Figure S1A). We use the

Fokker-Planck formulation of this non-dimensional ODE to

incorporate the effects of both mechanism-dependent (intrinsic)

and independent (extrinsic) noise sources, which we assume to be

Gaussian distributed. This formulation enables us to simulate the

noise inherent in biochemical reactions, due to the effects of both

discrete small numbers of molecules as well as small reaction

volumes (i.e. cells). Unless f is saturating, the potential landscape

resulting from this stochastic ODE has two wells corresponding to

two stable steady states (Figure S1B), separated by an energy

barrier at the unstable steady state. For saturating f , the landscape

is monostable.

For f ~ 0, consider a population of cells residing at the OFF

state, assuming a Gaussian protein distribution (Figure 1C, panel

1). When the stimulus is applied (f w 0), the landscape shifts in

favor of the ON state: the energy barrier is lowered and the ON

state becomes more stable. This shifted landscape promotes

stochastic transition from the OFF to the ON state (panel 2), as if

the population of cells are gradually sliding toward the ON state.

When the stimulus is turned off, the potential landscape reverts to

the initial configuration (panel 3). At this moment, the population

will be split into two subpopulations, depending on the relative

position of each cell in comparison to the unstable steady state.

Cells to the right of the unstable steady state will continue to move

toward the ON state; those to the left will move back to the OFF

state. The fraction of activated cells (or the activation probability)

depends on the transition rate, which in turn depends on stimulus

intensity and noise magnitude (Figure S2).

Using the Fokker-Planck equation, we find that, for a given

input intensity, the activation probability increases with the input

duration, approximately following an exponential asymptotic

function: pact(t) ~ 1 { e { rD . The transition rate constant, r,

is a function of the input strength ( f ) and noise magnitude (see

Supplemental Information for full derivation). This theoretical

solution agrees well with results from numerical simulations, using

the corresponding stochastic differential equations (SDE) (Fig-

Figure 2. Response of a positive-feedback model to pulse inputs. (A) Triggering a bistable positive-feedback model with a pulse. (B)
Simulation (open circles) vs. theoretical prediction (solid lines) of activation probability as a function of pulse duration. The black arrow indicates
increasing stimulus intensity. The activation probability increases linearly with the duration, when the latter is small. Inset shows intermediate signal
transformation function. (C) The transition rate dictates the linear dependence, and increases with increasing stimulus intensity. Open circles and lines
indicate theoretical and numerical predictions, respectively. (D) The pulse strength can be monotonically scaled upstream of the bistable decision
module without affecting the characteristic activation property. Here, we use a Hill function with coefficient n = 2 as the transformation function
(shown in inset).
doi:10.1371/journal.pone.0105408.g002
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ure 2B). As expected, stronger stimuli result in a deeper ON well,

and a faster increase in activation probability, characterized by

larger r values (Figure 2C). Importantly, for sufficiently small D,

pact & 1 { ( 1 { rD) ~ rD. That is, for a population of cells

exposed to a short stimulus, the number of cells that switch

increases linearly with the signal duration.

In general, a pulse input can be processed by an intermediate

signaling module or cascade in the cell, prior to the bistable

module. Mathematically, this processing can be considered as a

transform by a relevant function (e.g. a Hill function). The

resulting scaled stimulus will assume a modified shape dictated by

the signaling module throughout the stimulus duration, while

remaining zero for tw D. As long as the transformation is

monotonic in terms of signal strength, it does not qualitatively

change the allocation property (Figure 2D, inset shows interme-

diate transformation): the activation probability increases approx-

imately linearly with increasing duration of the input pulse, when

the duration is small.

Our analysis confirms previous studies of switching properties,

which have described exponentially distributed residence times in

potential wells using Fokker-Planck formulations of population

drift and diffusion [21–24]. However, these studies utilize arbitrary

two-well potential functions to realize transitions from one state to

another. It is unclear to what extent these conclusions are

applicable to more complex bistable systems, based on molecular

mechanisms, which exist in nature. Furthermore, these studies do

not address the potential biological implications of these switching

properties. To that end, we use numerical simulations to

interrogate the response of two increasingly complex bistable

frameworks, and describe a general biological scenario in which

conserved switching properties may be advantageous to bistable

populations.

A toggle switch model
To test the general applicability of the linear response, we next

examine the response of a toggle switch [25] to transient

stimulation. This motif has been found in numerous natural

biological networks [26,27], and is one of the first regulatory motifs

to be implemented and analyzed with synthetic gene circuits using

different genetic elements, in bacteria, yeast, and mammalian cells

[28–31]. The toggle switch consists of two molecular species

mutually inhibiting each other (Figure 3A). Due to its greater

complexity, we employ dimensionless numerical simulations using

an SDE model (all units are arbitrary, see SI for details) to examine

its response to a pulse input.

Our simulation results show that the toggle switch exhibits a

‘‘priming’’ period (D0): for signal durations less than this value, the

switch is minimally activated. This feature is likely due to the

inhibitory mechanism. For example, assuming a population is

initially in state A (Figure 3A), weak upregulation of B (short

duration) will be unable to overcome the inhibition of B imposed

by high levels of A. For stimuli longer than D0, the system follows

Figure 3. Response of a toggle-switch to pulse inputs. (A) A toggle switch consisting of two molecules (A and B) inhibiting each other. With
sufficient nonlinearity, the system is bistable, with either A or B dominating. Our analysis assumes that all cells are initiated at state A. A pulse input is
applied to drive them into state B. (B) Simulated dependence of the activation probability on pulse duration. For sub-saturating durations, the
dependence exhibits an approximately threshold-linear property: there is no activation until the pulse duration is above a threshold; then the
activation probability increases linearly (as shown by solid lines, R2.0.9) until saturation. Black arrow indicates direction of increasing stimulus
intensity. (C) The linear activation regime slope r increases with stimulus intensity (linear fit, R2 = 0.987). (D)The priming delay D0 decreases with
stimulus intensity (exponential decay R2 = 0.972).
doi:10.1371/journal.pone.0105408.g003
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Figure 4. Response of the Myc-Rb-E2F network to pulse inputs. (A) In response to serum stimulation, the Myc-Rb-E2F can exhibit bistability in
E2F levels. (B) Simulated dependence of activation probability on the duration of the pulse input. Solid black arrow indicates increasing stimulus
intensity. The dependence is approximately threshold linear for sub-saturating durations. Black arrow indicates direction of increasing stimulus
intensity. (C) The linear activation regime slope r increases with stimulus intensity (linear fit, R2 = 0.997). (D) The priming delay D0 decreases with
stimulus intensity (exponential decay R2 = 0.985).
doi:10.1371/journal.pone.0105408.g004

Figure 5. Linear increase in activation probability is a preferable allocation strategy. (A) A discrete bistable system allows comparison of
various activation probability curves. In this model, successive pulses of unit intensity, mean duration D, and Gaussian-distributed deviation DDi are
applied to a population. For each pulse, a fraction p(D+DD) are ‘‘activated’’ and proliferate. The rate of proliferation is assumed to be dependent on
the signal intensity per individual ((D+DDi)Ni), following a Monod function. The remaining inactivated subpopulation is eliminated (i.e. cell death). We
note that the conclusions about relative fitness are not affected if the inactivated subpopulation is assumed to be quiescent (alive but non-growing).
Successive pulses can be applied to simulate fluctuating environmental conditions. (B) Three characteristic activation probability curves as a function
of signal duration. Population response can be grouped into one of three categories. A fluctuation in signal duration can result in a corresponding
linear change in activation (blue line), or a change that is more sensitive (red line) or less sensitive (green line) than linear. Note that all three
representative curves are defined over the same range of signal durations, and k(0) = 0, k(500) = 1 for all. (C) For each characteristic curve in (B), we
plot the fold change after 1,000 pulses of a particular mean duration. A linear allocation strategy results in a larger fold change than fast and slow
activation for 100% and 86% of signal durations, respectively. We note that this qualitative conclusion is true regardless of initial population size and
number of pulses.
doi:10.1371/journal.pone.0105408.g005
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the same short duration linear approximation as the cooperative

model. We can fit the activation probability curve using

plin( D) ~ r( D { D0) , taking p( D) ~ 0 for Dv D0. A

representative example is shown in Figure 3B (solid line, see

Materials and Methods for details). In addition, our results show

that the rate of linear increase, r, is positively correlated with the

signal intensity (Figure 3C, solid line shows linear fit, R2 = 0.987)

and that D0 should decrease with increasing stimulus intensity, as

shown in Figure 3D (solid line shows exponential decay,

R2 = 0.972). Here, it is important to note that a priming period

may occur for any bistable motif, given sufficiently short pulse

duration. That is, if the pulse duration is short enough that

activation is outweighed by degradation, the system would

experience a priming delay. In the preceding positive feedback

model, the lack of inhibition means that the priming delay is

negligibly short compared to the subsequent linear activation

region.

A bistable Myc-Rb-E2F model
We next examine a much more complex network, Myc-Rb-E2F

network (Figure 4A), which plays a critical role in controlling cell

cycle entry and cell fate decisions [32,33]. Dysregulation of this

network has been shown to contribute to uncontrolled cell

proliferation and cancer development. Our previous work [34–

36] has studied the dynamic network properties underlying E2F-

mediated cell cycle entry. In normal cells, serum stimulation can

lead to bistable activation of E2F, which in turn serves as a master-

regulator of genes involved in cell cycle entry.

Again, we adopt an SDE model [37] of the Myc-Rb-E2F

network to examine its response to transient growth stimulation

(Figure 4A and Figure S3). Despite its much greater complexity,

this model exhibits qualitatively the same trend in activation

probability (Figure 4B) as the toggle switch model. In particular, a

population exhibits a threshold-linear response: when the stimu-

lation duration is shorter than a threshold value (D0 the priming

duration), the network does not respond significantly. In this case,

the priming delay is due to a number of inhibitory interactions, as

diagrammed in Figure 4A. For a short duration above D0, the

activation probability increases linearly with increasing duration.

As shown in Figure 4C, the rates of linear increase are dependent

on the stimulus intensity (line shows linear fit, R2 = 0.997). As with

the toggle switch, the priming delay D0 decreases exponentially

with increasing stimulus intensity (Figure 4D, R2 = 0.985).

Advantages of linear activation
Previous studies have demonstrated that negative feedback

reduces the effect of biochemical noise and linearizes dose

responses [38]. The negative-feedback-mediated linearization of

dose responses occurs at the individual cell level. Our preceding

analysis suggests that population response can also be linearized

the in the duration domain: bistable switches amplify expression

variability in individual cells and linearize the population-level

response to transient stimuli.

How is the linear response advantageous to a cell population,

compared to nonlinear responses, to a cell population sensing

transient stimuli? For monotonically increasing response functions

p( D) over a given range of signal durations, a linear response is

equally sensitive to variability in the signal duration regardless of

the value of D. That is, because the derivative
dp

dt
is constant, any

fluctuation D D will result in the same change

D p~ p( Dz D D) { p(D) , regardless of the value of D. In

this manner, the bistable decision serves to integrate a transient

input signal, respond cumulatively to fluctuating environmental

conditions, and neither ‘‘over-commit to’’ nor ‘‘withhold from’’ a

signal-dependent alternate steady state.

To illustrate this point, we construct a minimal model in which

an isogenic population responds to a train of multiple pulsatile

stimulatory signals (Figure 5A); this approach has previously been

used to evaluated bistable populations [39–42]. These signals can

be interpreted as a necessary resource (e.g. nutrients) for cells to

grow and divide. That is, the duration of a pulse is proportional to

the amount of resource made available to the population. The

durations of these pulses are normally distributed around a mean

value D, with Di being the deviation for the ith pulse. In each

pulse, a fraction of the total population Ni is stimulated to

proliferate, and the rest are eliminated (i.e. cell death). This

bifurcation represents a bistable event: each individual either

survives or does not. As such, the surviving fraction, or the

activation probability, is a function of the signal duration

( k( Dz D Di) ) . Furthermore, we assume that the growth rate
of surviving cells depends on the amount of resource per individual

(g
Dz D Di

Ni

� �
), following a Monod equation [43,44]. We

simplified this model by assuming that resources are divided

equally among all members of the population, and that the input

signal intensity is strong enough such that variability in its intensity

is negligible. Here, it is important to note that our model assumes

that resources, once allocated, are consumed and thus unavailable

to other cells in the population, e.g. when a stimulus pulse

corresponds to nutrient availability. However, this may not be true

for all stimuli. For example, transcription factors and enzymes can

freely diffuse between, and affect, multiple cells without being

consumed or degraded.

In this scenario, how should populations respond to fluctuations

in signal duration? That is, given a train of pulses with variable

duration, what is the ideal strategy to maximize the population

fitness? To examine this question, we compared three represen-

tative response strategies:

1. Linear activation (Figure 5B, blue line): a fluctuation in signal

duration D D results in a linear change in the surviving

fraction.

2. Fast activation (Figure 5B, green line): a fluctuation in signal

duration D D results in a stronger than linear change in the

surviving fraction; a positive D D results in a greater increase,

and a negative D D results in a greater decrease, in the

surviving fraction when compared to linear activation. This

strategy represents a ‘‘greedy’’ response, in that the over-

allocation restricts the amount of resource available to each

individual.

3. Slow activation (Figure 5B, red line): the opposite of fast

activation; a fluctuation in signal duration DD results in a

weaker than linear change in the surviving fraction; a positive

D D results in a lesser increase, and a negative D D results in a

lesser decrease, in the surviving fraction when compared to

linear activation. This strategy represents a ‘‘cautious’’

response, in that under-allocation does not take full advantages

of the resources available.

Here, we note that the curves shown in Figure 5B show changes
in activation probability; the growth rate is fixed by the Monod

equation, and the deviations can be linear, fast, or slow, as

described above. We then simulated the effect of these different

strategies on independent populations (please see Materials and

Methods for detailed description). For each possible input signal

duration, a train of variable pulses was used to stimulate the

growth and/or decay of a population. We define fitness as the fold

Population Allocation by Bistable Switches
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change between the final and initial population sizes. As shown in

Figure 5C, a linear activation strategy outperformed (larger fold

difference) both slow and fast activation for the majority of

durations tested (100% and 86% of durations, as compared to slow

and fast activation, respectively). These results suggest that the

transition rate between bistable states can be optimized, especially

in scenarios in which transition dynamics can affect overall fitness

in opposing ways. We note that these conclusions also hold true if

the inactivated subpopulation is assumed to be quiescent (alive but

non-growing).

In the model examined here, fast activation appears beneficial

in that more individuals survive the bistable decision; however, it

results in lower per capita resource availability, and therefore a

lower growth rate (overestimating the resource availability).

Conversely, slow activation results in a higher growth rate due

to higher per capita resource availability, but fewer individuals

survive to take advantage of those favorable conditions (underes-

timating the resource availability). Clearly, there is a need to

balance these interconnected effects. Linear activation is a happy

medium that allows populations to utilize fluctuating conditions

moderately, without being greedy or overly cautious.

Discussion

Bistable decisions have been shown to underlie many cellular

decisions, including differentiation and stress response. Previous

studies have shown that pulsatile stimulation can be modulated to

affect downstream gene expression in calcium-mediated signaling

in yeast [45], NF-kB signaling in mammalian cells [46], and T cell

stimulation [47]. These studies demonstrated that cell populations

can multiplex different modes of information (signal intensity,

duration, frequency etc.) to implement complex behaviors [48]. In

many cases, these decisions are made on a single cell level;

inherent biochemical stochasticity implies that the responses will

vary within a population. In this context, it becomes important to

understand how populations respond to non-saturating stimuli in

the presence of cellular noise. Here we have demonstrated a

characteristic linear dependence of activation probability on input

signal duration in various stochastic bistable systems. Using a

simple nonlinear feedback model, we showed that this activation

probability can be mathematically predicted; we then demon-

strated the same property in two increasingly complex systems, the

toggle switch, and the Myc-Rb-E2F cell cycle network.

We propose that this deterministic duration-response linearity is

an inherent feature of bistable systems, allowing populations to

optimally respond to transient signals in a ‘‘real-time’’ manner,

without a priori knowledge of signal duration. By allocating an

appropriate number of individuals to each state, bistable networks

could serve to ensure that populations take full advantage of

favorable stimuli (e.g. increased nutrient levels), or avoid non-

favorable factors (e.g. antibiotics). Notably, while positive feedback

is generally thought to amplify variability, we show that bistable

systems can process this individual uncertainty (at the single cell

level) into a collective certainty (at the population level). Moreover,

our results suggest that linear activation can be a better option

than both excessively fast and prohibitively slow responses as a

population survival strategy under fluctuating environment.

Indeed, this linear response can be observed in a variety of

scenarios. Recent work has demonstrated the emergence of linear

response in T cell activation, wherein naı̈ve T cells differentiate

into helper T cells in response to antigen exposure [49]. As the

antigen exposure duration is lengthened, the percentage of T cells

transition to helper T cells increases linearly and then asymptot-

ically approaches a maximum [47]. This differentiation decision is

critical to generating a defensive immune response while

minimizing the risk of autoimmunity [50]. Linear activation has

also been observed in caspase-mediated apoptosis models, in

which the fraction of dead cells increases linearly with the duration

of treatment with an apoptosis inducer such as Apo2L/TRAIL

after an initial priming delay [51]. These conclusions are

analogous to the response we have described; further demonstrat-

ing that linear response can be generated by a diversity of bistable

motifs.

Materials and Methods

Stochastic simulations
All stochastic simulations were implemented using the Gillespie

approximation to the chemical Langevin equation, using custom

Matlab scripts (see Supporting Information for detailed descrip-

tion).

Linear regime fitting (toggle switch and Myc-Rb-E2F
model)

For a given stimulus intensity, the duration giving 50%

activation was interpolated. The immediately surrounding data

points were used to fit a straight line: the slope of that line is the

linear regime slope, and the priming delay is the x-intercept.

Linear advantage simulations
A sequence of pulse durations was randomly generated,

normally distributed with a given mean duration and variance

equal to 10% of the mean. All populations were of the same initial

size. For each pulse in the sequence, a fraction of the population

(dictated by the particular allocation strategy used) multiplied. The

remainder of the population was discarded. The growth rate was

assumed to be a Monod function of the per capita resource level,

that is, pulse duration normalized by current population size. This

procedure was carried out with 1000 consecutive pulses, after

which the fitness was calculated as the fold change between the

final and initial population sizes. All simulations were implemented

in Matlab.

Supporting Information

Figure S1 (A) The effect of autocatalysis. In the absence of

stimulus (dotted line), the emergence and relative placement of

steady states in the non-dimensional model can be tuned with the

autocatalytic parameter ‘‘c’’. For low values of this parameter, the

only steady state is at 0. However, with sufficiently strong positive

feedback, two nonzero steady states emerge (coff, blue points, and

con, red points). (B) Potential energy landscapes as a function of

stimulus intensity. If the autocatalysis parameter ‘‘c’’ is chosen

such that nonzero steady states are attainable, the potential energy

landscape forms two wells corresponding to OFF and ON.

Increasing stimulus intensity simultaneously leads to a shallower

well at coff and a deeper well at con. This trend corresponds to an

overall shift in the population from OFF to ON with increasing

stimulus. Here we used c = 1.45, E= 0.005, and De = 0.01.

(TIF)

Figure S2 Determination of pact from stochastic simulations of

the positive-feedback model. Due to the presence of stochastic

noise, replicates with identical initial conditions form distributions

centered around two steady states. Time courses (left panel) of

10,000 simulations were separated into OFF and ON fractions

based on the boundary given by the critical unstable concentration

value (middle panel, dotted line). The ON fraction was then

plotted as a function of stimulus duration (right panel). We used

Population Allocation by Bistable Switches
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the same method to evaluate the positive-feedback model and the

toggle switch model.

(TIF)

Figure S3 (A) Simulated E2F time courses in response to a pulse

input with varying durations. For sufficiently strong stimuli (e.g.

S = 5), increasing duration led to a characteristic adaptive response

in E2F level (ON). The fraction of individuals exhibiting this

adaptive response is a function of stimulus duration. (B) and (C)

OFF and ON populations were delineated by the width of the

pulsatile response. For each time course, width of the pulsatile

response at the half maximum E2F level was determined. This

metric resulted in a bistable distribution: the population centered

at the higher mode was taken as the activated fraction.

(TIF)

Text S1

(DOCX)
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