
Insulin, CCAAT/Enhancer-Binding Proteins and Lactate
Regulate the Human 11b-Hydroxysteroid
Dehydrogenase Type 2 Gene Expression in Colon Cancer
Cell Lines
Thomas Andrieu., Pierre Fustier., Rasoul Alikhani-Koupaei, Irena D. Ignatova, Andreas Guettinger,

Felix J. Frey, Brigitte M. Frey*

Department of Nephrology & Hypertension and Clinical Pharmacology and Department of Clinical Research, University Hospital of Berne, Berne, Switzerland

Abstract

11b-Hydroxysteroid dehydrogenases (11beta-HSD) modulate mineralocorticoid receptor transactivation by glucocorticoids
and regulate access to the glucocorticoid receptor. The isozyme 11beta-HSD2 is selectively expressed in mineralocorticoid
target tissues and its activity is reduced in various disease states with abnormal sodium retention and hypertension,
including the apparent mineralocorticoid excess. As 50% of patients with essential hypertension are insulin resistant and
hyperinsulinemic, we hypothesized that insulin downregulates the 11beta-HSD2 activity. In the present study we show that
insulin reduced the 11beta-HSD2 activity in cancer colon cell lines (HCT116, SW620 and HT-29) at the transcriptional level, in
a time and dose dependent manner. The downregulation was reversible and required new protein synthesis. Pathway
analysis using mRNA profiling revealed that insulin treatment modified the expression of the transcription factor family C/
EBPs (CCAAT/enhancer-binding proteins) but also of glycolysis related enzymes. Western blot and real time PCR confirmed
an upregulation of C/EBP beta isoforms (LAP and LIP) with a more pronounced increase in the inhibitory isoform LIP. EMSA
and reporter gene assays demonstrated the role of C/EBP beta isoforms in HSD11B2 gene expression regulation. In addition,
secretion of lactate, a byproduct of glycolysis, was shown to mediate insulin-dependent HSD11B2 downregulation. In
summary, we demonstrate that insulin downregulates HSD11B2 through increased LIP expression and augmented lactate
secretion. Such mechanisms are of interest and potential significance for sodium reabsorption in the colon.
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Introduction

The mineralocorticoid receptor (MR) is essential for renal

sodium handling in epithelial tissues such as colon and kidney and

for blood pressure control in humans. The physiological ligand of

the MR is aldosterone [1]. Another adrenal steroid, cortisol,

exhibits a similar affinity and transactivation potential for the MR

as aldosterone. Serum concentrations of cortisol are 100 to 1000

fold higher than aldosterone. The mechanism allowing aldoste-

rone to be the preferred ligand for the MR in vivo, despite the

higher concentrations of cortisol is an enzyme which inactivates

cortisol, specifically in MR expressing cells [2]. This enzyme, 11b-

hydroxysteroid dehydrogenase type 2 (11beta-HSD2) is encoded

by the HSD11B2 gene and converts biologically active cortisol

into cortisone, a steroid with negligible affinity and activation

potential for the MR [3]. Thus, a reduced activity of 11beta-

HSD2 causes cortisol-mediated MR activation, leading to renal

sodium retention, suppression of renin and a salt-sensitive increase

in blood pressure [4,5].

Many patients with type 2 diabetes have low renin activity in

plasma and are salt-sensitive [6–8]. Furthermore, we recently

observed an association of salt-sensitivity and reduced activity of

11beta-HSD2 in offspring of type 2 diabetic patients [9]. Thus, it is

reasonable to speculate that insulin downregulates HSD11B2, and

by this mechanism, causes cortisol-mediated renal or colonic

sodium retention with consequent renin suppression.

It has been shown that that insulin and hyperinsulinemia

regulate the family of transcription factors CCAAT/enhancer

binding proteins (C/EBPs) [10,11] and that members of this family

control the transcription of HSD11B1 [12–14]. The analysis of the

promoter of the HSD11B2 gene by the transcription factor

database (TRANSFAC) program revealed several putative binding

sites for C/EBPs at positions 24362 bp, 21985 bp, 2177 bp and

at 2198 bp from the transcriptional starting site of human

HSD11B2 gene. Therefore, we hypothesized that insulin down-

regulates HSD11B2 through C/EBPs.
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Material and Methods

Reagents and supplies
Cell culture material was from Becton Dickinson Labware

(Basel, Switzerland) and Corning (Bodenheim, Germany). Dul-

becco’s Modified Eagle’s Medium (DMEM) and Mc Coy’s were

purchased from Sigma Chemicals (Buchs, Switzerland). Fetal

bovine serum (FBS) was from Biochrom AG (Berlin, Germany).

Insulin, cycloheximide (CHX), PD098059, Sodium Dichloroace-

tate (DCA), Sodium L-lactate and 5,6-dichlorobenzimidazole 1b-

D-ribofuranoside (DRB) were purchased from Sigma-Aldrich

(Fluka AG, Buchs, Switzerland). The following cell lines were

purchased from ATCC (Manassas, VA): human colon carcinoma

cell line HT-29 (accession number: HTB-38), SW-620 (CLL-227),

HCT116 (CCL-247) and JEG-3 (HTB-36). Akt Inhibitor VIII was

from Calbiochem (Merck, Zug, Switzerland). Adenosine 59-

triphosphate [gamma-32P] ([gamma32P] ATP) was from Perkin

Elmer (Maanstraat, The Netherlands).

Cell Cultures
HCT116, SW-620 and HT-29 were grown in DMEM

supplemented with 10% FBS, 2 mmol/L glutamate, 100 U/ml

penicillin, and 100 mg/ml streptomycin. The cells were main-

tained at 37uC in humidified 5% CO2-95% air. All cell lines were

plated in cell culture dishes and grown in DMEM 10% FBS to

confluence. Cells were incubated in DMEM supplemented with

0.3% FBS during insulin and DCA treatment. Cells were treated

48 h with DCA and 24 h with insulin. Cells were incubated with

10% FBS during lactate treatment after 24 h synchronization in

DMEM 0.3% FBS.

RNA preparation and expression level
Total RNA was isolated using RNeasy Mini Kit (Qiagen AG,

Basel, Switzerland) according to the manufacturer’s protocol.

Total RNA (1 mg) was used for the synthesis of first strand cDNA

using the Improm-II Reverse Transcriptase (RT) in RT buffer

(Promega Catalys AG, Wallisellen, Switzerland) according to the

manufacturer’s protocol. Expression of specific mRNA was

determined by quantitative real-time RT-PCR (qRT-PCR) on

an ABI PRISM 7000 Sequence Detection System (Applied

Biosystems, Foster City, CA). Multiplex PCR was performed

according to the manufacturer’s protocol (Applied Biosystems,

Foster City, CA). Assays-on-Demand (Gene Expression Assay

Mix) were eukaryotic 18S rRNA endogenous control (4310893E),

HSD11B2 (Hs00388669_m1), CCAAT/enhancer binding protein

(C/EBP) alpha (Hs00269972_s1), C/EBP beta (Hs00270923_s1)

and C/EBP delta (Hs00270931_s1). Relative gene expression was

determined using the comparative CT (threshold cycle) method,

which consists of the normalization of the number of target gene

copies to an endogenous reference gene (18S rRNA), designated as

calibrator. The level of HSD11B2, C/EBP alpha, C/EBP beta

and C/EBP delta mRNA expression of each of the treated cells

was normalized to the result obtained from untreated cells. The

amount of target normalized to the 18S rRNA endogenous

reference is given by the formula: 22DDCT. To confirm the

reproducibility of mRNA determination, a minimum of 3

independent total RNA extractions were performed. Each

reverse-transcriptase polymerase chain reaction (RT-PCR) assay

was analyzed in triplicate and expressed as mean +/2 SD.

Measurement of 11beta-HSD2 activity
Cells were cultured in 6-well plates at a density of 0.56106 cells/

well. After treatment, culture medium was removed and cells were

incubated for 45 min in 1 ml medium containing 2 mCi of

[1,2,6,7-3H] Cortisol (60–80Ci/mmol, Amersham, Buckingham-

shire, UK) in 6-well plates. After incubation the reaction was

stopped and the steroids were extracted by the addition of three

volumes of ethyl acetate. After centrifugation, the organic phase

was removed and evaporated at room temperature. The residue

was reconstituted in 30 ml of stop solution (2 mM cortisol and

2 mM cortisone in methanol). Ten microliters were applied to

silica–coated TLC plates (G-25, UV254, Macherey-Nagel,

Oensingen, Switzerland) and resolved using chloroform: ethanol

(9:1). Steroids were visualized under ultraviolet light and were

scraped into scintillation fluid. The radioactivity was measured

using a Packard 2000CA Tri-Carb Liquid Scintillation Analyzer

(Packard Instrument Co, Downers Grove, IL). Experiments were

carried out under non-substrate limiting conditions, where

metabolism was always less than 40%. Specific activity was

expressed as picomoles (pmoles) per micrograms of protein per

hour. The experimental results were calculated by expressing the

conversion rates of cortisol to cortisone in the presence of insulin,

as a percentage of that in the corresponding control in absence of

insulin [15].

Western blot analysis
Protein extraction and Western blot analyses were performed as

reported earlier [16]. Briefly, nuclear extracts were isolated with

the CelLytic NuCLEAR Extraction protocol (Sigma Chemicals,

Buchs, Switzerland). For Western blot analysis, total protein

(100 mg) and nuclear extracts (60 mg) were loaded on a denaturing

10% polyacrylamide gel. The membrane was blocked overnight

and incubated with rabbit polyclonal antibody for 11beta-HSD2

(H-145,1:500), C/EBP alpha (sc-61X, 1:5000), C/EBP beta (sc-

150X, 1:5000), b-actin (sc-1616R, 1:500) or HDAC1 (sc-7872,

1:500) (Santa Cruz Biotechnology, Santa Cruz, CA). Washed

nitrocellulose membranes were incubated with a goat anti-rabbit

IgG horseradish peroxidase conjugate (sc-2004, Santa Cruz

Biotechnology, Santa Cruz, CA) and developed using enhanced

chemiluminescence (ECL) reagent (Amersham, Buckinghamshire,

UK). Densitometry of exposed films was performed and the level

of protein expressed as arbitrary units.

For detection of IGF1 and insulin receptors cells were either

untreated or treated with 100 nM insulin for 24 h and lysed in

RIPA buffer containing 1 mM sodium orthovanadate, 2 mg/ml

aprotinin, 1 mg/ml leupeptin, 1 mM phenylmethanesulfonyl

fluoride. The lysates were incubated with either IGFR or Insulin

Receptor antibodies (3027, 3025, Cell Signaling) at 4uC overnight.

In the morning, the samples were incubated with Protein A/G

Plus Agarose (Santa Cruz Biotechnology) for 1 h at 40uC. The

beads were washed, boiled in SDS loading buffer and proteins

were separated by SDS-PAGE.

De novo protein synthesis
HT-29 cells were cultured as outlined above and pretreated

with the protein synthesis (or translational elongation) inhibitor,

CHX (10 mM) for 1 h before the addition of insulin (1027 M). At

the end of the 24 h treatment, cells were harvested for RNA

isolation and qRT-PCR analysis.

HSD11B2 mRNA stability
HT-29 cells were cultured as outlined above and treated with

insulin (1027 M) for 12 h. Transcription was stopped with DRB

(25 mM) and cells were harvested at discrete times (0–12 h) for

RNA isolation and qRT-PCR analysis.
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Small interfering RNA (siRNA) experiments
HT-29 cells were transiently transfected using Lipofectamine

2000 (Invitrogen, Carlsbad, CA, USA) following the manufactur-

er’s recommendations. The transfection mixture was removed

after 24 h incubation. The cells were further incubated under

normal growth conditions for another 24 h before mRNA

extraction. The siRNA duplexes for C/EBP alpha or C/EBP

beta (Qiagen AG, Basel, Switzerland) and a negative control

siRNA (Invitrogen, Carlsbad, CA, USA) were used for transfection

at a final concentration of 50 nM.

Electrophoretic mobility shift assay (EMSA) and nuclear
extract preparation

Around five million of adherent cells were detached with 3 ml of

PBS on ice and were pelleted for 5 min at 900 g. Pellets were

stored at 280uC until protein extraction. Nuclear extract

preparation and EMSA were performed as previously described

[17,18]. The protein yield was determined by the Bradford

method. EMSA probes were generated by annealing complemen-

tary single-stranded oligonucleotides and labeled with [gamma32P]

ATP and T4 polynucleotide kinase. Specific binding was

competed with unlabeled oligonucleotides which sequence is

recognized by the C/EBP factors at a 100X-molar excess (59-

tgcagattgcgcaatctgca-39; the nucleotide motifs of interest are

bold-faced). The binding reactions were carried out in 10 ml of

buffer [20 mM HEPES, pH 7.5; 35 mM NaCl; 60 mM KCl;

0.01% NP 40; 2 mM DTT; 0.1 mg/ml BSA; 4% ficoll] containing

1.75 pmol of labeled probe, 4 mg nuclear proteins and 1 mg poly

(dI-dC). Mixtures were incubated at 4uC for 20 min in presence or

absence of unlabeled competitor. DNA-protein complexes were

separated on a 5% polyacrylamide gel in 0.56Tris-borate-EDTA

buffer for 90 min at 140 V. Gels were dried 2 h at 80uC and

analyzed on a PhosphoImager Cyclone (Packard).

Chromatin immunoprecipitation
ChIP assays were performed according to the instruction of

Upstate Biotechnology Inc as previously reported [18]. Purified

DNA fragments were amplified with PCR primers to detect a

210 bp fragment containing the 2177C/EBP, -198C/EBP sites

within the HSD11B2 promoter (forward: 59-GCAACTTTGG-

GACTTTGTTCCGGC-39; reverse: 59-AGAGGGACACTCGC-

TTTCTCTGCT-39).

qRT-PCR analysis using human diabetes RT2 Profiler PCR
Arrays

The RT2 Profiler PCR Arrays PAHS-30C (SA Biosciences,

MD, USA) was designed to analyze 84 genes related to human

insulin signaling pathway. The RT-PCR was carried out using an

ABI PRISM 7000 Sequence Detection System (Applied Biosys-

tems, Foster City, CA). HT-29 cells were treated for 24 h with

insulin (1027 M). Total RNA (1 mg) was used as template to

synthesize cDNA with the RT2 First Strand kit (SABiosciences).

The PCR cycle condition was as follows: 95uC for 10 min,

followed by 40 cycles of 95uC for 15 s, 60uC for 60 s. At the end of

PCR cycling steps, data for each sample were displayed as a

melting curve. The ABI SDS software (Applied Biosystems) was

used to determine a critical threshold (Ct), which was the cycle

number where the linear phase for each sample crossed the

threshold level. Beta-2-microglobulin was used as housekeeping

gene. The expression of HSD11B2 for the 3 experiments

concerned was monitored in parallel by real time PCR which

confirming significant downregulation by insulin. Records were

deposed in the GEO data base with accession number GSE51677.

Transient transfection and reporter gene assay
Transfections were performed with FuGENE HD transfection

reagent (Roche, Rotkreuz, Switzerland) using 3 ml of solution for

1 mg of plasmid. The vector pCMV-hRL (Renilla reniformis
luciferase) (Promega Catalys AG, Wallisellen, Switzerland) was

used for normalization of transfection efficiency. The construct

p4.5 kb-HSD11B2 was a generous gift from de. K. Yang [19].

The p0.2 kb-HSD11B2 plasmid construct was described previ-

ously [18]. For expression of transcription factors, various amounts

of the vectors pCMV-LIP and pCMV-LAP, a generous gift from

U. Schibler [20], were added to the DNA mixture. After 6 h the

transfection medium was replaced with normal growth medium

for 18 h. Thereafter cells were lysed and luciferase activities were

detected with the Dual-Luciferase Reporter Assay System

(Promega Catalys AG, Wallisellen, Switzerland) and Media-

torsPhL Luminometer (Mediators Diagnostic Systems, Vienna,

Austria). Firefly luciferase activity was expressed relative to Renilla

luciferase to account for differences in transfection efficiency.

When a CMV-LacZ control vector was transfected, Dual-Light

system (Applied Biosystems, Foster City, CA) was used to

determine the luciferase activity. Transfections were confirmed

by multiple independent experiments.

Site-directed mutagenesis
HSD11B2 promoter mutants were generated in the p4.5 kb-

HSD11B2 and p0.2 kb-HSD11B2 constructs using QuikChange

II XL site-directed mutagenesis kit (Stratagene, Basel, Switzer-

land). The following primers were used: 59-GTGGAACTTGA-

GAGCTCGAGCAGTTCCCTTCACCTCTGG-39 and 59-

CCAGAGGTGAAGGGAACTGCTCGAGCTCTCAAGTTC-

CAC-39 for -4362 C/EBP and 59-CTCGAGCGCAGCCGCTC-
CAGGACTTTGTTCCGGCTTTTTC-39 and 59- GAAAAAG-

CCGGAACAAAGTCCTGGAGCGGCTGCGCTCGAG- 39

for -198 C/EBP. Underlined and bolded letters represent

mutated bases.

Bioinformatics and statistics
Data are expressed as mean +/2 SD of triplicate samples of a

representative experiment repeated at least three times. Statistical

analysis was performed using the Student’s t test or ANOVA

analyses and was followed by a contrast test with Tukey error

protection. Differences were considered significant at p,0.05, *p,

0.05, **p,0.01, ***p,0.001. Transcription factor binding sites

were analyzed with the Match program.

Figure 1. Sustained insulin treatment diminished the 11beta-HSD2 expression and activity in HT-29 cells. (A) 11beta-HSD2 activity was
measured by 3H-cortisol/cortisone conversion assay in colonic cell lines 24 h after incubation with insulin (10211–1027 M). The activity measured for
HCT116 in absence of insulin was set as 100%. (B) Dose-response effect of insulin (1029–1025 M) on HSD11B2 mRNA (gray bars) and activity (curve) in
HT-29 cells treated for 24 h. (C) Time-dependent effect of insulin (1027 M) on HSD11B2 mRNA (gray bars) and activity (curve) in HT-29 cells. (D) Time-
dependent effect of insulin (1027 M) on 11beta-HSD2 protein level.
doi:10.1371/journal.pone.0105354.g001
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Figure 2. Insulin-dependent decrease of 11beta-HSD2 activity and mRNA is reversible but HSD11B2 half-life is not affected. (A)
11beta-HSD2 activity was measured in HT-29 cells in presence (black bars) and absence (white bars) of 1027 M insulin for 24 h. The insulin effect was
reversible on washout with PBS 24 h or 48 h of follow-up (hatched bars). (B) HSD11B2 expression was assessed by qRT-PCR in HT-29 pretreated with
the protein synthesis inhibitor CHX (10 mM) for 1 h and treated with insulin (1027 M) for 24 h. Each data point is expressed as a percentage of the
control value. (C) HT-29 cells were pretreated with (filled circles) or without (filled rhombus) insulin (1027 M) for 12 h. The cells were then treated with
25 mM of the mRNA synthesis inhibitor DRB, without or with insulin (1027 M) (defined as time zero). At the indicated time points thereafter, total RNA
was isolated, and the steady state level of HSD11B2 mRNA assessed. Each data point is expressed as a percentage of the maximum determined at
time zero.
doi:10.1371/journal.pone.0105354.g002
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Results

Sustained insulin treatment decreases 11beta-HSD2
activity and HSD11B2 gene expression in colonic cancer
cell lines

Regulation of enzyme activity by insulin was examined in

HSD11B2 expressing [16–18,21] human colonic cell lines

(HCT116, SW620 and HT-29) (Fig. 1A). Cells were incubated

for 24 h with insulin (10211 M-1027 M) in cell culture medium

containing 0.3% FBS. Insulin caused a dose response decrease in

11beta-HSD2 activity in all tested colonic cell lines with a

significant reduction at 1029 M in HCT116 cell line (p,0.05).

This effect was not restricted to colonic cell lines since similar

results were obtained with HSD11B2 expressing [19] JEG-3 cells

(Fig. S1). Due to the robust response (<30% reduction), we further

characterized the molecular mechanisms in HT-29 cells.

Sustained insulin treatment decreases HSD11B2 gene
expression, activity and protein in HT-29 cells in a dose-
and time-dependent manner

We next confirmed whether insulin-reduced 11beta-HSD2

activity coincides with its gene and protein expression (Fig. 1A).

Increasing concentrations of insulin ranging from 1029 to 1025 M

caused a concentration-dependent decrease in HSD11B2 mRNA

levels 24 h after treatment (Fig. 1B). A maximal effect was

observed at concentration of 1027 M, where HSD11B2 mRNA

was lowered by 50% (p,0.05) (Fig. 1B); and the activity by 35%

(p,0.05) (Fig. 1B). Thereafter, we investigated the time-dependent

regulatory effect of insulin on HSD11B2 gene expression, activity,

and protein level. As shown in Figure 1C, a time-dependent

decrease in 11beta-HSD2 activity was observed with a significant

reduction 12 h after treatment (p,0.05). Interestingly the

Figure 3. Insulin activates insulin and IGF-1 receptors and PI3K/AKT – MEK downstream pathways. (A) Expression and phosphorylation
of insulin receptor by insulin in a time (0 to 60 min) and dose (0 to 1000 nM) dependent manner. (B) Expression and phosphorylation of IGF-1
receptor by insulin in a time and dose dependent manner. (C) HSD11B2 mRNA expression monitored by qRT-PCR in presence of insulin, AKT inhibitor
(AKTVIII, 0.1 mM and 10 mM) or MEK inhibitor (PD098059, 1 mM).
doi:10.1371/journal.pone.0105354.g003

Figure 4. Schematic representation of the insulin pathway and its regulation by sustained insulin stimulation in HT-29. mRNAs were
quantified 24 h after insulin (1027 M) treatment using RT2 Profiler PCR Arrays PAHS-30C. Up-regulated transcripts are shown in red and down-
regulated transcripts are shown in green.
doi:10.1371/journal.pone.0105354.g004
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HSD11B2 mRNA increased during the first 10 h and decreased

thereafter. After 16 h the mRNA reached minimal levels and

remained low up to 48 h (p,0.05) (Fig. 1C). In agreement,

HSD11B2 protein was reduced by 18 h and 24 h of insulin

treatment (Fig. 1D).

The downregulation of HSD11B2 was reversible by removing

insulin from the medium 24 h after incubation. Indeed, 48 hours

after the removal, HSD11B2 mRNA levels in control and insulin

treated conditions were similar (Fig. 2A). Next, HT-29 cells were

treated 24 h with insulin in the absence and presence of the

protein synthesis inhibitor, cycloheximide (CHX). The effect of

insulin in reducing HSD11B2 mRNA was abolished in the

presence of CHX, indicating that de novo protein synthesis was

required (Fig. 2B). To determine whether insulin reduces the

HSD11B2 mRNA stability, we assessed the half-life of HSD11B2

mRNA by a standard mRNA decay assay using 25 mM DRB, an

inhibitor of mRNA synthesis. As shown in Figure 2C, insulin did

not alter the half-life of HSD11B2 mRNA.

Insulin pathway analysis
In order to understand the molecular mechanism by which

insulin down-regulates HSD11B2 we aimed to characterize the

insulin pathway in HT-29. Western blot experiments demonstrat-

ed the expression and activation of IGF-1 (IGFI-R) and insulin

receptors (IR) in a time and dose dependent manner (Figs. 3 A, B).

Both receptors are phosphorylated within the first 10 min upon

insulin treatment, while IR was more sensitive than IGFI-R to low

doses of insulin (Figs. 3 A, B). The role of downstream kinases on

insulin-dependent HSD11B2 repression was assessed using

PD098059 and AKT VIII inhibitors. Figure 3C shows that both

pathways, the MAPK/ERK and the PI3K pathway, mediated the

insulin effect.

Total mRNA of insulin treated HT-29 cells was extracted and

subjected to RT2 profiling to quantify the expression of insulin

pathway components. The Human Insulin Signaling Pathway

RT2 Profiler PCR Array profiles the expression of 84 genes related

to insulin-responsive genes. Twenty two genes differentially

regulated in HT-29 cells after insulin treatment are reported in

Table S1 and the pathways involved are depicted in the scheme of

Figure 4. RT2 profiler revealed a characteristic pattern of insulin

insensitivity, with reduced expression of insulin pathway compo-

nents: IR, IGFI-R, insulin receptor substrate (IRS2) and insulin

regulated glucose transporter (GLUT-4). Sustained insulin treat-

ment also promoted glycolysis in HT-29 cells. While insulin

regulated glucose transporter GLUT-4 expression was downreg-

ulated, GLUT-1 encoding messenger was increased, facilitating

the import of glucose into the cells, independently of growth factor

stimulation. Hexokinase 2, the enzyme which phosphorylates

glucose to glucose-6-P, a rate limiting step of glycolysis, was up-

regulated, along with pyruvate kinase 2 (PKM2), which converts

PEP into pyruvate. In contrast, the enzyme which dephosphor-

ylated fructose 1, 6 bisphosphate into fructose-6-phosphate and

contributed to antagonizing glycolysis was downregulated.

Effect of insulin on C/EBP alpha, C/EBP beta, and C/EBP
delta mRNA levels

We present evidence in Figure 5B, that treatment of HT-29

cells with various concentrations of insulin (1029–1025 M) for

24 h caused a concentration-dependent increase in C/EBP beta

mRNA expression. In contrast, insulin suppressed the expression

of C/EBP alpha mRNA expression in a dose-dependent manner.

At a concentration of 1027 M, insulin decreased the C/EBP alpha

mRNA by 51% (p,0.01), whereas C/EBP delta mRNA

expression was unchanged. These results show that insulin-

dependent reduction of HSD11B2 mRNA, correlates with the

expression pattern of 2 out of 3 investigated members of the C/

EBP family of transcription factors in HT-29 cells.

Insulin-regulation of C/EBP alpha and C/EBP beta
proteins

To investigate whether C/EBP alpha or C/EBP beta play a role

in the insulin-dependent repression of HSD11B2 gene expression,

the expression of C/EBP alpha and C/EBP beta in HT-29 cells

were analyzed by Western blots (Fig. 5A). C/EBP alpha mRNA

may lead to two polypeptides with a size of 42 kDa and 30 kDa

[22,23] while C/EBP beta might evolve to an activating or an

inhibitory isoform (LAP, 38 kD or LIP, 21 kDa, respectively)

[20,24]. Treatment of HT-29 cells with insulin for 24 h increased

the nuclear levels of C/EBP alpha (isoform 42 kDa), of both C/

EBP beta isoforms LAP and LIP, and decreased the nuclear levels

of C/EBP alpha (isoform 30 kDa) in a dose-dependent manner. In

parallel the expression of HSD11B2 decreased concomitantly with

a maximal effect obtained at 1026 M of insulin (Fig. 5A).

However, in response to the same dose of insulin, the increase

in LIP (<130 fold at 1026 M insulin) was greater than that in LAP

(<3 fold at 1026 M insulin), resulting in a decreasing LAP/LIP

ratio (Fig. 5A). Expression of C/EBP alpha (isoform 42 kDa) was

slightly increased while the expression of C/EBP alpha (isoform

30 kDa) was decreased by 50% (Fig. 5A).

HSD11B2 gene expression is up-regulated by C/EBP
alpha/beta silencing

The effect of C/EBP alpha/beta knockdown on HSD11B2 was

assessed in HT-29 cells. There is evidence from this siRNA

transfection experiment that C/EBP alpha and C/EBP beta

mRNA was downregulated significantly (Fig. 5C, D, left panel).

Importantly, the mRNA levels of HSD11B2 increased following

transfection with siRNA against both isoforms (Fig. 5C, D, right

panel).

Figure 5. Insulin-dependent regulation of the 11beta-HSD2 protein level and role of the CCAAT/enhancer-binding protein (C/EBP)
family. (A) Concentration-dependent effects of insulin on 11beta-HSD2, C/EBP alpha, and C/EBP beta protein levels. HT-29 cells were cultured for
24 h without and with increasing concentrations of insulin (1029–1025 M), then harvested for Western blotting to evaluate expression of 11beta-
HSD2, C/EBP alpha, C/EBP beta. (B) Concentration-dependent effects of insulin on C/EBP alpha, C/EBP beta, and C/EBP delta mRNA expression. HT-29
cells were treated like in (A). The level of C/EBP alpha (open circles), C/EBP beta (open squares), and C/EBP delta (filled triangles) mRNA was measured
using qRT-PCR with S18 as internal control. Expression levels in treated cells were normalized to untreated controls (100%). Representative data for at
least three independent experiments. The relative intensity was determined by densitometric scanning. The ratio of relative densities of 11beta-HSD2
to beta-actin in cells cultured in the abscence of hormone was considered as 100% (control). The ratio of relative densities of nuclear extract proteins
to HDAC in cells cultured without hormone was considered as 100% (control). * LIP was undetectable in the control samples, so the LAP/LIP ratio was
not calculated. (C, D) Silencing of C/EBP alpha (C) and C/EBP beta (D) was performed using siRNA. The expression of C/EBP alpha, C/EBP beta (left
panel) and HSD11B2 (right panel) mRNA was measured using qRT-PCR.
doi:10.1371/journal.pone.0105354.g005
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Figure 6. Binding of C/EBP alpha/beta on human HSD11B2 promoter. (A) Nuclear proteins isolated from HT-29 cells bind to identified C/EBP
alpha/beta sites.4 mg of nuclear extracts isolated from insulin treated (for the indicated period of time, 1027 M) or untreated HT-29 cells were
incubated with radiolabeled probe encompassing the consensus C/EBP alpha/beta site in the presence or absence of non-radiolabeled (1006)
competitor probe (cons C/EBP alpha/beta or mut C/EBP alpha/beta) (lanes1–7). Arrows indicate C/EBP alpha/beta / DNA shifts (C1, C2, C3) separated
from free probe by gel electrophoresis. The complex C3 is formed in presence of radiolabeled 2198 C/EBP alpha/beta probe (lanes 14–17) while
complex C2 is formed in presence of radiolabeled 24362 C/EBP alpha/beta probe (lane 22–25). (B) Nuclear proteins isolated from HT-29 cells bind to
the consensus SP1 site. Nuclear extracts isolated from insulin treated (for the indicated period of time, 1027 M) or untreated HT-29 cells were
incubated with radiolabeled probe encompassing the consensus SP1 site with and without non-radiolabeled (100X) competitor probe (cons SP1, lane
5or mut SP1, lane 6). The arrow indicates SP1/DNA shifts separated from free probe by gel electrophoresis. The complex intensity increased modestly
with insulin treatment. The specific shift was abolished by the cold cons SP1 probe (lane 5) while not affected when mut SP1 probe was used as
competitor (lane 6). (C) Chromatin immunoprecipitation (ChIP) analysis of C/EBP alpha and C/EBP beta during insulin stimulation in HT-29 cells. ChIPs
were performed from untreated (W/O) and insulin induced (1–24 h) HT-29 cells using antibodies specific for C/EBP alpha (middle panel) and C/EBP
beta (bottom panel), a no-antibody control (NO). The precipitated chromatin was analyzed using primers specific for the human HSD11B2 promoter.
The DNA fragments were amplified with PCR primers to detect a 210 bp fragment containing the potential 2177 and 2198 C/EBP sites within the
HSD11B2 promoter. Input chromatin is represented in upper panel.
doi:10.1371/journal.pone.0105354.g006
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Insulin regulation of C/EBP-DNA complexes
The in silico analysis of the human HSD11B2 gene promoter

sequence revealed 4 putative binding sites for C/EBPs located at

positions 24361, 21985, 2198 and 2177 bp from the transcrip-

tional start site (Table 1). The site 24361 has the higher match

with the consensus sequence (Table 1). Different probes were

labeled and incubated in presence of nuclear extracts isolated from

insulin treated HT-29 cells. EMSA performed with the probe

containing the consensus C/EBP binding site revealed three

specific complexes (Fig. 6A, lane 1, noted C1-3). The signals were

reversed by competition with the unlabelled probe harboring the

consensus C/EBP site (Fig. 6A, lane 6) while unaffected when the

probe harbored the mutated C/EBP sites (Fig. 6A, lane 7).

Therefore, C1-3 signals might correspond to C/EBP/DNA

complexes. The C/EBP binding to the consensus probe was

elevated with increased duration of insulin treatment (Fig. 6A,

lanes 1–5) reflecting the increased level of C/EBP beta found by

Western Blot (Fig. 5A). Interestingly, the intensity of C2 increased

more than C1, C2 being more abundant relatively to C1 24 h

after insulin treatment than in controls (lanes 1, 5).

The probes 2198 and 24361 (Table 1) elicited the formation

of complexes C2 or C3, but lacked C1 (Fig. 6A, lanes 14, 22).

Complex formation were increased with insulin, albeit modestly

for 2198 (Fig. 6A, lanes 15, 23), and were reversed by competition

with the probe harboring the consensus C/EBP site (Fig. 6A, lanes

16, 24). The complexes formed with 2177 and 21985 were weak

and not specific.

The binding of SP1, a transactivating factor known to regulate

HSD11B2 expression [25], to its consensus binding site (Table 2)

occurred in the unstimulated condition and was slightly increased

upon insulin treatment (Fig. 6B, lane 1–4), suggesting that this

factor might not be involved in the HSD11B2 repression upon

insulin stimulation.

Considering the original pattern of the complexes formed with

the probe 2198, a ChIP assay was performed, which actually

confirms the binding of CEBP isoforms. Upon insulin treatment,

CEBP beta binding to HSD11B2 promoter increased in a time

dependent manner, while CEBP alpha interaction decreased

(Fig. 6C), in agreement with the level of respective proteins

(Fig. 5A).

Modulation of HSD11B2 promoter activity by C/EBP beta
isoforms

To confirm the importance of the LAP/LIP ratio in the

regulation of HSD11B2 gene expression at the transcriptional

level, we used a reporter assay (Fig. 7). The construct p4.5 kb-

HSD11B2 encompasses the region 24.5 kb to +0.116 kb of the

human HSD11B2 promoter cloned in front of the luciferase

encoding plasmid pGL3. Luciferase activity was measured as an

indicator of HSD11B2 promoter activity. The construct, p4.5 kb-

HSD11B2 was co-transfected into HT-29 cells with the plasmids

encoding the long isoform of C/EBP beta (LAP) alone or in

combination with the short isoform (LIP). We used the pcDNA-

LAP/pcDNA-LIP plasmid DNA ratio to represent the LAP/LIP

ratio in transfected cells, while keeping the total amount of plasmid

transfected constant (pcDNA3 empty vector was used to compen-

sate DNA quantities). The luciferase activity correlated with the

amount of pcDNA-LAP transfected (Fig. 7A). In contrast,

increasing LIP expression decreased luciferase activity (Fig. 7B).

To validate the role of characterized C/EBP beta binding sites,

mutagenesis was performed. By mutating the sites 24392 and

2198, the basal (Fig 7C) and the LAP (Fig 7D) induced promoter

activities were partly reduced. This data suggested that several

Table 1. Probes used for the EMSA experiments with C/EBP.

Matrix C/EBP A(G/C)T(A)T(G/A)G(A/T) C(G/A) G(C/A)C(A/T)A(C)AT(G/A)

cons C/EBP 59-tgcagATTGCGCAATctgca-39 (100%)

mut C/EBP 59-tgcagAGACTAGTCTctgca-39 (20%)

2177 C/EBP 59-tccggctTTTTCCAAATcgaatct-39 (60%)

2198 C/EBP 59-aaCTTTGGGACTttgttccg-39 (50%)

21985 C/EBP 59-tcctgCTTTAGCAAGtgctg-39 (60%)

24361 C/EBP 59-gagagCTTGAGCAATtccct-39 (80%)

The weight matrix for the consensus C/EBP alpha/beta binding motif is given on top. The consensus C/EBP alpha/beta binding motif was aligned with the potential C/
EBP binding sites identified in the human HSD11B2 promoter and located at position 2177, 2198, 21985, 24362 bp. ‘‘cons C/EBP’’ and ‘‘mut C/EBP’’ designate 20 to
24-mer oligonucleotides based respectively on the consensus and mutated binding site for C/EBP. Mismatched nucleotides with matrix are underlined. In bold are the
nucleotides identical to the consensus sequence and the percentage of match with the consensus sequence is indicated.2177 C/EBP, 2198 C/EBP, 21985 C/EBP,24362
C/EBP indicate the probes harboring the putative binding sites for C/EBP alpha/beta located in the human HSD11B2 promoter.
doi:10.1371/journal.pone.0105354.t001

Table 2. Probes used for the EMSA experiments with SP1.

Matrix SP-1 G(A/T)G(A)G G C(A/T)G G G(A/C)

cons SP-1 59-attcgatcGGGGCGGGgcgagc-39 (100%)

mut SP-1 59-attcgatcGGTTCGGGgcgagc-39 (80%)

The weight matrix for the consensus SP1 binding motif is given on top. ‘‘cons SP1’’ and ‘‘mut SP1’’ designate 22-mer oligonucleotides based respectively on the
consensus and mutated binding site for SP1. Mismatched nucleotides with matrix are underlined. In bold are the nucleotides identical to the consensus sequence and
the percentage of match with the consensus sequence is indicated.
doi:10.1371/journal.pone.0105354.t002
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Figure 7. C/EBP beta isoforms control HSD11B2 promoter activity. (A) HT-29 cells were transfected with the full length human HSD11B2
promoter cloned into pGL3-basic luciferase vector (p4.5 kb-HSD11B2, 400 ng) and a dose response of LAP expressing vector (pCMV-LAP, 6.25 to
400 ng). A schematic representation of the promoter of HSD11B2 is shown on the left side. The transcriptional initiation site is indicated by an arrow
(+1). The empty pcDNA3 vector was used to equalize the amount of transfected DNA in every condition and the pCMV-hRL (100 ng) was used as

Insulin-Dependent Regulation of HSD11B2

PLOS ONE | www.plosone.org 12 August 2014 | Volume 9 | Issue 8 | e105354



binding sites participated in the C/EBP mediated HSD11B2

promoter activity. Surprisingly, the reporter assay experiments

failed to show any insulin-dependent regulation of HSD11B2

promoter, suggesting that insulin action might be mediated at an

epigenetic level.

The insulin-dependent lactate synthesis modulated
11beta-HSD2 activity

Next, we challenged the hypothesis that lactate, a potential

HDAC inhibitor and a byproduct of glycolysis, which is increased

under insulin stimulation mediates HSD11B2 downregulation.

Lactate secretion was quantified under insulin treatment and

11beta-HSD2 activity monitored under lactate stimulation or

lactate synthesis blockage. Figure 8A shows a dose dependent

increase in lactate secretion by insulin in HT-29 cells. Treatment

with lactate alone significantly reduced 11beta-HSD2 activity in

HT-29 and HCT116 cells (Fig. 8B). Dichloroacetate (DCA) is a

pyruvate dehydrogenase kinase (PDK) inhibitor, whose action

restores the normal oxidative demolition of pyruvate and thus

indirectly preventing glycolysis [26]. Used alone, DCA reduced

lactate production in HT-29 (Fig. 8C) however, in combination

with insulin, it reduced insulin-dependent stimulation of lactate

secretion (Fig. 8C). Most importantly, DCA reduced insulin-

dependent downregulation of 11beta-HSD2 activity (Fig. 8D).

Discussion

Insulin-dependent regulation of HSD11B2
The present investigation revealed in three different human cell

lines, that insulin reduces the activity of 11beta-HSD2. We report

for the first time, that the dose- and time-dependent effect of

insulin is attributable to diminished transcriptional activity, as

opposed to the stability of the transcribed mRNA. A peculiar

finding of the insulin-induced down-regulation of HSD11B2 is the

increase in mRNA levels during the first 8–10 h, without a

concomitant increase in the activity or protein content (Fig. 1C),

an observation previously made for C/EBPs. The mechanism for

this discrepancy is unknown. One possible explanation might be

the temporal induction of small regulatory RNA molecules,

interfering with transcription, as it has recently been demonstrated

for GLUT-4, hormone sensitive lipase, fatty acid-binding protein

ap2 and peroxisome proliferator-activated receptor gamma 2

genes [27,28].

Mechanisms accounting for insulin-dependent HSD11B2
downregulation

Our study suggests that an insulin-dependent decrease in

HSD11B2 expression could be related to changes in the LAP/LIP

ratio, chromatin structural changes or lactate production.

1-Considering decreased LAP/LIP ratio to inhibit

HSD11B2 expression. An in silico analysis of the HSD11B2

promoter predicted binding-sites for C/EBPs. This is important

since insulin is known to modulate the expression of two isoforms

of C/EBP beta, LAP and LIP [10,11,23,29]. LAP/LIP ratio is

modulated by mTOR, a downstream target of the insulin

pathway, shifting C/EBP translation toward LIP translation

[24]. We made the interesting observation that mTOR and

AKT VIII inhibitor rescued HSD11B2 expression. Moreover,

EMSA experiments demonstrated that following insulin stimula-

tion, there was an increased association of C2 product to the

HSD11B2 promoter. According to the literature this C2 product

comprises a LAP/LIP dimer [20,30]. These correlations were

ascertained by reporter assays showing i) an up-regulation of the

promoter activity concomitant with LAP overexpression, ii) the

requirement of both non-canonical C/EBP binding sites for the

promoter activity, and iii) the sensitivity of the reporter construct

towards the C/EBP beta LAP/LIP ratio. Taken together, the data

suggest that C/EBP beta, most probably LAP, regulates the basal

expression of HSD11B2, while LIP mediates insulin dependent

HSD11B2 gene repression. Hence, HSD11B2 expression is

regulated by LAP/LIP ratio in a way similar to HSD11B1 [12,14].

2-Other potential participants for an insulin-dependent

inhibition of HSD11B2 transcription. Despite the important

findings concerning the regulatory role of the LIP/LAP ratio,

some questions still remain in order to understand the mechanism

of the insulin-dependent decrease of the HSD11B2 expression. In

transfected, cells we observed the inability of insulin to downreg-

ulate the expression of reporter gene fused to the HSD11B2

promoter (data not shown). We first hypothesized that by

transfecting a large amount of plasmid into the cells, the number

of cis elements available for C/EBP proteins are far in excess. In

this scenario, the newly synthesized LIP molecules in presence of

insulin had the ability to bind plasmidic DNA without displace-

ment of the bound LAP.

Because HSD11B2 transcription is activated in the first hours

and inhibited in the last hours of insulin treatment, it might be

possible that the stability of the luciferase protein did not reflect the

real time activity of the promoter. Indeed, highly stable reporters

accumulate to greater levels in cells, but their concentrations

change slower relative to changes in transcription. Additional

experiments, in which the promoter of HSD11B2 is cloned into a

plasmid encoding for an unstable reporter gene, including for

example a PEST signal, would challenge this hypothesis.

Moreover, gene repression is sometimes dependent on chro-

mosome-embedment and additional sequences located either far

away from the promoter in 59 as described for the PEPCK gene

promoter under insulin treatment [31], or even within the 39

region in the intronic sequence might account for the insulin-

dependent downregulation of HSD11B2. A sequence alignment

using the VISTA program shows some sequences well conserved

in intron I that could potentially act as intronic enhancers (Fig. S2)

[32].

Furthermore, gene expression is also regulated by histones and

DNA wrapping. Yet, transiently transfected DNA acquires a

conformation, structurally different for the counterpart chromatin

integrated DNA that may underlie the differences in the

mechanisms of activation of the two templates [33]. Hence, we

cannot exclude that epigenetic mechanisms (i.e. histone deacetyla-

tion and DNA methylation) are involved in the insulin-dependent

HSD11B2 downregulation. In line with this, HSD11B2 gene

contains 2 CpG islands within the promoter that indeed regulate

gene expression [34]. Moreover, C/EBP beta is known to

cooperate with coactivators such as SWI/SNF which only work

in chromosome-embedded gene [35].

transfection efficiency control. Cells were lysed for luciferase assays 24 h after transfection, and the reading were normalized by renilla activity. (B) HT-
29 cells were transfected with the plasmids p4.5 kb-HSD11B2 (400 ng), pRL-CMV (100 ng), pCMV-LAP (50 ng) and an increasing quantity of pCMV-LIP
(50 ng to 400 ng). (C) HT-29 cells were transfected with the wild type p4.5 kb-HSD11B2 and p0.2 kb-HSD11B2 constructs or with the C/EBP mutated
constructs. (D) HT-29 cells were transfected with the wild type p4.5 kb-HSD11B2 or the C/EBP mutated construct together with increasing
concentration of pCMV-LAP.
doi:10.1371/journal.pone.0105354.g007
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3-The potential role of lactate production to inhibit

HSD11B2 transcription. Interestingly, mRNA profiling un-

derlined the reprogramming of the transcriptome from insulin

sensitive cells towards insulin insensitive cells, with activation of the

glycolytic pathway and consequently lactate production (Table S1,

Fig. 4). In line with the literature, lactate secretion and pH

changes were monitored in HT-29 cells upon insulin treatment

[36]. On one hand, a decrease in pH was shown to inhibit 11beta-

HSD2 activity in kidney tubules directly [37], while on the other

hand, lactate was shown to inhibit HDAC activity directly and by

this fact to regulate gene expression in HCT116 [38]. The 153

gene probes, including HSD11B2, down-regulated by all four

HDAC inhibitors are listed (Supplementary Table 2 of [38]). In

agreement with this observation, an inhibition of lactate synthesis

by DCA reduced significantly the insulin effect, while treatment

with lactate repressed 11beta-HSD2 activity in our cellular models

(HT-29 and HCT116). In this respect, lactate can be considered to

be a potential regulator of HSD11B2 expression, independently or

in parallel to LIP/LAP. This fact is also strengthened by our

previous observation of a decreased HSD11B2 expression along

the rat intestine [39], which is inversely correlated with the

intestinal lactate concentration [40]. Lactate is produced by

bacteria of the gut and is found in the rectum in a millimolar

range, when physiological situations are considered [41]. Our

finding that 11beta-HSD2 activity was decreased using 50mM

lactate, is consistent with the literature [38], although, it is

uncertain if such concentrations could be reached locally in the gut

or if such a down regulation would happen in vivo with longer

exposure and lower amounts. Nevertheless, an increase in the

abundance in lactic acid bacteria, associated with methylation

changes in intestinal cells was reported in type 2 diabetic patients

[42]. Moreover, plasmatic lactate is associated with blood pressure

[43] and type 2 diabetes [44]. In addition, lactate is also produced

(up to 17 mM) during ischemia in kidneys [45]. Notably ischemia

was related to renal tubular dysfunctions with increased blood

pressure and reduced 11beta-HSD2 activity [46]. Finally, lactate,

as an indicator of oxidative capacity, was found to predict incident

diabetes, since oxidative capacity is decreased in type 2 diabetes.

Lactate is therefore strongly related to insulin resistance [47].

Whether decreased oxidative capacity is a cause or consequence of

diabetes is unknown, but the link with HSD11B2 downregulation

has to be strongly considered.

Sodium reabsorption is an important function of the kidney, but

also of the rectal and colonic mucosa [48,49]. This mechanism is

regulated, at least in part, by MR [50], with subsequent activation

of the the amiloride-sensitive epithelial sodium channel (ENaC)

[51,52]. Here, we provide evidence for an insulin-dependent

downregulation of HSD11B2, a prerequisite for cortisol-mediated

MR transactivation leading to an increase in sodium reabsorption

Figure 8. Lactate accumulation in the media upon insulin
stimulation and insulin-dependent down-regulation of 11beta-
HSD2 activity. (A) Dose-response effect of insulin on L-lactate
production in cultured HT-29 cells after 24 h incubation. The
concentration in lactate found in the media of HT-29 cells after 24 h
of culture is reported above the bars (Mean +/2 SEM). (B) 11beta-HSD2
activity in cultured HT-29 and HCT116 cells exposed to exogenous L-
lactate for 3 h. (C) 24 h L-lactate production in cultured HT-29 cells
exposed to DCA alone or in combination with insulin. (D) 11beta-HSD2
activity in cultured HT-29 cells exposed to DCA alone or in combination
with insulin.
doi:10.1371/journal.pone.0105354.g008
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in the colon. All together, these data suggest that the downreg-

ulation of HSD11B2 expression in cancer colonic cell lines, after

long-term insulin treatment would be the consequence of LIP

overexpression, together with increased lactate production, both

working at an epigenetic level. These mechanisms are of interest

and significance for the understanding sodium reabsorption in the

colon in health and disease states.

Supporting Information

Figure S1 Sustained insulin treatment diminished the
11beta-HSD2 expression and actiity in JEG-3 cells. (A)

11beta-hydroxysteroid dehydrogenase type 2 (HSD11B2) expres-

sion was assessed by qRTPCR in SW620 (gray bars), JEG-3

(hatched bars), and HT-29 (filled bars) cells 24 h after incubation

with insulin (1027 M). (B) 11beta-HSD2 activity was measured by
3H-Cortisol/Cortisone conversion assay in SW620, JEG-3, and

HT-29 cells 24 h after incubation with insulin (1027 M).

(TIF)

Figure S2 Sequence homology between human and rat
HSD11B2 genes. Upper part, representation of HSD11B2 gene

with the exons boxed in violet and the untranslated region boxed

in light green. Lower part, percentage of homology between

human and rat sequences. Regions with more than 80% homology

are boxed in green and noted with a or b.

(TIF)

Table S1 Transcriptional regulation of insulin pathway
related genes in HT-29 cells by sustained insulin
stimulation.

(DOCX)
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Clermont-Ferrand, France) for laboratory support or comments.

Author Contributions

Conceived and designed the experiments: TA PF FJF BMF. Performed the

experiments: TA PF IDI RAK. Analyzed the data: TA PF IDI RAK BMF.

Contributed reagents/materials/analysis tools: TA PF IDI RAK AG.

Wrote the paper: TA PF FJF BMF.

References

1. Funder JW (2005) Mineralocorticoid receptors: distribution and activation.

Heart Fail Rev 10: 15–22.

2. White PC (2001) 11beta-hydroxysteroid dehydrogenase and its role in the

syndrome of apparent mineralocorticoid excess. Am J Med Sci 322: 308–315.

3. Odermatt A, Arnold P, Frey FJ (2001) The intracellular localization of the

mineralocorticoid receptor is regulated by 11beta-hydroxysteroid dehydrogenase

type 2. J Biol Chem 276: 28484–28492.

4. Atanasov AG, Ignatova ID, Nashev LG, Dick B, Ferrari P, et al. (2007) Impaired

protein stability of 11beta-hydroxysteroid dehydrogenase type 2: a novel

mechanism of apparent mineralocorticoid excess. J Am Soc Nephrol 18:

1262–1270.

5. Ulick S, Levine LS, Gunczler P, Zanconato G, Ramirez LC, et al. (1979) A

syndrome of apparent mineralocorticoid excess associated with defects in the

peripheral metabolism of cortisol. J Clin Endocrinol Metab 49: 757–764.

6. Trujillo A, Eggena P, Barrett J, Tuck M (1989) Renin regulation in type II

diabetes mellitus: influence of dietary sodium. Hypertension 13: 200–205.

7. Price DA, Porter LE, Gordon M, Fisher ND, De’Oliveira JM, et al. (1999) The

paradox of the low-renin state in diabetic nephropathy. J Am Soc Nephrol 10:

2382–2391.

8. Tuck M, Corry D, Trujillo A (1990) Salt-sensitive blood pressure and

exaggerated vascular reactivity in the hypertension of diabetes mellitus.

Am J Med 88: 210–216.

9. Strojek K, Nicod J, Ferrari P, Grzeszczak W, Gorska J, et al. (2005) Salt-sensitive

blood pressure–an intermediate phenotype predisposing to diabetic nephropa-

thy? Nephrol Dial Transplant 20: 2113–2119.

10. Sato Y, Nishio Y, Sekine O, Kodama K, Nagai Y, et al. (2007) Increased

expression of CCAAT/enhancer binding protein-beta and -delta and monocyte

chemoattractant protein-1 genes in aortas from hyperinsulinaemic rats.

Diabetologia 50: 481–489.

11. MacDougald OA, Cornelius P, Liu R, Lane MD (1995) Insulin regulates

transcription of the CCAAT/enhancer binding protein (C/EBP) alpha, beta,

and delta genes in fully-differentiated 3T3-L1 adipocytes. J Biol Chem 270:

647–654.

12. Williams LJ, Lyons V, MacLeod I, Rajan V, Darlington GJ, et al. (2000) C/EBP

regulates hepatic transcription of 11beta -hydroxysteroid dehydrogenase type 1.

A novel mechanism for cross-talk between the C/EBP and glucocorticoid

signaling pathways. J Biol Chem 275: 30232–30239.

13. Ignatova ID, Kostadinova RM, Goldring CE, Nawrocki AR, Frey FJ, et al.

(2009) Tumor necrosis factor-alpha upregulates 11beta-hydroxysteroid dehy-

drogenase type 1 expression by CCAAT/enhancer binding protein-beta in

HepG2 cells. Am J Physiol Endocrinol Metab 296: E367–377.

14. Esteves CL, Kelly V, Begay V, Man TY, Morton NM, et al. (2012) Regulation

of adipocyte 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) by

CCAAT/enhancer-binding protein (C/EBP) beta isoforms, LIP and LAP. PLoS

One 7: e37953.

15. Koyama K, Krozowski Z (2001) Modulation of 11 beta-hydroxysteroid

dehydrogenase type 2 activity in Ishikawa cells is associated with changes in

cellular proliferation. Mol Cell Endocrinol 183: 165–170.

16. Kadereit B, Fustier P, Shojaati K, Frey BM, Frey FJ, et al. (2005) Extracellular

ATP determines 11beta-hydroxysteroid dehydrogenase type 2 activity via

purinergic receptors. J Am Soc Nephrol 16: 3507–3516.

17. Israel N, Gougerot-Pocidalo MA, Aillet F, Virelizier JL (1992) Redox status of

cells influences constitutive or induced NF-kappa B translocation and HIV long

terminal repeat activity in human T and monocytic cell lines. J Immunol 149:

3386–3393.

18. Kostadinova RM, Nawrocki AR, Frey FJ, Frey BM (2005) Tumor necrosis

factor alpha and phorbol 12-myristate-13-acetate down-regulate human 11beta-

hydroxysteroid dehydrogenase type 2 through p50/p50 NF-kappaB homodi-

mers and Egr-1. Faseb J 19: 650–652.

19. van Beek JP, Guan H, Julan L, Yang K (2004) Glucocorticoids stimulate the

expression of 11beta-hydroxysteroid dehydrogenase type 2 in cultured human

placental trophoblast cells. J Clin Endocrinol Metab 89: 5614–5621.

20. Descombes P, Schibler U (1991) A liver-enriched transcriptional activator

protein, LAP, and a transcriptional inhibitory protein, LIP, are translated from

the same mRNA. Cell 67: 569–579.

21. Pacha J, Lisa V, Miksik I (2002) Effect of cellular differentiation on 11beta-

hydroxysteroid dehydrogenase activity in the intestine. Steroids 67: 119–126.

22. Ossipow V, Descombes P, Schibler U (1993) CCAAT/enhancer-binding protein

mRNA is translated into multiple proteins with different transcription activation

potentials. Proc Natl Acad Sci U S A 90: 8219–8223.

23. Ramji DP, Foka P (2002) CCAAT/enhancer-binding proteins: structure,

function and regulation. Biochem J 365: 561–575.

24. Calkhoven CF, Muller C, Leutz A (2000) Translational control of C/EBPalpha

and C/EBPbeta isoform expression. Genes Dev 14: 1920–1932.

25. Nawrocki AR, Goldring CE, Kostadinova RM, Frey FJ, Frey BM (2002) In vivo

footprinting of the human 11beta-hydroxysteroid dehydrogenase type 2

promoter: evidence for cell-specific regulation by Sp1 and Sp3. J Biol Chem

277: 14647–14656.

26. Bonnet S, Archer SL, Allalunis-Turner J, Haromy A, Beaulieu C, et al. (2007) A

mitochondria-K+ channel axis is suppressed in cancer and its normalization

promotes apoptosis and inhibits cancer growth. Cancer Cell 11: 37–51.

27. Katayama S, Tomaru Y, Kasukawa T, Waki K, Nakanishi M, et al. (2005)

Antisense transcription in the mammalian transcriptome. Science 309: 1564–

1566.

28. Cuellar TL, McManus MT (2005) MicroRNAs and endocrine biology.

J Endocrinol 187: 327–332.

29. Mounier C, Posner BI (2006) Transcriptional regulation by insulin: from the

receptor to the gene. Can J Physiol Pharmacol 84: 713–724.

30. Liao J, Piwien-Pilipuk G, Ross SE, Hodge CL, Sealy L, et al. (1999) CCAAT/

enhancer-binding protein beta (C/EBPbeta) and C/EBPdelta contribute to

growth hormone-regulated transcription of c-fos. J Biol Chem 274: 31597–

31604.

31. Duong DT, Waltner-Law ME, Sears R, Sealy L, Granner DK (2002) Insulin

inhibits hepatocellular glucose production by utilizing liver-enriched transcrip-

tional inhibitory protein to disrupt the association of CREB-binding protein and

RNA polymerase II with the phosphoenolpyruvate carboxykinase gene

promoter. J Biol Chem 277: 32234–32242.

Insulin-Dependent Regulation of HSD11B2

PLOS ONE | www.plosone.org 15 August 2014 | Volume 9 | Issue 8 | e105354



32. Pound LD, Sarkar SA, Cauchi S, Wang Y, Oeser JK, et al. (2011)

Characterization of the human SLC30A8 promoter and intronic enhancer.
J Mol Endocrinol 47: 251–259.

33. Hebbar PB, Archer TK (2008) Altered histone H1 stoichiometry and an absence

of nucleosome positioning on transfected DNA. J Biol Chem 283: 4595–4601.
34. Alikhani-Koopaei R, Fouladkou F, Frey FJ, Frey BM (2004) Epigenetic

regulation of 11 beta-hydroxysteroid dehydrogenase type 2 expression. J Clin
Invest 114: 1146–1157.

35. Kowenz-Leutz E, Leutz A (1999) A C/EBP beta isoform recruits the SWI/SNF

complex to activate myeloid genes. Mol Cell 4: 735–743.
36. Denis-Pouxviel C, Gauthier T, Daviaud D, Murat JC (1990) Phosphofructoki-

nase 2 and glycolysis in HT29 human colon adenocarcinoma cell line.
Regulation by insulin and phorbol esters. Biochem J 268: 465–470.

37. Nolan PJ, Knepper MA, Packer RK (1997) Inhibition of IMCD 11 beta-
hydroxysteroid dehydrogenase type 2 by low pH and acute acid loading. J Am

Soc Nephrol 8: 530–534.

38. Latham T, Mackay L, Sproul D, Karim M, Culley J, et al. (2012) Lactate, a
product of glycolytic metabolism, inhibits histone deacetylase activity and

promotes changes in gene expression. Nucleic Acids Res 40: 4794–4803.
39. Lienhard D, Lauterburg M, Escher G, Frey FJ, Frey BM (2012) High salt intake

down-regulates colonic mineralocorticoid receptors, epithelial sodium channels

and 11beta-hydroxysteroid dehydrogenase type 2. PLoS One 7: e37898.
40. Tian Y, Zhang L, Wang Y, Tang H (2012) Age-related topographical metabolic

signatures for the rat gastrointestinal contents. J Proteome Res 11: 1397–1411.
41. Perner A, Jorgensen VL, Poulsen TD, Steinbruchel D, Larsen B, et al. (2005)

Increased concentrations of L-lactate in the rectal lumen in patients undergoing
cardiopulmonary bypass. Br J Anaesth 95: 764–768.

42. Remely M, Aumueller E, Jahn D, Hippe B, Brath H, et al. (2014) Microbiota

and epigenetic regulation of inflammatory mediators in type 2 diabetes and
obesity. Benef Microbes 5: 33–43.

43. Crawford SO, Ambrose MS, Hoogeveen RC, Brancati FL, Ballantyne CM,

et al. (2008) Association of lactate with blood pressure before and after rapid

weight loss. Am J Hypertens 21: 1337–1342.

44. Crawford SO, Hoogeveen RC, Brancati FL, Astor BC, Ballantyne CM, et al.

(2010) Association of blood lactate with type 2 diabetes: the Atherosclerosis Risk

in Communities Carotid MRI Study. Int J Epidemiol 39: 1647–1655.

45. Terrier F, Lazeyras F, Frey BM, Frey FJ (1992) Lactate mapping in ischemic rat

kidneys using 1H spectroscopic imaging. Invest Radiol 27: 282–286.

46. Heiniger CD, Kostadinova RM, Rochat MK, Serra A, Ferrari P, et al. (2003)

Hypoxia causes down-regulation of 11 beta-hydroxysteroid dehydrogenase type

2 by induction of Egr-1. Faseb J 17: 917–919.

47. Juraschek SP, Shantha GP, Chu AY, Miller ER, 3rd, Guallar E, et al. (2013)

Lactate and risk of incident diabetes in a case-cohort of the atherosclerosis risk in

communities (ARIC) study. PLoS One 8: e55113.

48. Tomkins AM, Edmonds CJ (1975) Electrical potential difference, sodium

absorption and potassium secretion by the human rectum during carbenoxolone

therapy. Gut 16: 277–284.

49. Turnamian SG, Binder HJ (1989) Regulation of active sodium and potassium

transport in the distal colon of the rat. Role of the aldosterone and glucocorticoid

receptors. J Clin Invest 84: 1924–1929.

50. Schafer L, Lorenz T, Daemmrich J, Heidland A, Schaefer RM (1995) Role of

proteinases in renal hypertrophy and matrix accumulation. Nephrol Dial

Transplant 10: 801–807.

51. Bergann T, Ploger S, Fromm A, Zeissig S, Borden SA, et al. (2009) A colonic

mineralocorticoid receptor cell model expressing epithelial Na+ channels.

Biochem Biophys Res Commun 382: 280–285.

52. Pearce D (2001) The role of SGK1 in hormone-regulated sodium transport.

Trends Endocrinol Metab 12: 341–347.

Insulin-Dependent Regulation of HSD11B2

PLOS ONE | www.plosone.org 16 August 2014 | Volume 9 | Issue 8 | e105354


