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Abstract

A series of duplication events led to an expansion of clade B Serine Protease Inhibitors (SERPIN), currently displaying a large
repertoire of functions in vertebrates. Accordingly, the recent duplicates SERPINB3 and B4 located in human 18q21.3 SERPIN
cluster control the activity of different cysteine and serine proteases, respectively. Here, we aim to assess SERPINB3 and B4
coevolution with their target proteases in order to understand the evolutionary forces shaping the accelerated divergence
of these duplicates. Phylogenetic analysis of primate sequences placed the duplication event in a Hominoidae ancestor
(,30 Mya) and the emergence of SERPINB3 in Homininae (,9 Mya). We detected evidence of strong positive selection
throughout SERPINB4/B3 primate tree and target proteases, cathepsin L2 (CTSL2) and G (CTSG) and chymase (CMA1).
Specifically, in the Homininae clade a perfect match was observed between the adaptive evolution of SERPINB3 and
cathepsin S (CTSS) and most of sites under positive selection were located at the inhibitor/protease interface. Altogether our
results seem to favour a coevolution hypothesis for SERPINB3, CTSS and CTSL2 and for SERPINB4 and CTSG and CMA1. A
scenario of an accelerated evolution driven by host-pathogen interactions is also possible since SERPINB3/B4 are potent
inhibitors of exogenous proteases, released by infectious agents. Finally, similar patterns of expression and the sharing of
many regulatory motifs suggest neofunctionalization as the best fitted model of the functional divergence of SERPINB3 and
B4 duplicates.
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Introduction

Proteolysis is involved in the regulation of numerous biological

processes being fundamental in every cell and organisms. The

activity of proteases is regulated by a complex network of

inhibitory molecules and different human pathologies such as

arthritis, cancer, neurodegenerative and cardiovascular diseases

can be associated with the deleterious effects of uncontrolled

proteolysis. Thus, the regulation of endogenous proteases is crucial

in the maintenance of organisms’ homeostasis and health status

[1,2].

Serine protease inhibitors (SERPINs) are key elements in the

regulation of proteolytic pathways, controlling the activity of serine

proteases and helping to prevent from the pernicious effect of

excessive proteolysis [1]. Some SERPINs can also inhibit cysteine

proteases, acting as cross-class SERPINs, while others lost their

inhibitory activity and developed other functions as serving as

hormone carriers or chaperones [1,3,4]. SERPIN superfamily

members share a conserved tertiary structure [5] with an exposed

reactive center site loop (RCL), which carries the protease

recognition site and acts as a pseudo-substrate determining

protease specificity [6]. Inhibitory SERPINs regulate protease

activity through a unique suicide mechanism where the RCL

binds to the protease and is then cleaved between P1 and P19

(scissile bond) residues resulting in the formation of a covalent

complex that irreversibly locks both SERPIN and protease [5,7].

Vertebrate SERPINs exhibit distinct exon-intron patterns [8]

and segregate evolutionary into nine clades (A-I) [1]. The clade B

SERPINs differ from other SERPINs by the absence of a signal

peptide and by the occurrence of an additional polypeptide loop

between helices C and D (CD-loop) present in most members [1].

Their localization in the cells is limited to cytoplasm and/or

nuclear compartments where SERPINBs play a cytoprotective

role through the inhibition of proteases involved in cell death [3,4].

However, several SERPINBs (SERPINB2, B3, B5 and B7) [6] can

be released from cells under certain conditions, which in most

cases is thought to result from passive cell loss or lysis [1,4].

Moreover, it has become apparent that these proteins participate

alone or in concert with other molecules in the regulation of

intricate proteolytic cascades implicated in tumor suppression,

apoptosis, inflammation and angiogenesis, among others, through

complex and still-obscure mechanisms [1,9,10].

At the gene level, SERPINBs share a similar structure

comprising seven-eight exons with a translational starting site at
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exon II and the RCL located in the last exon [1]. In humans,

SERPINB genes are organized in tandem at 6p25 (SERPINB1,

B6 and B9) [11,12] and 18q21.3 (SERPINB2, B3, B4, B5, B7,

B8, B10, B11, B12 and B13) chromosomes [13,14]. Comparative

genomics of the human, mouse, chicken and zebrafish sequences

indicates that SERPINB genes undergone an expansion through-

out vertebrate evolution by a series of duplication events [15,16].

In the SERPIN superfamily, events of gene duplication are

likely to underlie the functional diversification of the inhibitory

repertoire of these proteins [16]. Such phenomenon is well

illustrated in vitro by mouse homologues Serpinb3a-d, while

Serpinb3a inhibits both chymotrypsin-like serine proteases and

papain-like cysteine proteases [17], Serpinb3b inhibits both

papain-like cysteine proteases and trypsin-like serine proteases

and no inhibitory activity was detected for Serpinb3c and

Serpinb3d [16]. Likewise, the human homologs SERPINB3 and

B4 (formerly known as squamous cell carcinoma antigen 1

(SCCA1) and 2 (SCCA2) respectively), share a sequence identity of

92% and regulate the activity of distinct proteases and in vitro
experiments demonstrate that SERPINB3 targets cysteine prote-

ases such as the cathepsins L1, L2, K and S (CTSL1, CTSL2,

CTSK and CTSS) [18,19] whereas SERPINB4 is a potent

inhibitor of the serine proteases cathepsin G (CTSG) and mast cell

chymase (CMA1) and a poor inhibitor of CTSS when compared

with SERPINB3 (50 times less efficient) [20].

In a healthy state SERPINB3 and B4 play a major role in cell

protection against cytotoxic molecules mainly through the

inhibition of CTSS that may leak into the cytoplasm as a result

of lysosome failure [4,21,22]. Conversely, in cancer disease

SERPINB3 was found to inhibit apoptosis, circumventing the

mechanism of cell death and favouring tumour growth and

metastization [23–25]. Indeed, the overexpression of SERPINB3

in some types of squamous cell carcinomas, namely uterine cervix

carcinoma, esophagus carcinoma, head and neck carcinomas,

breast carcinoma and hepatocellular carcinoma is correlated with

a poor prognosis [9]. For this reason, SERPINB3 and B4 have

been regarded as important serum biomarkers used for the

diagnostic and prognostic of squamous cell carcinomas [26].

Moreover, SERPINB3 is also up-regulated in patients suffering

from systemic sclerosis, psoriasis, bronchitis and pneumonia [4,27]

and reduced in patients with hepatitis C infection and untraceable

in patients with systemic lupus erythematosus [28].

Besides the role in cancer and autoimmunity, SERPINB3 and

B4 have a dual role in the immune response to pathogens. Recent

studies have shown that SERPINB3 may act as a surface receptor

for the binding of hepatitis B virus to hepatocytes and to peripheral

blood mononuclear cells [29–31]. In contrast, SERPINB3 and B4

can also target extrinsic proteases derived from several pathogens

suggesting a protective role against the deleterious effects of several

pathogenic organisms [32,33].

Interestingly, SERPINB3 and B4 were previously identified as

an example of young gene duplicates under positive selection in

the hominid lineage [34]. Duplication events are regarded as an

important source of innovation underlying the onset of gene

families from a single ancestral gene and contributing to the

increase of complexity in the eukaryotic genomes [35]. Two

alternative models are frequently used to explain the evolution and

retention of duplicate genes in the genomes. The neofunctiona-

lization model [36] that claims the gain of a novel function by a

gene copy as the main reason for the retention of duplicates in the

genome [37]. The subfunctionalization model [38] on the other

hand, predicts lower selective constraints affecting equally both

duplicates in a way that neither copy is sufficient to perform the

original function, and both copies are maintained in the genomes

[37].

Here, we combine phylogenetic based tests and protein

structural analysis to assess the evolution of SERPINB3 and B4
and their target proteases in the view of understanding the

selective forces shaping the divergence of SERPINB3 and B4
duplicates and its potential implications for human health and

disease. Results suggest that SERPINB3 duplicate is evolving

under positive selection supporting the functional divergence

observed in several experimental studies.

Materials and Methods

Sequence data
Genomic DNA sequences for SERPINB3, SERPINB4, CTSS

(Cathepsin S), CTSL1 (Cathepsin L1), CTSL2 (Cathepsin L2),

CTSK (Cathepsin K), CTSG (Cathepsin G) and CMA1 (Chymase)

were retrieved from the National Center for Biotechnology

Information database (NCBI) (http://www.ncbi.nlm.nih.gov) and

University of California Santa Cruz (USCS) Genomic Bioinfor-

matics database (http://genome.ucsc.edu/) for the following

primate species: human (Homo sapiens), common chimpanzee

(Pan troglodytes), gorilla (Gorilla gorilla), Sumatran orangutan

(Pongo abelli), northern white-cheeked gibbon (Nomascus leuco-
genys), rhesus macaque (Macaca mulatta), olive baboon (Papio
anubis), marmoset (Callithrix jacchus) and squirrel monkey

(Saimiri boliviensis) (see Table S1). In the case of G. gorilla, to

fill the large sequence gaps affecting SERPINB4 and CTSS
coding region, we amplified, by polymerase chain reaction (PCR),

and sequenced a G. gorilla sample (EB(JC) from the primate DNA

panel of the European Collection of Cell Cultures (ECACC). We

used MultiPipMaker [39] to build multiple sequence alignments

and the human SERPINB3, SERPINB4, CTSS, CTSK, CTSL1,

CTSL2, CTSG and CMA1 sequences were used to annotate for

gene content in the collected sequences of other primate species.

RepeatMasker (http://www.repeatmasker.org/) was used to de-

tect repetitive sequences. Sequence editing and exon assembly

were performed using Bioedit (7.0.9.1) [40].

Phylogenetic analysis and selection tests
We used CLUSTALW [41] implemented in the MEGA5 [42]

software to align the cDNA sequences of SERPINB3, SER-
PINB4, CTSS, CTSL1, CTSL2, CTSK, CTSG and CMA1.

Phylogenetic trees were then constructed using neighbour-joining

method with 10000 bootstraps implemented in MEGA5.

The nonsynonymous/synonymous substitution rate ratio (dN/

dS =v) was estimated using the maximum likelihood (ML)

framework implemented in the program CODEML of Phyloge-

netic Analysis by Maximum Likelihood (PAML) software [43]. We

used v values to investigate the selective pressures that have

shaped the evolution of SERPINB3 and B4 duplicates and their

known targets CTSS, CTSL1, CTSL2, CTSK, CTSG and CMA1.

We used three likelihood ratio test (LTR) approaches to detect

genes under positive selection: first the branch model evaluates the

strength of natural selection in one or more phylogenetic clades

and compares a single v value obtained for all lineages (M0) with a

model assuming different v values for each lineage (free-ratio);

second, the site models, which allows the v values to vary among

sites of the protein and compares the neutrality models M1a and

M7 against the positive selection models M2a and M8, respec-

tively; third, the branch-site model was used to identify codons

under positive selection within a phylogenetic clade that compares

the null model, with a fixed v= 1 for all the sites in the

background, with the alternative model, assuming a v.1 for all
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the sites in the foreground [44]. In all cases, the significance of the

models was carried out using the likelihood ratio test -2Dl with a x2

distribution [43,44]. The Bayes Empirical Bayes (BEB) approach is

implemented to identify amino acids under positive selection [45].

For v calculation, sequences associated with species-specific stop

codons were removed.

Protein modelling and docking
The three-dimensional (3D) structures of SERPINB3 (2ZV6),

CTSS (2FQ9), CTSL1 (2XU3), CTSL2 (1FH0), CTSLK (3KWZ),

CTSG (1CGH) and CMA1 (4AG1) proteins were obtained from

Protein Data Base (PDB) (http://www.rcsb.org). In the case of

SERPINB4, the 3D structure was predicted by homology

modeling in MODELLER 9.10 software using SERPINB3 as

template [46]. Structure validation was performed with PRO-

CHECK [47] available in SWISS-MODEL web server [48].

After, to assess the possible functional significance of specific

amino acids replacements between SERPINB3 and B4 in the

target protease affinity, the obtained 3D structures were used to

generate 3D structural models of inhibitor-protease complexes

using the HADDOCK docking web server [49] (http://haddock.

science.uu.nl). The published binding residue pairs, namely the P1

and P19 residues, from SERPINB3 and B4, and the amino acids

that form the catalytic triad of target proteases, at the interface

region of the inhibitor-protease complex, were used to drive the

docking process. Visualization of the 3D structures was performed

in PyMol 0.99rc6 [50]. The models were evaluated according to

the HADDOCK score [51], interface root mean square deviation

(iRMSD) and ligand root mean square deviation (lRMSD) [52].

Tissue expression screening of SERPINB3 and SERPINB4
A set of 21 human cDNA samples from different healthy organs

was used to study the tissue pattern of SERPINB3 and B4
expression. Except for the first-strand cDNA from leukocytes

(Clontech), the RNA from the First Choice Human Total RNA

Survey Panel (Ambion) was used as a template to generate cDNA

by RT- PCR using a Superscript III system (Life Technologies).

PCR amplification was performed using the primers 59 –

TGTAGGACTCCAGATAGCAC – 39 and 59- TGTAG-

GACTTTAGATACTGA – 39, designed to be unique to the

target SERPINB3 and B4 cDNA, respectively, and primer 59 -

TGGAAATACCATACAAAGGCA – 39. GAPDH was employed

as control using primers 59 - TCAAGGCTGAGAACGGGAAG -

39 and 59 - AGAGGGGGCAGAGATGATGA - 39 for amplifi-

cation (see Fig. S1).

Results

Reconstructing the origin of SERPINB3 and SERPINB4
duplicates

The chromosomal regions of SERPINB3 and B4 from H.
sapiens, P. troglodytes, G. gorilla, P. abelli, N. leucogenys, M.
mulatta, P. anubis, C. jacchus and S. boliviensis were downloaded

from the USCS and NCBI databases or obtained by direct

Figure 1. Origin of SERPINB3 and SERPINB4 duplicates. A) The organization of SERPINB3 and SERPINB4 loci in human and eight non-human
primates. Relative position to telomere (Tel) and centromere (Cen) is shown. Solid boxes represent functional genes; open boxes represent
pseudogenes. B) Phylogenetic tree of SERPINB3 and SERPINB4 genes with the bootstrap percentages shown at interior nodes and the alignment of
RCL regions (P17-P49). The canonical scissile bond is marked by an arrow and a standard P1 and P19 nomenclature is used to number amino acid
positions N- and C-terminal outward from the scissile bond. AncB3/B4: ancestral SERPINB3/B4 gene.
doi:10.1371/journal.pone.0104935.g001
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sequencing. The SERPINB3 and B4 sequences were retrieved

from the human reference sequence of the chromosome 18

(assembly GRCh37,) in a large genomic segment delimited by

SERPINB7 and SERPINB12 (chr18: c61429197-61222431) and

aligned with the homologous sequences from non-human primates

(see Table S1). Overall, sequence alignments revealed a conserved

pattern of seven coding exons in primates for SERPINB3 and B4
(Fig. S2). However in M. mulatta, P. anubis, C. jacchus and S.
boliviensis one of the duplicates was absent (Fig. 1A). In addition,

the analysis of the predicted cDNA and protein sequences revealed

that P. abelli and N. leucogenys telomeric duplicates have a

premature stop codon in positions 60 and 19, respectively, causing

any resulting protein to be abnormally shortened and suggesting

that these duplicates are in fact pseudogenes.

The phylogenetic tree constructed using functional SERPINB3
and B4 sequences, places the duplication event before the

divergence of H. sapiens, P. troglodytes and G. gorilla (Fig. 1B).

However, the finding of non-functional gene copies in P. abelli
and N. leucogenys species suggests that a duplication event

occurred in a common ancestor of Hominoidae (great apes), after

the separation from the Old World monkeys 29.6 million years

(MY) ago. Interestingly, the protein alignments obtained for the

RCL region in the different primate species suggest the existence

of an ancestral SERPINB3/B4 (AncB3/4) with two possible

scissile bond (P1-P19) compositions either TS or LS (Fig. 1B). The

presence of a SS scissile bond, suggests that the telomeric gene,

named SERPINB3 in humans, arose recently in evolution (about

9 MY ago in Hominidae) as the result of duplication and

functional divergence. Noteworthy, SERPINB3 accumulated

several other differences in the RCL region which are likely to

have contributed to a shift in its protease affinity.

Adaptive evolution of SERPINB3
We performed a maximum likelihood (ML) analysis, using

codeml package in PAML software, to test whether the functional

divergence of SERPINB3 is a result of positive selection [43,44].

Initially, we estimated the v ratio for the entire phylogeny (M0

model) and the independent v ratio for each branch to assess and

characterize the selective pressures acting on SERPINB3/B4
evolution. Overall, the M0 model shows a low value of v for the

entire phylogeny (v<0.67) suggesting a conserved evolution

(v,1). Also, the comparison of M0 versus the free-ratio

(22DlnL = 16.18, p.0.05) suggest that the different lineages

experienced similar evolutionary rates. However, this result is not

unexpected, since averaging across all sites is not a powerful test of

adaptive evolution. Hence, we used likelihood ratio tests to

compare nested models with and without positive selection to look

for evidence of site-specific positive selection in SERPINB3/B4
phylogeny. The comparisons of M1a (nearly neutral) versus M2a

(positive selection) and M7 (beta) versus M8 (beta and v.1) show

significant (p,0.001) evidence of positive selection for SERPINB3

and B4 genes (Table 1). For M2a and M8 models, the BEB

analysis identified the same 17 sites under adaptive evolution (v.

1) with high posterior probability (p.90%) (Table 1).

To test if this signal of positive selection could be connected with

the appearance of SERPINB3 we used the branch-site model test.

This test allows the v ratio to vary among sites in the protein and

across branches in the tree to detect if positive selection was

affecting sites along specific lineages. In the SERPINB3/B4 tree

the likelihood ratio tests, based on the branch-site models, were

significant (p,0.01) only for the foreground branch 1 (Fig. S3),

which includes the lineages from H. sapiens, P. troglodytes and G.
gorilla for the SERPINB3 duplicate (Table 2). Although most

sites are under constrained evolution, the residues 327G, 351G

and 352F were identified by the BEB analysis as being under

positive selection (p.80%) in the SERPINB3 clade (foreground

branch 1).

Finally, to evaluate the structural basis of the positive selection

signatures detected by the ML analyses, we compared SERPINB3

and B4 3D structures. However, since the SERPINB4 3D

structure was not available in the surveyed databases, we used

MODELLER software to calculate a homology model of

SERPINB4 using the crystal structure coordinates of SERPINB3

as template (Fig. 2). Structural superimposition of the modelled

SERPINB4 structure with the SERPINB3 template showed a very

low root mean square deviation (RMSD) of 0.22 Å, which reveals

a quite similar protein backbone.

From the 17 sites under positive selection identified by the site-

model analysis, seven correspond to differences in the RCL from

SERPINB3 and B4 mainly V351G, V352F, E353G, L354S,

S356P, P357T and C364H (Fig. 2). As mentioned above, the RCL

is a crucial region for the interaction with the target proteases

being responsible for the functional SERPIN specificity, in which

these 7 residues are likely to have a significant effect. Also, residue

C279R is located at b-sheet C, in the gate domain (Fig. 2), a

important region for the full insertion of RCL after protease

cleavage [53]. Thus, amino acid alterations in this region could

affect the RCL insertion and the SERPIN inhibitory mechanism.

Finally, from the remaining eight sites under positive selection, six

residues cluster together at the distal end of RCL (Fig. 2). Once

inserted inside the molecule the RCL presses the target protease

against the bottom of the SERPIN resulting in the distortion of the

protease active site, greatly reducing the enzyme catalytic activity

[5]. Consequently, amino acids positioned at the distal end of the

RCL are in close proximity to the inhibited protease and

substitutions in these sites are probably implicated in the stability

of the inhibitor-protease complex.

Furthermore, branch-site model analysis identified the amino

acid K327G and the RCL V351G and V352F residues as being

under positive selection in SERPINB3 duplicate for H. sapiens,
P. troglodytes and G. gorilla lineage. In the case of SERPINB3,

amino acids 351G and 352F are located in the RCL, very close to

Table 1. Maximum likelihood estimates of positive selection for SERPINB3/B4 phylogeny.

Phylogeny N M1avs. M2a M7vs. M8 Proportion of sites v.1 Positively selected sites a

SERPINB3/B4 9 88.97** 89.35** v= 7.12, p = 0.01 17Q, 24E, 163I, 166G, 167N, 171N, 279R, 321R, 324V, 351G, 352F,
353G, 354S, 356P, 357T, 358S, 364H

Likelihood ratio tests (22Dl) comparing a null and positive selection models (M1a vs M2a, M7 vs M8); N, number of primate species with sequences in alignment;
p: proportion of sites under positive selection in M8 model; v: estimate the dN/dS of the sites under selection in M8 model; a Amino acid sites found to be under
positive selection with posterior probabilities greater than 90% (blank), 95% (underlined) or 99% (bold) in the BEB analysis. The reference sequence is human SERPINB3.
** Significance with p,0.001.
doi:10.1371/journal.pone.0104935.t001
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the 354S/355S scissile bond, and may have a relevant functional

role in the specificity of SERPINB3 towards cysteine target

proteases and in its functional divergence from SERPINB4.

Amino acid 327G is located in the highly conserved b-sheet A in

the shutter domain (Fig. 2) that has a key role in SERPIN suicide

mechanism. Once cleaved by a protease the exposed RCL

undergoes drastic conformational alterations ending inside of the

SERPIN, inserted into the b-sheet A region. As a result, many of

the RCL become buried with a major impact in the rate of RCL

insertion [5]. Since the RCL of SERPINB3 and B4 differ in their

amino acid compositions, the substitution of a polar residue, lysine

(SERPINB4) by a stereochemically different glycine (SERPINB3)

could be of crucial importance for an efficient insertion of

SERPINB3 RCL.

Target protease evolution
Furthermore, maximum likelihood approaches were used to

address the evolutionary signatures of SERPINB3 and B4 target

proteases and to check for similar evolutionary paths that could

point to a possible coevolution process between inhibitor and

target proteases mainly CTSS, CTSL1, CTSL2, CTSK, CTSG
and CMA1. As for SERPINB3/B4 phylogeny, the one ratio (M0)

model tests reveal a v,1 suggesting an overall conserved

evolution for the CTSS, CTSL1, CTSL2, CTSK and CMA1
phylogenies. However, CTSG shows higher v ratios (v<0.98),

which suggests a relaxation in the selective constrains. Also, the

comparison of M0 versus the free-ratio model indicates that the

different lineages experienced similar evolutionary rates, except for

CTSS gene (Table 3) in which selective pressures may differ across

CTSS tree branches. We then proceeded to more powerful and

Table 2. Likelihood ratio test for branch-site model for SERPINB3/B4 phylogeny.

Phylogeny Parameter estimates Foreground vs. Background 22Dl Positively selected sites

SERPINB3/B4 Foreground 1 p0 = 0.612, p1 = 0.376, p2a = 0.008, p2b = 0.005, v0 = 0.018, v1 = 1.000, v2 = 19.207 6.10** 327G, 351G, 352F

SERPINB3/B4 Foreground 2 p0 = 0.630, p1 = 0.369, p2a = 0.000, p2b = 0.000, v0 = 0.023, v1 = 1.000, v2 = 1.000 0 NA

22DL, likelihood ratio test to detect positive selection with 1 degree of freedom; Foreground 1: H. Sapiens B3, P. Troglodytes B3 and G. Gorilla B3 lineages; Foreground 2:
H. Sapiens B4, P. Troglodytes B4 and G. Gorilla B4 lineages. Amino acid sites found to be under positive selection with posterior probabilities greater than 80% (blank) are
displayed; NA, not applicable because the neutral model fits better than positive selection.
** Significance with p,0.01.
doi:10.1371/journal.pone.0104935.t002

Figure 2. X-ray structure of SERPINB3 and predicted structure of SERPINB4. The A b-sheet (shutter) is in orange, B b-sheet (breach) is in red
and C b-sheet (gate) is in blue. Helices are shown in green. RCL: reactive center loop. Sites under positive selection are in black.
doi:10.1371/journal.pone.0104935.g002
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robust approaches to test for evidence of site-specific positive

selection across the entire phylogeny or within a specific

phylogenetic clade for CTSS, CTSL1, CTSL2, CTSK, CTSG
and CMA1. The comparisons of M1a (nearly neutral) versus M2a

(positive selection) and M7 (beta) versus M8 (beta and v.1) show

that CTSL2, CTSG and CMA1 genes are under positive selection

(Table 3) and several codons were identified as subject to positive

selection. Interestingly, in a previous work both CTSG and CMA1
were shown to be under positive selection in mammalians, possibly

as a result of a trade-off between increased response to pathogens

and decreased risk of autoimmunity by apoptosis related genes

[54]. Furthermore, branch-site models were used to detect if

positive selection was affecting sites along specific clades in CTSS,

CTSL1, CTSL2, CTSK, CTSG and CMA1 phylogeny and

establish whether selective pressures varied in a similar way as

for SERPINB3/B4 gene tree suggesting inhibitor/target coevo-

lution. Interestingly, we found evidence of positive selection (p,

0.05) for CTSS gene (Table 4), when comparing the foreground

H. sapiens, P. troglodytes and G. gorilla clade with the background

phylogeny (Fig. S4) and we detected residue 255R as being under

positive selection (p.90%). Therefore, positive selection might be

acting in SERPINB3 duplicate and CTSS for H. sapiens, P.
troglodytes and G. gorilla lineage which can point to a possible

coevolution between inhibitor and target protease. No statistical

significance was obtained for the H. sapiens, P. troglodytes and G.
gorilla clade (foreground) in the remaining branch-site tests

(CTSL1, CTSL2, CTSK, CTSG and CMA1).

Finally, to evaluate the functional impact of the sites identified

as being under positive selection in SERPINB3/B4 and target

proteases, we built 3D structures of human SERPINB3- and B4-

target complexes. The HADDOCK outcomes for the best models

(Table 5) are consistent with the known inhibitory activity for

SERPINB3 and B4 published in previous studies [18,19]. Except

for SERPINB4/CTSS complex, HADDOCK generated good

predictions with i-RMSD#2 Å and l-RMSD#5 Å [52]. Interest-

ingly, the bad quality prediction for SERPINB4/CTSS complex

(i-RMSD$4 Å and l-RMSD$10 Å) is consistent with previous in
vitro results that show the low inhibitory activity of SERPINB4

towards CTSS, 50 times less than SERPINB3 [20].

Figure 3 shows the 3D structures of SERPINB3/CTSS and

SERPINB4/CTSG complexes as representatives of inhibitor-

proteases complexes. The seven RCL residues identified by the

site-model tests as under positive selection for SERPINB3/B4

phylogeny (Table 1) (V351G, V352F, E353G, L354S, S356P,

P357T and C364H), are in the inhibitor/protease interface, in

close proximity to the activity site of the target protease (Fig. 3).

Overall, the RCL plays a critical role in the inhibitory activity of

SERPINs and some studies highlight this notion by showing that

the target specificities of SERPINB3 and B4 could be reversed

solely by swapping their RCL [18]. Moreover, as experimentally

reported, single amino acid substitutions in the RCL region were

unable to convert SERPINB4 in a more efficient cysteine protease

inhibitor. In the particular case of CTSS inhibition, different

combinations of mutations at SERPINB4 positions P2, P29, P39

and P109 led to an increase in CTSS inhibition accounting for

80% of the difference in SERPINB3 and B4 activity [55].

Interestingly, the P2, P29, P39 and P109 positions correspond to the

residues E353G, S356P, P357T and C364H, respectively, which

were found to be under strong positive selection in the present

study. Furthermore, the residue V352F, in position P3, is a key

residue for specificity and binding of papain-like cysteine proteases

and in the case of CTSS the preferred P3 residues are bulky

hydrophobic, as phenylalanine residue in SERPINB3 [18]. In

addition, P1 position (L354S) was found to be under positive
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selection and several mutagenesis studies show that the P1 residue

is usually the most important for SERPIN protease specificity [5].

The 3D structures of SERPINB3/CTSS (Fig. 3), SERPINB4/

CMA1 and SERPINB4/CTSG (Fig. 3) reveal that several residues

under positive selection (Table 3 and Table 4) are located in the

loops surrounding the enzyme catalytic pocket, which have been

shown to be involved in substrate specificity and in enzyme

activation [54]. Also, the location of these residues in loops near to

the enzyme catalytic pocket may suggest a possible role in the 3D

conformation assumed by this region. Moreover, X-ray analysis of

the SERPIN-protease inhibition complexes reveals that the

distortion of protease activity is due to the compression of the

loops surrounding the protease active site against the basis of the

SERPIN. Hence, an amino acid substitution in the protease loops

neighbouring the active site could have physical implications in the

inhibition mechanism [5] and contribute for the functional

divergence of SERPINB3 and B4.

Tissue expression pattern of SERPINB3 and SERPINB4
A panel of 21 tissues was used to determine the expression

pattern of SERPINB3 and B4. As shown in figure 4, SERPINB3
and B4 transcripts were found in uterus, esophagus, lung, prostate,

testis and trachea tissues, whereas in bladder and thymus only the

expression of SERPINB3 was detected (Fig. 4). These expression

patterns are consistent with the ones obtained by Cataltepe and

colleagues, who have shown that SERPINB3 and B4 are

frequently co-expressed in several adult human tissues at both

mRNA and the protein levels [27]. In addition, these findings fit

the expectations of two recent duplicates being more likely to share

cis-regulatory motifs and to display stronger co-expression patterns

than two randomly selected genes [56]. The ENCODE annotation

of transcript factors by CHIP-seq for SERPINB3 and B4
available in UCSC database (http://genome.ucsc.edu/) confirms

that these duplicates still share several regulatory motifs, including

STAT3, CEBPB, FOS and JUN (Fig. S5), which are associated to

immunity and apoptosis pathways. Furthermore, upstream of

SERPINB3 there is an active regulatory region, identified by an

H3K27Ac histone mark, and multiple transcripts factors which

possibly affect both duplicates (Fig. S5). Therefore, the similar

expression pattern of SERPINB3 and B4 is best explained by the

low divergence in the cis-regulatory motifs contrasting with

functional specialization into cysteine and serine inhibitors,

respectively.

Finally the expression sequence tag (EST) profile of CTSS,

CTSL1, CTSL2, CTSK, CTSG and CMA1 target proteases was

assessed revealing an overlap with SERPINB3 and B4 expression

pattern in several tissues (Fig. S6).

Discussion

In the present work, we evaluate the evolutionary forces forging

the recent duplicates SERPINB3 and B4 and address their

functional impact in protein structure, inhibitor-protease interac-

tion and gene expression regulation. Phylogenetic analysis reveals

that a duplication event, at approximately 29.6 MY ago, gave rise

to SERPINB3 and B4 paralogs, stably retained in H. sapiens, P.
troglodytes and G. gorilla genomes, but not in P. abelli and N.
leucogenys species, which carry a pseudogene and an ancestral

Table 4. Likelihood ratio test for branch-site model for target proteases using H. sapiens, P. troglodytes and G. gorilla lineage as
foreground.

Gene Parameter estimates Foreground vs. Background -2DlnL Positively selected sites

CTSS p0 = 0.802, p1 = 0.188, p2a = 0.008, p2b = 0.002, v0 = 0.001, v1 = 1.000, v2 = 48.657 5.38* 255R

CTSL1 p0 = 0.678, p1 = 0.321, p2a = 0.000, p2b = 0.000, v0 = 0.051, v1 = 1.000, v2 = 1.000 0 NA

CTSL2 p0 = 0.679, p1 = 0.320, p2a = 0.000, p2b = 0.000, v0 = 0.000, v1 = 1.000, v2 = 1.000 0 NA

CTSK p0 = 0.549, p1 = 0.066, p2a = 0.343, p2b = 0.041, v0 = 0.000, v1 = 1.000, v2 = 1.000 0 NA

CTSG p0 = 0.421, p1 = 0.540, p2a = 0.017, p2b = 0.021, v0 = 0.000, v1 = 1.000, v2 = 7.081 0.98 NA

CMA1 p0 = 0.331, p1 = 0.200, p2a = 0.292, p2b = 0.177, v0 = 0.000, v1 = 1.000, v2 = 2.196 0.17 NA

22DL, likelihood ratio test to detect positive selection; Foreground: H. sapiens, P. troglodytes and G. gorilla lineage. *Significance with p,0.05; Positively selected sites,
amino acid sites found to be under positive selection with a posterior probabilities greater 90%; NA, not applicable because the neutral model fits better than positive
selection.
doi:10.1371/journal.pone.0104935.t004

Table 5. Inhibitor protein complexes tested by docking analysis.

Model HADDOCK score i-RMSD l-RMSD

SERPINB3/CTSK 288.3+/22.3 0.58+/20.39 1.30+/20.87

SERPINB3/CTSL1 262.0+/215.7 1.04+/20.91 3.09+/23.18

SERPINB3/CTSL2 275.0+/24.2 0.38+/20.25 0.778+/20.59

SERPINB3/CTSS 296.1+/24.4 0.43+/20.30 1.06+/20.73

SERPINB4/CTSS 274.1+/27.0 16.23+/20.35 35.47+/21.05

SERPINB4/CMA1 285.8+/27.5 0.52+/20.36 1.48+/21.07

SERPINB4/CTSG 274.5+/25.6 0.47+/20.32 1.02+/20.75

i-RMSD: interfacial root mean square deviation; l-RMSD: ligand root mean square deviation; HADDOCK score is weighted sum of van der Waals, electrostatic, desolvation
and restrained violation energies together with buried surface area.
doi:10.1371/journal.pone.0104935.t005
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gene (AncB3/B4) instead. In the SERPINB3/B4 phylogeny,

evolutionary tests disclosed a clear signature of positive selection in

the substitution rates across the nine primate species studied, H.
sapiens, P. troglodytes, G. gorilla, P. abelli, N. leucogenys, M.
mulatta, P. anubis, C. jacchus and S. boliviensis. Also, the branch-

site test shows that in the H. sapiens, P. troglodytes and G. gorilla
clade, the SERPINB3 copy is evolving under positive selection

supporting the functional divergence observed in several experi-

mental studies.

In this context we can consider two scenarios, either the

duplication led to the acquisition of a complete new function by

one of the duplicates or a subdivision of the ancestral function

occurred to accommodate an improved inhibitory activity. Under

a subfunctionalization hypothesis, after the duplication event both

copies would maintain the original function and several degener-

Figure 3. The best docking for SERPINB3 (green)/CTSS (blue) and SERPINB4 (green)/CTSG (blue) complex models generated using
HADDOCK software. Amino acids under positive selection at the SERPIN/protease interface are in black. Amino acids at the inhibitor scissile bond
and forming the proteases catalytic triad are depicted in red. Arrows point the location of b-sheet A (SA), b-sheet B (SB) and b-sheet C (SC). Binding
regions are enlarged for a more detailed view (left panel).
doi:10.1371/journal.pone.0104935.g003

Figure 4. Expression patterns of SERPINB3 and SERPINB4 in human tissues. GAPDH amplification was used as a control. NC: negative
control.
doi:10.1371/journal.pone.0104935.g004
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ative mutations would be tolerated by SERPINB3 and SER-
PINB4, due to a relaxation of selective constrains. However, this

model fails to explain the different hits of positive selection

detected for the entire SERPINB3/B4 phylogeny and for the

SERPINB3 clade alone. Likewise, the subfunctionalization theory

predicts an expression diversification where duplicates sharing the

same function become specialized in different tissues or develop-

mental stages [38], which is not the case of SERPINB3 and B4.

Instead, the neofunctionalization model seems to fit better the

evolutionary history of SERPINB3 and B4 duplicates. According

to this model a copy is kept under purifying selection and retains

the original function while the other is targeted by positive

selection and experiences the accumulation of several amino acid

substitutions ultimately leading to a novel function.

Several studies have demonstrated that positive selection

frequently occurs in concert with duplication events in genes

involved in brain function and cell growth [57,58], reproduction

[59], endurance running [60] and in xenobiotic recognition of

macromolecules [61]. In addition, several gene families implicated

in the immune system were proposed as targets of positive

selection [62,63]. There, gene duplications are considered a

important mechanism in the enlargement of host defence

repertoire, which is crucial for a rapid response to changing

environments and to a increased burden of pathogens [64]. For

instance, the tripartite motif (TRIM) protein family, a group of

innate antiviral effectors, experienced several episodes of strong

positive selection showing high levels of sequence divergence

between paralogs and a wide range of antiviral activities possibly

resulting from different attempts to counteract fast evolving viruses

[65].

Similarly, evidence for positive selection was detected in several

members of the SERPIN superfamily. SERPINB11, a highly

conserved gene in primates, was lost and resurrected in humans

where the accumulation of several mutations contributed to the

appearance of a modified non-inhibitory SERPIN, probably

linked to an adaptive response against the emergence of infectious

diseases in recent human evolution [66]. Also, in SERPINA2, a

90 MY old duplicate of alpha1-antitrypsin (SERPINA1), several

sites seem to be under positive selection in primates, contributing

to the emergence of a new advantageous function, possible as a

chymotrypsin-like inhibitor [67]. Conversely, a large deletion in

SERPINA2 was proposed to be selective advantageous in Africans

through a potential role in fertility or in host–pathogen interac-

tions (Seixas, et al 2007).

Such recent studies are in agreement with earlier assumptions

based mostly in human and rodent sequences that established a

link between RCL hypervariability, SERPIN superfamily func-

tional diversity and positive selection acting after gene duplication

[68–70]. Furthermore, Hill and Hastie postulate that these

adaptive changes were fixated because SERPINs were challenged

by exogenous proteases brought in by infectious agents, which

may indicate an ongoing host-pathogen coevolution [69].

Likewise, we propose that the SERPINB3/B4 selective

signatures are the result of a coevolution process involving either

endogenous or exogenous target proteases. Indeed, the structural

and docking analyses are in line with previous biochemical studies

[19,55], showing that many of the putatively selected sites fall in

regions important for the inhibitor function promoting functional

divergence between SERPINB3 and B4. Also, the ability of

SERPINB4 to inhibit CTSS, as well as other papain-like cysteine

proteases, at a rate 50-fold slower than that of SERPINB3 [55]

may suggest that the functional divergence of these two inhibitors

is still ongoing. Finally, the scenario of functional divergence is

strengthened by the consistence of selective signatures of

SERPINB4 targets, CMA1 and CTSG in the primates (our

study) and mammalian phylogenies [54,71]. Since CMA1 and

CTSG are powerful proteases involved in programmed cell death

(apoptosis) and in the immune response, an evolution of these

molecules driving by host-defence is also likely. Hence, selective

hallmarks observed throughout SERPINB3/B4 phylogeny can

result from an adaptive response to CMA1 and CTSG evolution.

The overlap of CTSS and SERPINB3 selective signatures in

the H. sapiens, P. troglodytes and G. gorilla clade points as well for

a possible coevolution of these molecules. Interestingly, both

CTSS and SERPINB3 are found in endosome/lysosome struc-

tures in macrophage [72] and B cells [28] where CTSS is thought

to be engaged in antigen presentation through the degradation of a

major histocompatibility complex class II chain [73].

Aside from a role in innate immunity through the regulation of

endogenous proteases, SERPINB3 may also be enrolled in the

host-pathogen response by the inhibition of cysteine proteases

released in the infectious processes by Staphylococcus aureus
(staphopains) [33], Leishmania Mexicana (CPB2.8), Trypanosoma
cruzi (cruzain), T. brusei rhodesience (rhodesain) and Fasciola
hepatica (cathepsin L2) [32]. Worth to note, SERPINB3 is

expressed in squamous epithelium of mucous membranes, skin

and the respiratory system, where it may act as a primary host-

defence mechanism by preventing pathogens to cross and disrupt

epithelial barriers. Moreover, the regulation of SERPINB3
expression by the transcription factors STAT3, CEBPB and

FOS/JUN AP-1 complex, which are involved in the development

and modulation of the immune system, regulation of cell

proliferation and differentiation, mediation of cytokine receptors

signaling and control of genes involved in the immune and

inflammatory responses [74–76], further supports the possible role

of SERPINB3 in immune response.

In conclusion, the present work shows a positive selection

signature throughout SERPINB3/B4 phylogeny, which may be a

major force driving the functional divergence of SERPINB3 and

B4 duplicates. Ultimately, adaptive evolution led to different

protease specificities providing SERPINB3 and B4 with the

ability to inhibit a broader repertoire of endogenous and

exogenous proteases. Furthermore, the retention of SERPINB3
and B4 duplicates in the H. sapiens, P. troglodytes and G. gorilla
clade could have a selective advantage in host-pathogen interac-

tions due to an adaptive response against infectious diseases in

Africa, during the evolution of great apes. Also, our results show

that SERPINB3 duplicate is being subject to strong positive

selection that could derive as well from ongoing host-pathogen

coevolution. The interaction of host protease inhibitors with

invasive proteases of pathogens can constitute a strong evolution-

ary pressure for the host to counteract by evolving new and

effective inhibitors. Above all, the search for a positive selection

signal among inhibitors and target proteases could contribute for a

better understanding of the complex interactions involving both

types of molecules and how its imbalance could lead to the onset of

different types of carcinomas and immune diseases, having

potential therapeutical implications.

Supporting Information

Figure S1 Primer annealing positions within SERPINB3
and SERPINB4 cDNA. Underlined: 59 - TGGAAATACCA-

TACAAAGGCA – 39 primer annealing position. Highlighted in

red: unique 59 – TGTAGGACTCCAGATAGCAC – 39 and 59-

TGTAGGACTTTAGATACTGA – 39 annealing positions. PCR

was programmed as follows: initial denaturation at 95uC for 10

minutes, followed by 35 cycles of denaturation at 94uC for 30
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seconds, annealing at 54uC for 30 seconds and extension at 72uC
for 30 seconds and a final extension at 60uC for 30 minutes.

(TIF)

Figure S2 Multipipemaker SERPINB3 and SERPINB4
alignment. Hsapiens: Homo sapiens; Ptroglodytes: Pan troglo-
dytes; Ggorilla: Gorilla gorilla; Pabelli: Pongo abelli; Nleucogenys:

Nomascus leucogenys; Mmulatta: Macaca mulatta; Panubis: Papio
Anubis; Cjacchus: Callithrix jacchus; Sboliviensis: Saimiri boli-
viensis
(PDF)

Figure S3 Branch-site analysis for SERPINB3/B4 genes,
foreground and background groups.
(TIFF)

Figure S4 Branch-site analysis for CTSS, foreground
and background groups.
(TIFF)

Figure S5 UCSC ENCODE annotation of transcript
factors obtained by CHIP-seq experiments for SER-
PINB3 and SERPINB4.
(TIF)

Figure S6 A) CTSG and CMA1 expression pattern showing an

ubiquitous expression profile for CTSG. B) Heat map and

hierarchical bi-clustering of the expression sequence tag (EST)

data of SERPINB3/B4 and their target proteases. The data for 45

normal tissues were extracted from NCBI UNIGENE and

normalized by total number of transcripts per library. Red and

green correspond to the high and low expression levels,

respectively. Black represents an average level of expression.

(TIF)

Table S1 Genomic locations for the DNA sequences
retrieved from the National Center for Biotechnology
Information database (NCBI) and University of Califor-
nia Santa Cruz (USCS) Genomic Bioinformatics data-
base for the nine primate species.

(DOCX)
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