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Abstract

Backgrounds/Objective: Schistosomiasis is still a major public health problem in China, despite the fact that the
government has implemented a series of strategies to prevent and control the spread of the parasitic disease. Advanced
warning and reliable forecasting can help policymakers to adjust and implement strategies more effectively, which will lead
to the control and elimination of schistosomiasis. Our aim is to explore the application of a hybrid forecasting model to
track the trends of the prevalence of schistosomiasis in humans, which provides a methodological basis for predicting and
detecting schistosomiasis infection in endemic areas.

Methods: A hybrid approach combining the autoregressive integrated moving average (ARIMA) model and the nonlinear
autoregressive neural network (NARNN) model to forecast the prevalence of schistosomiasis in the future four years.
Forecasting performance was compared between the hybrid ARIMA-NARNN model, and the single ARIMA or the single
NARNN model.

Results: The modelling mean square error (MSE), mean absolute error (MAE) and mean absolute percentage error (MAPE) of
the ARIMA-NARNN model was 0.186961024, 0.0029, 0.0419 with a corresponding testing error of 0.937561024, 0.0081,
0.9064, respectively. These error values generated with the hybrid model were all lower than those obtained from the single
ARIMA or NARNN model. The forecasting values were 0.75%, 0.80%, 0.76% and 0.77% in the future four years, which
demonstrated a no-downward trend.

Conclusion: The hybrid model has high quality prediction accuracy in the prevalence of schistosomiasis, which provides a
methodological basis for future schistosomiasis monitoring and control strategies in the study area. It is worth attempting
to utilize the hybrid detection scheme in other schistosomiasis-endemic areas including other infectious diseases.
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Introduction

Schistosomiasis is a neglected tropical parasitic disease caused

by blood-flukes of the genus Schistosoma [1,2], which is endemic

in tropical and sub-tropical areas [3]. Schistosomiasis can lead to a

series of acute or chronic symptoms including diarrhea, bowel

ulceration, chronic pain, pulmonary hypertension, anaemia,

undernutrition, and exercise intolerance in humans [4,5]. It was

estimated that more than 200 million individuals were infected,

close to 800 million were at risk [6], and published disability-

adjusted life-years exceeded 70 million [7]. According to the

World Health Organization, 243,192,887 people required treat-

ment for schistosomiasis in 2011 [8]. Hence, the prevalence of

schistosome infection undermines social and economic develop-

ment in the affected countries and regions.

In China, schistosomiasis is caused by Schistosoma japonicum,

which is regarded as a major parasitic disease with a documented

history of over 2100 years. In the 1950s, the population of China

was approximately 600 million with an estimated 11.6 million

people infected [9]. The government has taken some highly

effective and comprehensive strategies to reduce the rates of

transmission of schistosomiasis since the 1950s [10–12]. By 2011,

the number of infected people had been reduced to an estimated

280,000 [13]. Despite these sustained efforts and achievements,

there are still many major challenges such as patient susceptibility

to infection and re-infection, the effects of global warming,

increased population mobility, the existing extensive snail habitats

with complicated environments, ecosystem changes caused by the

construction of the Three Gorges Dams and the South–north

Water Conversion Project [14,15]. Complete elimination of

schistosomiasis will take a long time and has proven to be a

difficult task.

Forecasting as a form of early surveillance and detection can

facilitate the development of effective control strategies for

schistosomiasis. Many approaches have been adopted in forecast-
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ing infectious diseases, e.g. the exponential smoothing model [16],

Grey model [17], Markov chain model [18], and ARIMA model

[19–21]. Among these models, the linear ARIMA model is the

most popular, but the accuracy of the prediction is limited by its

inability to capture nonlinear relationships in the data, which is a

problem because most real world applications involve nonlinear

components [22]. To overcome the restriction of linear models,

the artificial neural network (ANN) has been applied in many

research fields, such as power and energy [23], hydrology [24],

environment [25], finance and economy [26], and medicine [27].

The ANN has enhanced forecasting accuracy due to its intrinsic

properties which approximate any sort of arbitrary nonlinear

function [28,29]. However, the single ANN model is unable to

incorporate both the linear and nonlinear patterns found in the

real world. More recently, hybrid models using ARIMA and ANN

have been proposed to forecast complex events with high

prediction performance [22,30–33].

Therefore, we constructed a hybrid model combining ARIMA

and NARNN to forecast the prevalence of schistosomiasis in

humans, which provides a methodological basis for predicting and

detecting schistosomiasis infection in endemic areas.

Materials and Methods

Data sources
The government of China has developed several surveillance

programmes for controlling schistosomiasis since 1950s. These

surveillance contents include the prevalence in humans, bovines,

and snails; the geographic distribution of infection; meteorological

and hydrological conditions; the economic status of the infected

population. The surveillance results are recorded in local Center

for Disease Control and Prevention (CDC). According to the

National Scheme of Schistosomiasis Surveillance and the Scheme

of Schistosomiasis Surveillance in Hubei Province, surveillance

points have been set up by Chinese CDC and Hubei CDC

complying with the following principles: surveillance points

represent the schistosomiasis infection status in our country or

our province; the corresponding work units are able to undertake

and complete the monitoring task; endemic villages are chosen as

surveillance points based on the layering principle; surveillance

points remain unchanged within five years.

Qianjiang city, which is located in the south-central Hubei

Province, suffers from a very high prevalence of Schistosomiasis

japonica because most of the district is covered by lakes and

marshes that are suitable for the breeding of snails. One national

surveillance point and nine provincial surveillance points have

been set up in Qianjiang City. The study chose humans as the

research object without regard to bovines or snails. The

monitoring method of human schistosomiasis in these surveillance

points: all of residents more than 6 years old were examined and

the monitoring time was from October to November at every year.

The method of examination: during 1956 to 2003, residents were

examined by stool Kato-Katz examination with three slides from a

single stool specimen and the prevalence equaled the positive rate

of stool examination; during 2004 to 2006, the government

experimented the serum examination with indirect hemagglutina-

tion assay (IHA), but the positive rate of stool examination was still

regarded as the prevalence; since 2007, residents were screened by

IHA, then the positive individual was reconfirmed by stool Kato-

Katz examination and the prevalence was equal to the positive

rate of serum examination multiplied by the positive rate of stool

examination. We obtained the annual report data of human

prevalence of schistosomiasis from 1956 to 2012 from the

Qianjiang CDC (Table S1).

Methods
It has previously been shown that reliable prediction models

combine linear and nonlinear components [31,34–36]. In our

study, we also adopted such method as follows:

Figure 1. The configuration of the NARNN. The final established NARNN (original prevalence series as target series) consisted of one output layer
with 1 neuron and one hidden layer with 13 neurons and 4 delays. Figure 1A shows the close loop form and Figure 1B shows the open loop form.
doi:10.1371/journal.pone.0104875.g001
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yt~LtzNt ð1Þ

Where Lt, Nt and yt denote the linear component, the nonlinear

component and the original time series respectively. In the first

phase, we used the ARIMA model to generate the residual series:

et~yt{L
^

t ð2Þ

Where L
^

t is the predicted value by the ARIMA model at time t.

In the second phase, NARNN model was used to model the

residual series from the ARIMA model:

et~f et{1,et{2, � � � ,et{nð Þzet ð3Þ

Where f is a nonlinear function determined by the neural

network and et is the random error. The estimation of et by (3)

yields the forecast value, N
^

t.

Figure 2. Autocorrelation function (ACF) and partial autocorrelation function (PACF) plots of original prevalence series. A and B. ACF
and PACF plots of original schistosomisis prevalence (1956–2008); C and D. ACF and PACF plots after one order of regular differencing (1956–2008); E
and F. ACF and PACF plots of original schistosomisis prevalence (1956–2012); G and H. ACF and PACF plots after one order of regular differencing
(1956–2012). Dotted lines indicate 95% confidence intervals. Most of the correlations fall around zero within their 95% confidence intervals except for
the one at zero lag, which indicate the series achieved stationary.
doi:10.1371/journal.pone.0104875.g002
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Finally the combined forecasting values of the time series are

obtained as follows:

y
^

t~ Lt

^
zN
^

t ð4Þ

Developing the ARIMA model to analyze the original
time series

The ARIMA model consists of three main parameter [37],

including the autoregressive (AR) term, the moving average (MA)

term and the differencing (D) term. The AR term, yt~w1yt{1

zw2yt{2z � � �zwpyt{pzet, relates the observation made at year

t to the previous year t-1 or earlier years. The MA term,

yt~etzh1et{1zh2et{2z � � �zhqet{q, estimates the random

error which is defined as the difference between the observation

and forecasting value at year t to the previous year (t-1) or earlier

years. The differencing is used to de-trend the time series, and D

term is an integer and referred to as order of differencing.

Augmented Dickey-fuller Unit Root (ADF) test is used to identify

whether the time series is stationary or not. So when the series

tested by ADF test is non-stationary, we can use differencing

to transform it into a stationary series. The building block for

time series models is that the white noise is a sequence of random

variables etf gT
t~1 for all t :

E etð Þ~0

E etet{j

� �
~0Vj

Var etð Þ~E e2
t

� �
~s2

8<
:

Lagged scatter-plots, autocorrelation function (ACF) and partial

autocorrelation function (PACF) plots are used to identify the

temporal autocorrelation in the yearly data. Model parameters are

estimated by the maximum likelihood method. The parameters

that have significant differences are kept and all others are

excluded. The residual series needs to be inspected, which ideally

shows no secular or seasonal trends as white noise [38]. The model

with the minimal Bayesian information criterion (BIC) value is

selected to be best fitted.

In this study, for the prediction performance comparison, the

modelling data set was from 1956 to 2008 and the testing data set

was from 2009 to 2012. However, we reconstructed the ARIMA

model using the entire 57 year data set in order to forecast the

prevalence of schistosomiasis in the future four years. This

information was then used to compute the residual series by

equation (2) as the target series of NARNN. We used SAS

Software Version 9.2 to develop the ARIMA model.

Constructing the NARNN model to predict the residual
series

ANNs can be classified into dynamic and static categories. Static

neural networks have no feedback elements and no delays, but

rather they calculate output directly from the input through feed

forward connections such as feed-forward, back-propagation

network (FFBP), radial basis function network (RBF), or proba-

bilistic neural network (PNN). In dynamic neural networks, the

output depends not only on the current input to the network, but

also on the previous inputs, outputs, or states of the network,

including time-delay network (TDN), layer-recurrent network

(LRN), and nonlinear autoregressive network with exogenous

inputs (NARX). NARNN, which is one of the dynamic neural

networks, can learn to predict a simple time series given past

values of the same time series, yt~f yt{1,yt{2, � � � ,yt{dð Þ. It is

based on the FFBP [39] first introduced by Rumelhart, Hinton

and Williams [40], which can approach any non-linear functions,

and for each of these time sequences inputs, there is a tapped delay

line to store previous value.

In this paper, we utilized the neural network time series tool

which was one of the graphical user interfaces (GUI) in MATLAB

[41]. In this tool, NARNN incorporates a default two-layer FFBP

with a sigmoid transfer function in the hidden layer and a linear

transfer function in the output layer with the Levenberg-

Marquardtal algorithm. Using the tool, command-line scripts are

generated automatically which helps simplify the construction of

the model. The next section demonstrates how to train NARNN

to fit the time series.

Table 1. The autocorrelation check for residuals in ARIMA model.

Lag A B

X2 P-value X2 P-value

6 6.08 0.2981 6.63 0.2500

12 13.13 0.2849 14.35 0.2144

18 16.25 0.5059 17.78 0.4030

24 21.71 0.5378 23.38 0.4386

Note: A = modelling data from 1956 to 2008, B = modelling data from 1956 to 2012.
doi:10.1371/journal.pone.0104875.t001

Table 2. The parameter estimation of ARIMA model for two modelling data set.

Modelling set Parameter Estimate Standard error t-value P-value* Lag

1956–2008 AR 1,1 20.31675 0.13308 22.38 0.0211 1

1956–2012 AR 1,1 20.31220 0.12811 22.44 0.0181 2

*: Parameter estimation was considered statistically significant (P,0.05).
doi:10.1371/journal.pone.0104875.t002
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According to the GUI’s direction, we inputted the target series

and eventually obtained a command-line script, which was then

modified as shown below:

Step 1: We inputted the target series and obtain a command-

line script.

Step 2: We used the default data division function type: divide-

rand, which divided the data set randomly. The data was

divided three parts, the training subset used to train the

network, the validation subset used to stop training before over-

fitting, the testing subset used as a completely independent test

of network generalization the study, the ratios for training,

Figure 3. Prevalence of schistosomiasis and its predicted values from the ARIMA model. When we completed the ARIMA modelling
(1956–2008) and drew the prediction curve (Figure 3A), we discovered that it made the model fitting better to advance the prediction series with one
lag period (Figure 3B).
doi:10.1371/journal.pone.0104875.g003
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validation, and testing were set to 0.80, 0.10 and 0.10,

respectively.

Step 3: We adjusted the arguments feedback delays and hidden

units by trial and error. The error autocorrelation plot, the time

series response plot, the MSE and the correlation coefficient (R)

were analyzed to choose the optimal model.

Step 4: According to the feedback delays, we inputted the

targets of the closed loop network for forecasting the prevalence

of next four years. The open loop and close loop were important

configurations in modelling and forecasting. In the open loop, a

one-step-ahead prediction was performed. The configuration of

the NARNN is showed in Figure 1. The output of the NARNN

(Figure 1A), y(t), is fed back to the input of the network (through

delays), since y(t) is a function of y(t-1), y(t-2), …, y(t-d). However,

for efficient training this feedback loop can be opened

(Figure 1B). Because the true output is available during the

training of the network, it is used instead of feeding back the

estimated output. This has two advantages. The first is that the

input to the feedforward network is more accurate. The second

is that the resulting network has a purely feedforward

architecture, and therefore a more efficient algorithm can be

used for training. After training, the network would be

converted to closed loop form which was used for multi-step-

ahead prediction.

Moreover, we constructed a single NARNN using the original

prevalence series (OS) from 1956 to 2008 as the target series in

order to compare with the hybrid model. The NARNN modelling

was implemented using the Neural Network Toolbox in MATLAB

Version 7.11(R2010b).

Performance statistic index
In order to evaluate prediction performance, the mean square

error (MSE), mean absolute error (MAE) and mean absolute

percentage error (MAPE) were used to compare the forecasting

capabilities of the ARIMA, NARNN and ARIMA-NARNN models:

MSE~
1

n

Xn

t~1

yt{y
^

t

� �2

ð5Þ

MAE~
1

n

Xn

t~1

Dyt{ yt
^
D ð6Þ

MAPE~
1

n

Xn

t~1

Dyt{ yt
^
D

yt

ð7Þ

Results

ARIMA model
The original prevalence series achieved stationary after one

order differencing. The ACF and PACF plots of original

prevalence series are displayed in Figure 2. We found the

minimum BIC (2, 0) = 0.636296. The autocorrelation check for

residual is presented in Table 1. All the P-values.0.05 showed

that the residual series was a white noise series, which indicates the

information was extracted sufficiently. The results of the param-

eter estimation are shown in Table 2. The final mathematical

model is expressed as follows:

yt
^

~0:6832yt{1z0:3168yt{2 ð8Þ

y
^

t~0:6878yt{1z0:3122yt{2 ð9Þ

(8)Prevalence data from 1956 to 2008 as the modelling data set.

(9)Prevalence data from 1956 to 2012 as the modelling data set.

The prediction curve showed a similar trend, but with a lag,

compared to the observation curve (Figure 3A) from 1956 to 2008.

Therefore, we advanced the prediction series by one lag period

(Figure 3B), and then computed the residual series (RS), which was

subsequently used as the target series of NARNN. The same

computations were performed on the prediction series from 1956

to 2012, and the result was termed the new residual series (NRS).

The predicted values of the testing set, which spanned from 2009

to 2012, were 2.74%, 2.79%, 2.77%, and 2.78% respectively. The

predicted prevalence in the future four years, ranging from 2013 to

2016 were 0.75%, 0.76%, 0.76%, and 0.76% respectively.

NARNN model
The most appropriate network we found applied to forecast

these target series had the number of hidden units and delays, the

MSE and R as shown in Table 3. All the R values were greater

than 0.8. The network diagram (original prevalence series as target

series) is an example to illuminate the configuration of NARNN

and presented in Figure 1. The error autocorrelation function plot

of different target series is displayed in Figure 4. The correlation

coefficients for all the models except the trend with zero lag fell

within the 95% confidence limits. The response of the network,

outputs, targets and errors versus time are displayed in Figure 5,

which shows that the errors were small in the training, testing and

validation sets. We observed that the predicted residuals from

2009 to 2012 were 20.94%, 20.81%, 20.38%, and 20.91%

respectively, and from 2013 to 2016 were 20.0029%, 0.043%,

0.0044%, and 0.010% respectively.

Table 3. The optimum networks configuration of different target series.

Target series Hidden units Delays MSE of training MSE of validation MSE of testing R

OS 13 4 0.9908 1.3174 6.4501 0.9059

RS 14 4 0.1047 0.5904 0.4245 0.8274

NRS 15 4 0.1231 0.2147 0.2051 0.8552

Note: OS = original prevalence series, RS = residual series, NRS = new residual series
All MSE values should be multiplied by 1024.
doi:10.1371/journal.pone.0104875.t003
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Figure 4. Error autocorrelation plots of different target series. The error autocorrelation was one of the evaluation parameters in the
modelling process. As shown in the figure, the correlations except for the one at zero lag, all fall within the 95% confidence limits around zero, which
demonstrates that the model reliably corresponds to the data.
doi:10.1371/journal.pone.0104875.g004
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Figure 5. The time-series response plots of different target series. The plots indicate which time points are selected for training, testing and
validation. Since the outputs were distributed evenly on both sides of the response curve and the errors versus time were small, we determined that
we had chosen the appropriate model.
doi:10.1371/journal.pone.0104875.g005
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Comparing analysis
According to equation (4), we can get the predicted prevalence

from the ARIMA-NARNN model (Table 4).

Table 5 presents the differences in modelling error (from 1956

to 2008) and testing error (from 2009 to 2012) between the

observed and predicted values using each of the three models. The

hybrid model was the best with the lowest MSE, MAE and MAPE.

The point-to-point comparison between observations and predict-

ed values is given in Figure 6A. The prediction curve from the

ARIMA-NARNN model was the best fit for the observed curve of

the prevalence of schistosomiasis.

The ultimate forecasting result
The values of forecasting from the hybrid model in the future

four years, beginning in 2013 were 0.75%, 0.80%, 0.76% and

0.77% respectively. The predicted change trend (1960–2016) from

the ARIMA-NARNN model is shown in Figure 6B. The

modelling MSE, MAE and MAPE were 0.139561024, 0.0028,

and 0.0523 respectively. The results indicate that the hybrid model

was well fitted to the data of schistosomiasis prevalence in humans.

Discussion

To our knowledge, this study was the first to develop and apply

the ARIMA-NARNN hybrid model in a parasitic disease, with the

specific purpose of forecasting disease trends and guiding control

strategies. We experimented with the single ARIMA model, the

single NARNN model and a proposed ARIMA-NARNN hybrid

model to compare forecasting performance based on the MSE,

MAE, MAPE, and found that the hybrid model achieved better

prediction accuracy than either of the models used separately.

The observations as shown in Figure 3 shows that the

prevalence have been in a higher level (most of them more than

5%) and often fluctuate during 55 years from 1956 to 2012, but

with a downward trend in the overall development. The predicted

prevalence of schistosomiasis by the ARIMA-NARNN model over

the next four years meet the criteria of transmission control

(prevalence less than 1%) in our country [42], which indicates that

our control strategies that are already in place were efficient.

Nevertheless, it is still far from the transmission block criteria (no

cases within five consecutive years) and elimination goal. The

model predicts a no-downward trend, which underscores the

importance of adjusting and enhancing control programmes to

prevent rebound of the disease and further achieve the elimination

of schistosomiasis. All the strategies mentioned below could be

useful to adjust and enhance our control and elimination

programmes: focusing on the construction of highly sensitive

surveillance and response system; transferring more funds to some

high endemic surveillance points to reinforce some interventions

such as mollusciciding, chemotherapy of local residents and

bovines, faecal management, agriculture irrigation system modi-

fication; accelerating the development of schistosomiasis diagnosis

technologies; strengthening health propaganda and education.

For decades, many researchers have made efforts using

mathematical models to predict patterns of schistosomiasis

transmission [43–48] and yet the numerous influencing factors

of schistosomiasis infection [1] [49]are collected uneasily that

make modelling difficult. However, time series forecasting is a

relatively easy and useful approach in which past prevalence is

used as a model which is then used to extrapolate the time series

into the future, according to its own development rules. We

integrated the classical linear time series forecasting ARIMA

model and the dynamic NARNN model to forecast the

prevalence. In the first modelling phase, the ARIMA model was

established. The mathematical formulas (8) and (9) show that the

predicted value at year t depends on the previous years t-1 and t-2.

Table 5 shows that the modelling errors from ARMIA model are

small and fitting result is good, but the testing errors are relatively

large. The modelling and testing errors from single NARNN

model are also big. In the second study phase, the NARNN model

was set up to forecast residuals. The number of feedback delays

was set to 4 by trial and error, which indicated that the residual at

Table 4. The predicted prevalence (%) from three models.

2009 2010 2011 2012 2013 2014 2015 2016

Observations 1.71 1.45 0.94 0.70

ARIMA 2.74 2.79 2.77 2.78 0.75 0.76 0.76 0.76

NARNN 1.84 1.87 2.42 3.57

ARIMA-NARNN 1.80 1.98 2.39 1.87 0.75 0.80 0.76 0.77

Note: The 2009–2012 values are predicted using modelling data 1956–2008.
The 2013–2016 values are predicted using modelling data 1956–2012.
doi:10.1371/journal.pone.0104875.t004

Table 5. The prediction performance results of three models.

Modelling error Testing error

Model MSE MAE MAPE MSE MAE MAPE

ARIMA 0.5817 0.0056 0.0770 2.6277 0.0157 1.6095

NARNN 1.5812 0.0094 0.1441 2.6565 0.0123 1.5111

ARIMA-NARNN 0.1869 0.0029 0.0419 0.9375 0.0081 0.9064

Note: All MSE values should be multiplied by 1024.
doi:10.1371/journal.pone.0104875.t005
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year t depended on the previous 4 years values. When we

combined the two models, the modelling and testing errors were

decreased. The modelling MSE, MAE, MAPE decreased by

67.87%, 48.21%, 45.58% and the corresponding testing error fell

by 64.32%, 48.41%, 43.68% respectively as compared to using

ARIMA model alone. When compared to single NARNN model,

the modelling MSE, MAE, MAPE decreased by 88.18%, 69.15%,

70.92% and the corresponding testing error reduced by 64.71%,

34.15%, 40.02% respectively. The results from this study

demonstrated that our hybrid model of tracking prevalence was

reasonable.

In this study, we chose NARNN to simulate the nonlinear part

of the time series due to its high fault tolerance performance,

dynamic property and ability to capture any nonlinear data

structures without prior assumptions [26,50]. Prior to this study,

several hybrid techniques had been proposed, which used mainly

Figure 6. The change trend of prevalence of schistosomiasis from three models. The comparison of observation and predicted values
between the hybrid ARIMA-NARNN model, and the single ARIMA or NARNN model are shown in Figure 6A. On the whole, the red line is closer to the
observation curve that indicates the predicted values from the ARIMA-NARNN model are the best fit for the prevalence of schistosomiasis in humans.
Figure 6B shows the predicted prevalence of schistosomiasis (1960–2016) from the reconstructed hybrid ARIMA-NARNN model.
doi:10.1371/journal.pone.0104875.g006
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the static neural networks, such as BP, RBF, PNN, or generalized

regression neural network (GRNN) [30,33,36,51,52]. Dynamic

neural networks, such as NARNN are generally more powerful

than static networks in time series forecasting because dynamic

networks have memory and can be trained to learn time-varying

patterns. Furthermore, NARNN is also recommended by the

MATLAB software (R2010b) since it is capable of more accurate

learning than the traditional dynamic Elman network. NARNN

can learn to predict a simple time series given past values of the

same series which was applicable to our study data. In this paper,

we used the neural network time series tool in MATLAB which

allowed the calculation in an easy-to-use graphical environment to

guide us to design the NARNN model. The dynamic NARNN

processing was determined automatically on the best form by the

software.

Limitation of the study
There are some limitations in this study. Firstly, there are no

standardized methods for determining the optimum number of

hidden nodes, delays and other parameters for an ANN model. In

practice they are often chosen by trial-and-error and the specific

prediction process cannot be explained [53]. Secondly, determin-

ing the 95% confidence interval for the forecast is an additional

problem [54]. Thirdly, the forecasting model’s ability to extrap-

olate is limited, the longer the forecasting time, the lower the

prediction accuracy. Fourthly, our study only focused on

Qianjiang City. However, different groups in different living

environments may have different transmission patterns and

prevalence. Whether the model is appropriate for other schisto-

somiasis-endemic areas and other infectious diseases remains to be

investigated.

Conclusion

In summary, the ARIMA-NARNN model could be used to

reliably forecast the prevalence of schistosomiasis in humans of

Qianjiang City, which provides a promising methodological basis

for the monitoring of schistosomiasis in the study area. Further

studies are warranted to certify the feasibility of the hybrid model

applied to predict schistosomiasis infection in other endemic areas

or other infectious diseases.
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