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Abstract

Introduction: Microscopy is the gold standard for diagnosis of malaria, however, manual evaluation of blood films is highly
dependent on skilled personnel in a time-consuming, error-prone and repetitive process. In this study we propose a method
using computer vision detection and visualization of only the diagnostically most relevant sample regions in digitized blood
smears.

Methods: Giemsa-stained thin blood films with P. falciparum ring-stage trophozoites (n = 27) and uninfected controls
(n = 20) were digitally scanned with an oil immersion objective (0.1 mm/pixel) to capture approximately 50,000 erythrocytes
per sample. Parasite candidate regions were identified based on color and object size, followed by extraction of image
features (local binary patterns, local contrast and Scale-invariant feature transform descriptors) used as input to a support
vector machine classifier. The classifier was trained on digital slides from ten patients and validated on six samples.

Results: The diagnostic accuracy was tested on 31 samples (19 infected and 12 controls). From each digitized area of a
blood smear, a panel with the 128 most probable parasite candidate regions was generated. Two expert microscopists were
asked to visually inspect the panel on a tablet computer and to judge whether the patient was infected with P. falciparum.
The method achieved a diagnostic sensitivity and specificity of 95% and 100% as well as 90% and 100% for the two readers
respectively using the diagnostic tool. Parasitemia was separately calculated by the automated system and the correlation
coefficient between manual and automated parasitemia counts was 0.97.

Conclusion: We developed a decision support system for detecting malaria parasites using a computer vision algorithm
combined with visualization of sample areas with the highest probability of malaria infection. The system provides a novel
method for blood smear screening with a significantly reduced need for visual examination and has a potential to increase
the throughput in malaria diagnostics.

Citation: Linder N, Turkki R, Walliander M, Mårtensson A, Diwan V, et al. (2014) A Malaria Diagnostic Tool Based on Computer Vision Screening and Visualization
of Plasmodium falciparum Candidate Areas in Digitized Blood Smears. PLoS ONE 9(8): e104855. doi:10.1371/journal.pone.0104855

Editor: Michelle Louise Gatton, Queensland University of Technology, Australia

Received May 8, 2014; Accepted July 16, 2014; Published August 21, 2014

Copyright: � 2014 Linder et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability: The authors confirm that all data underlying the findings are fully available without restriction. All image files are available from the MaMic
database http://fimm.webmicroscope.net/Research/Momic/mamic.

Funding: The study was supported by the Swedish Research Council, Sigrid Jusélius Foundation, Finska Läkaresällskapet, and the Dorothea Olivia, Karl Walter
and Jarl Walter Perklén Foundation. In addition, this study has received funding from the ‘‘European Advanced Translational Research Infra Structure in Medicine’’
(EATRIS). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* Email: nina.linder@helsinki.fi

. These authors contributed equally to this work.

Introduction

Accurate malaria diagnosis is a key to successful management of

the disease; yet in the African region, in 2012, up to 40% of

suspected malaria cases attending public health facilities did not

receive a diagnostic test [1]. In some regions, fewer than 10% of

patients under the age of five presenting with fever are tested [2].

Effective diagnostics improves the management of patients with

malaria, supports differential diagnosis regarding fever, and is

essential for malaria surveillance reporting. Also, inappropriate use

of costly first-line artemisinin-based combination therapies is

reduced resulting in prevention of adverse effects, drug resistance

and an improved cost-benefit ratio for the management of febrile

symptoms [3]. Although the worldwide incidence of malaria is

declining, there are still more than 200 million new cases and over

half a million deaths from malaria yearly of which 90% were due

to P. falciparum [1]. The decline in mosquito vector density and

the scale-up of malaria control interventions contribute to the

more than 25% decline of malaria transmission globally and even

more in sub-Saharan Africa. The drop in the incidence of malaria

increases the risk of misdiagnosing febrile illness thus resulting in a
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paradoxical increase in the demand for accurate diagnosis [4].

Over-diagnosis of malaria is common especially in patients from

areas with low to moderate transmission rates. The consequence is

failure to adequately treat other causes of fever [5].

The two diagnostic methods for routine detection of malaria

parasites are microscopy and rapid diagnostic tests (RDTs). The

choice between using microscopy or RDTs is dependent on several

factors including local malaria epidemiology, skills of interpreters,

caseload, and availability of microscopy for differential diagnostics.

High-quality microscopy still remains the gold standard providing

parasite quantification, allowing species and stage differentiation,

enabling monitoring of antimalarial drug response and identifica-

tion of other disease causing agents. Furthermore, in areas where

the caseload of febrile patients is high, microscopy is a more cost-

effective diagnostic option compared to RDTs [6,7]. Conversely,

the sustainability of microscopy requires skilled microscopists,

maintenance of infrastructures, capital investment as well as

quality assurance and control. In addition, malaria microscopy is

time-consuming and labor-intensive and associated with inter- and

intra-observer variability [8].

According to recommendations, at the community level or

outside formal health care services where high quality microscopy

generally is not available, RDTs may be feasible for diagnosing

malaria [6]. Advantages of RDTs include the technical easiness of

the tests, limited training requirements, simplicity of interpretation

and absence of need for electricity. The sensitivities and

specificities of RDTs are variable and heat instability as well as

limited shelf life of the tests is a concern [3].

Microscopy can be cost-effective and multipurpose. Although

quality assurance programs have now been established; the quality

of microscopy-based diagnosis is frequently inadequate [7,9]. At

the primary health care level the excessive workloads of

microscopists are a major contributor to poor performance and

the sensitivity decreases especially when large numbers of samples

are processed [8]. Typically, if performed according to recom-

mendations, it takes 30 seconds to read a strongly positive malaria

slide and 6–20 minutes to read a weakly positive or a negative slide

[10]. In addition, average time to count parasitemia is 15 and

17 minutes for an expert and qualified microscopist respectively if

performed according to recommendations [11]. Within external

quality assessment programs in public health laboratories in

Africa, the accuracy of microscopy performed by human observers

were low and only 51% of parasite quantification results were

considered acceptable [12].

Recent development in imaging techniques enables digitization

of large parts of a microscope sample or even an entire blood film

at a high optical resolution, e.g. 206, 406, or even .636with oil

immersion. The obtained digital sample can then be viewed on a

computer screen in a manner similar to conventional microscopy,

i.e. panned and zoomed to different magnification [13]. Computer

vision-based detection and quantification of malaria parasites in

digital images of blood films has been attempted in several

previous studies using image features such as color, texture and

shape in combination with machine learning [14,15]. From a

computer vision perspective the detection of malaria parasites in

blood films is a complex task and parameters that need to be

accounted for include e.g. blood film staining quality, illumination

differences, image acquisition, image pre-processing, feature

selection and classification [14].

Most of the published computer vision algorithms for identifi-

cation of malaria parasites have been developed and tested using a

relatively small number of patients and, due to different study end-

points, comparisons between the performances of the algorithms

are difficult to perform [14,16,17]. Furthermore, previous studies

usually show results on an image level (i.e. microscope field-of-

view) and are not attempting at patient level diagnosis [14].

We here propose and evaluate a novel diagnostic aid based on a

computer vision algorithm that analyzes an average of more than

50,000 erythrocytes in a thin blood film, ranks sample areas

according to probability of infection and presents a small subset

(approx. 100) of the highest scoring areas as a single panel to the

user. This means that the most suspicious regions from a sample

area corresponding to 500–600 high-power fields-of-view in a

microscope are collected into a panel corresponding to a single

field-of-view. The tool can aid the human evaluator in the

identification of P. falciparum ring-stage trophozoites and thus

assist in the diagnostic process. Moreover, the method can also

quantify the level of parasitemia and thus potentially provide a

diagnostic system for antimalarial drug screening programs.

Materials and Methods

Giemsa-stained thin blood films
Routinely collected, anonymized thin blood films from 47

patients (27 cases and 20 controls) were obtained from the Helsinki

University Central Hospital Laboratory (World Health Organiza-

tion accredited laboratory for malaria diagnostics). Written

informed consent was not required according to the Ministry of

Social Affairs and Health, Finland’s Act On the Medical Use of

Human Organs, Tissues and Cells (Amendments up to 277/2013

included) because the samples collected contained no personal

identity codes.

Thin blood films were prepared from EDTA-anticoagulated

blood and Giemsa stained according to standard procedures [6].

All malaria samples included in the study had previously received

a species-specific diagnosis of P. falciparum, as assessed with a

conventional microscope by an expert microscopist according to

WHO guidelines [6].

Digitization of blood smears
According to recommendations 300–800 high power (1006, oil

immersion) fields-of-view per thin blood smear sample should be

screened to exclude a malaria infection [18,19], which corresponds

approximately to a sample area of approximately 6–20 mm2. For

the current study, selected rectangular areas with an average size

of 6 mm2 (range 5.28–7.40) from monolayer regions of Giemsa-

stained thin blood films were digitized with a whole-slide scanning

system that consists of a microscope (Axio Imager Z2, Carl Zeiss

Microscopy AG, Jena, Germany) equipped with a motorized stage

(SCAN 8, Märzhäuser, Wetzlar, Germany), a 636 oil immersion

objective (Plan-Apochromat; numerical aperture 1.4, Zeiss

Microscopy AG, Jena, Germany), an 1.0 camera adapter, an

RGB LED illuminator (Tofra RGB LED, Tofra Inc, Palo Alto,

California, USA), a microscope camera (CoolCube 1 with a 2/30

charge-coupled device sensor with a pixel size of 6.45 mm,

MetaSystems, Altlussheim, Germany) and software for whole slide

scanning (Metafer 4, MetaSystems, Altlussheim, Germany). The

scanner captured 475–667 (average 549) fields-of-view (pixel

dimension 128061024; pixel size 0.10 micrometer) per sample

and these were stored as uncompressed R, G and B channel TIFF

(Tagged Image File Format) image files and then stitched and

compressed into an ECW (Enhanced Compressed Wavelet,

Intergraph, Intergraph, Norcross, GA) file format and uploaded

to a whole-slide image management platform (WebMicroscope,

Fimmic Oy, Helsinki, Finland) running image server software

(Erdas Apollo Image Web Server, Intergraph, Norcross, GA).

Finally the images were annotated and for the analysis download-
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Figure 1. A flow chart of the proposed P. falciparum detection method resulting in a panel showing the most probable detections in
one thin blood smear as well as the parasitemia count for the same sample.
doi:10.1371/journal.pone.0104855.g001
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ed as 150061500 pixel tiles from the server in a lossless Portable

Network Graphic (PNG) format (Fig. 1).

Image data sets and annotation of malaria parasites
The digitized blood films (n = 47) were divided into three

separate sets; a training set (n = 10), validation set (n = 6) and test

set (n = 31). The training set consisted of five thin blood films with

a malaria infection and five uninfected control samples. The

validation set consisted of three infected and three uninfected

blood films and was used for optimization of the algorithm.

Finally, the test set consisted of blood films from 19 patients with a

malaria infection and 12 uninfected controls and used for

assessment of accuracy.

Erythrocytes suspected to be infected were manually labeled by

one of the researchers (N.L.) into two classes: certain parasites

(label 1) or uncertain parasites (label 2) using a previously

described annotation tool [20]. The number of annotated, certain

parasites was 8329, 569, and 8093 in the training, validation and

test set respectively. Only certain parasites (label 1) were

considered when calculating the ground truth parasitemia. The

digitized areas of the thin blood films are stored in a database and

available for viewing at http://fimm.webmicroscope.net/

research/momic/mamic

Malaria parasite detection
The parasite detection method consists of two stages: 1) a

candidate region segmentation and 2) P. falciparum detection.

The rationale of the selected two-step approach is to first identify

potential parasites using simple morphological parameters such as

color, shape and size. Further detailed inspection of the remaining

candidate regions is then performed with computationally more

expensive algorithms aiming to detect the actual malaria parasites

among the candidates (Fig. 1).

Candidate region segmentation. The green channel from

each of the 150061500 pixel PNG tiles captured at 636
magnification of the Giemsa stained blood films was first smoothed

using a median filter (363). The histograms h of has a bimodal

distribution where the first mode m1 represents the background

with maximum value P, while the second mode m2 represents the

presence of red blood cells with maximum value Q (Fig. 2). Two

thresholds were defined using auxiliary lines l1 and l2. The value

that maximizes the distance between l1 and h was defined as TS,

similarly the value that maximizes the distance between l2 and h
was defined as TB as previously described [21].

TB separates an image into background ($TB) and foreground

(,TB) regions. While TS defines strongly stained regions (,TS) in

the foreground.

From the foreground (,TB), all objects with an average area less

than 10 mm2 e.g. platelets and debris were removed. Further, from

the strongly stained regions of the foreground (,TS), objects larger

than (40 mm2) were filtered out, e.g. leukocytes, aggregated

platelets. The remaining strongly stained regions in the foreground

defined the parasite candidate regions, which typically represent

only a small fraction of the whole 150061500 pixel tile (for

example 0.64% of the tile in Fig. 2).

Sliding window classification. Each candidate region was

divided into partly overlapping image windows of 64664 pixels

from which the below described features were extracted and used

as input to the support vector machine (SVM) classifier. The

windows were defined by their center points, which were sampled

from the candidate regions using a sliding window-sampling step

of eight pixels (Fig. 3). The size of the window was set to fit the

largest parasites and also to capture their context. The size of the

window was set to 6.4 mm66.4 mm (64664 pixels).

Features. The characteristics of the windows were mathe-

matically modeled using a joint distribution of local binary pattern

and rotation invariant local contrast features (LBP/VAR) and

Figure 2. The candidate region segmentation phases: A) a
typical bimodal histogram and definition of thresholds TS and
TB, B) an example tile segmented into C) foreground and
background, D) strongly stained regions based on the
histogram and E) the remaining candidate region after filtering
out the smallest and the largest objects.
doi:10.1371/journal.pone.0104855.g002

Figure 3. The sliding window support vector machine classifi-
cation illustrated by A) an example tile showing all the
windows extracted from the tile based on the candidate
region segmentation, B) the resulting heat map after classifi-
cation, in which the decision scores for the windows are
visualized as small squares colored according to a color map
and C) a bar showing the heat map for the classifier score
values.
doi:10.1371/journal.pone.0104855.g003
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scale invariant feature transform (SIFT) features. Both LBP/VAR

and SIFT features are widely used for object and face recognition

in state-of-the-art computer vision applications [22,23]. We

hypothesized based on previous experience [24] and the literature

that the combination of these features would be an accurate

descriptor for detecting the parasites; LBP/VAR capturing the

micropatterns and SIFT capturing the local gradients of the

objects respectively.

The LBP operator compares each image pixel to P pixels in a

neighborhood with a radius R. The intensity value of the central

pixel is used to threshold the neighborhood pixels, thus forming a

binary code. The LBP operator detects variations in the structure

of the texture pattern, e.g. line ends, dots, borders, and curves.

LBP is combined with a rotation invariant local contrast (VAR).

The VAR represents the variance of the gray values of the

neighborhood pixels. The LBP codes and the quantized VAR

values were combined to an LBP/VAR feature vector. In the

current study, the LBP and VAR features were computed from the

gray scale images using parameter values P = 16 and R = 2 and

with mapping to uniform and rotation invariant LBP patterns and

VAR values quantized to four levels [25]. These parameters

resulted in a LBP/VAR vector of 72 bins that was normalized to

unit length.

The SIFT descriptor is an image region descriptor capturing the

local image gradients. The descriptor is a three-dimensional

histogram composed of gradients in quantized orientation. For the

purpose of the current study, he SIFT descriptors were computed

using the settings originally proposed [26], i.e. each window was

divided to 464 subregions with eight orientation planes, resulting

in a feature vector with 128 bins. The SIFT descriptor was

computed from gray scale, saturation and hue channels and the

final SIFT vector therefore consisted of 385 bins (128+128+128).

An open source computer vision library was used to compute the

features [27].

Classifier. A linear support vector machine (SVM) classifier

[28] and a homogeneous kernel mapping [27] was used to classify

the windows for the presence of malaria parasites based on the

LBP/VAR and the SIFT features. The kernel mapping is a linear

approximation of homogeneous kernels, which are commonly

used in computer vision applications. Mapping of the x2 kernel

was applied to the features. Before the feature mapping the final

feature vectors had 456 bins (72+128+128+128), and 3,192 bins

after the mapping.

Training of the classifier
The training set comprised of five patients with different

parasitemia levels (7–16%) and five uninfected cases. To ensure a

sufficient number of parasite examples, cases with high parasit-

emia counts were selected for training. The training samples

correspond to windows (64664 pixels) representing parasites or

non-parasite objects (e.g. debris, platelets etc.) present in the

candidate region.

The positive training samples, i.e. windows containing a

parasite, were extracted from the malaria-infected cases using an

annotation mask (analogous to the candidate region mask). The

annotation mask was defined by expanding the annotation points

that were assigned by the human observer approximately at the

center of the trophozoite to circles of 16 pixels in diameter. In

addition, the positive samples were extracted in four different

orientations: (0u, 90u, 180u, 270u). Only annotations labeled as a

certain parasite (label 1) were used for training and annotations

labeled as an uncertain parasite (label 2) were excluded from the

training set. Twenty thousand malaria positive training windows

were chosen randomly within each of the positive training samples

(n = 5) and, resulting in a total of 100,000 windows containing a

parasite.

Ten thousand malaria negative training windows were extract-

ed from the candidate regions of all ten training samples

(randomly from both the infected and uninfected patient samples),

giving a total of 100,000 malaria negative windows. Areas near an

annotation labeled as a parasite were excluded when extracting

negative training samples, so that positive and negative training

windows could maximally have an overlap of 5%.

The total number of training windows from which the LBP/

VAR and SIFT features were extracted was therefore 200,000,

with 50% positive and 50% negative windows.

The cost parameter C of the linear SVM classifier was

optimized on windows extracted from the three infected and

three negative controls in the validation set with exponentially

growing parameter values: C = (2210, 228, …,28,210). The

parameter was evaluated based on areas under the receiver

operating characteristics (ROC) and precision recall (PR) curves

for classification on a window level. The best performance on the

validation set was achieved with a C value of 24.

Detection and visualization of classification scores
The sliding window classification was used to process the

candidate regions in the test set, resulting in a classification score

for each window, which form a dense classification map (Fig. 3).

The classification map was visualized with a heat map, i.e. color-

coded representation of classification scores, where a classification

score of a window is shown as a colored square located in the

center point of the window (Fig. 3).

A parasite induces multiple strong classification scores in

overlapping windows near the parasite. To avoid multiple

detections, non-maximum suppression (NMS)was applied to the

classification maps. Thus, the highest classification scores were

identified and scores closer than 4 mm (40 pixels) to the local

maximums were suppressed. The remaining windows with

associated classifications scores were entitled detections. The

detections were ranked from the highest to the lowest according

to the classification score and thereby the probability of containing

a parasite.

Evaluation of the tool on a patient level
To interpret the decision support tool on a patient level, two

expert malaria microscopists evaluated the 128 highest-ranking

detections in the test set samples (19 malaria infected cases and 12

uninfected controls) on a tablet computer (iPad, Apple Inc.,

Cupertino, CA, USA) (Fig. 4). The detections were arranged into

8616 panels (http://demo.webmicroscope.net/montagetest.aspx)

and presented to the expert in a random order blinded from the

ground truth. No time limit for evaluation was set but the experts

received a few of minutes of introduction to the decision support

system before starting the interpretation. The introduction to the

expert microscopist included guidance regarding how to swipe

from one case to the next on the tablet computer and advice for

viewing the detection areas and corresponding heat maps.

Estimation of parasitemia
Accurate segmentation of erythrocytes is necessary to assess

parasitemia i.e. the ratio of infected erythrocytes. Automated

erythrocyte segmentation was applied to the malaria-infected

samples to define a subset of well-defined erythrocytes. We

decided to segment only well-defined erythrocytes since segmen-

tation of clustered cells requires computationally expensive

algorithms and approximations that introduce uncertainty to the

infection status of individual cells. The erythrocytes were
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Figure 4. The reader assessment mode displayed on a tablet computer. A) A portrait view showing the highest ranked P. falciparum
detections, B) the highest ranked detections and their corresponding heat maps viewed in a landscape mode, C) an example of a strong detection
highly suspicious for P. falciparum and D) a lower ranked detection not suspicious for P. falciparum, E) a panel of the highest ranked areas displayed
on a tablet computer.
doi:10.1371/journal.pone.0104855.g004
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segmented from the earlier defined foreground mask (Fig. 2) as

previously described [21]. First, in the strongly stained foreground

(,TS), large objects (larger than 40 mm2) were removed. Second,

objects with a roundness, R̂Rv0:6 detected in the entire (,TB)

foreground were removed from the mask, after which only the

objects with a defined roundness and size remained. This was done

to ensure that the detected cells represent only individual

erythrocytes. Roundness R̂R
� �

of an object was defined as a

function of the area of the object (A) and perimeter (P):

R̂R~4Ap
�

P2. Third, objects with an area that deviated more

than a standard deviation s (0.06 micrometer) of the average

erythrocyte size (7.52 micrometer) in the training set were

removed.

After the segmentation, the erythrocytes were scored based on

the classification scores that were previously calculated for the

detection of parasites (Fig. 5). The classification scores within a

segmented erythrocyte were sorted and an average of the eight

strongest scores was calculated. If there were less than eight

classification scores in an erythrocyte, the average was calculated

from the available ones. Erythrocytes that did not contain any

classification score were assigned a score -‘. This value defined an

erythrocyte score, which was used to classify the cells either as

malaria infected or uninfected. The threshold for the erythrocyte

score was obtained with a cross validation on the training samples:

A threshold was set based on five random samples and then

evaluated on the remaining samples in the training set. One

thousand random sets were separately selected and optimized

according to the F-measure.

Statistical analysis
The detection accuracy of the classifier was evaluated with the

area under the ROC curve (AUCROC) and area under PR curve

(AUCRR) respectively. The ROC curve is defined with false

positive rate (FPR, 1-specificity) on the x-axis and true positive rate

(TPR, sensitivity or recall) on the y-axis, and the PR curve is

defined as a curve with TPR on the x-axis and positive predictive

value (PPV or precision) on the y-axis. The F-measure is defined as

a harmonic mean of precision and recall: 2*(precision*recall)/

(precision+recall) and used in selection of the threshold for

erythrocyte classification. The above-mentioned metrics are based

on the outcomes of a binary test (true positive (TP), false positive

(FN), true negative (TN) and false negative (FN)): FPR = FP/(FP+
TN), TPR = TP/(TP+FN) and PPV = TP/(TP+FP). Respectively,

the accuracy is calculated as a ratio: (TP+TN)/(TP+FP+TN+FN)

and negative predictive value (NPV) as a ratio: TN/(TN+FN). The

agreement between the diagnostic tool and automated methods in

the assessment of erythrocyte and patient-level infection status was

estimated by percent-agreement and kappa-statistics. Kappa

values were categorized as suggested previously in the literature:

,0 as disagreement, 0–0.20 as slight, 0.21–0.40 as fair, 0.41–0.60

as moderate, 0.61–0.80 as substantial, and 0.81–1 as almost

perfect agreement [29]. Correlation coefficients were calculated

using the Pearson product-moment correlation method.

Ethics statement
This manuscript reports an explanatory retrospective analysis of

routinely collected blood slides for malaria diagnostics at a

reference laboratory (The Central Laboratory for the Hospital

District of Helsinki and Uusimaa, HUSLAB, Helsinki, Finland).

The Central Laboratory for the Hospital District of Helsinki and

Uusimaa, HUSLAB, Helsinki, Finland approved the study

protocol (VLE82M0005). According to the Ministry of Social

Affairs and Health, Finland Act On the Medical Use of Human

Organs, Tissues and Cells (Amendments up to 277/2013

included), written informed consent was not required because no

clinical records were retrieved and the study contained no personal

identifiers.

Results

The proposed method is evaluated from two perspectives: 1) as

a decision support tool that detects parasite-like objects in a

digitized thin blood film and presents the most suspicious sample

regions to a human observer and 2) as an automated parasitemia

estimation tool by classifying segmented erythrocytes as infected or

un-infected.

The decision support system for malaria diagnosis
To evaluate the malaria algorithm on a patient level the panels

with the 128 highest detections out of an average of 5,782

detections (range 1,793–12,975) in the 31 samples (19 malaria

positive cases and 12 uninfected controls) were shown separately to

two skilled malaria microscopists on a tablet computer (Fig. 4).

The microscopists were then asked to make a decision on a sample

level, if the patient had a malaria infection or not. The diagnostic

sensitivity of the human observers on a patient level using the

diagnostic tool was 95%; CI95% (81–95) (one false negative) and

90%; CI95% (75–90) (two false negatives) and the specificity was

100% for both readers. The accuracy of the decision support

system was 97%; CI95% (80–97) and 94%; CI95% (76–94) for the

two readers respectively and the agreement between the micros-

Figure 5. Parasitemia is estimated by first segmenting a set of erythrocytes and then scoring them based on the heat map e.g. the
sliding window classification results. A) An example tile, B) segmented erythrocytes, C) the corresponding heat map, D) a bar showing the heat
map for the classifier score values and E) the resulting erythrocyte classification to either P. falciparum infected (red) and uninfected erythrocytes
(blue).
doi:10.1371/journal.pone.0104855.g005
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copists 97%; CI95% (81–100), (k = 0.94). The ten strongest

detections in each of the samples are shown in Fig. 6 and the

full panels can be viewed at http://demo.webmicroscope.net/

montagetest.aspx.

Automated parasitemia estimation
For parasitemia estimation, automated erythrocyte segmenta-

tion was applied to the malaria-infected samples and the

segmented cell was classified into infected and not infected. On

average 29,066 (range 5,632–46,096) erythrocytes per sample

were segmented, representing approximately 56% of all erythro-

cytes in the samples.

The sensitivity of the erythrocyte level classification was 84.9%

(95% CI 78.5–91.3), the specificity 99.9% (95% CI 99.8–100.0)

the negative predictive value (NPV) 99.9% (95% CI 99.8–100.0)

and the positive predictive value (PPV) 74.2% (95% CI 61.5–86.9)

respectively.

Figure 6. Ground truth annotations and outcome of the computer vision-assisted decision support method in each digitized thin
blood film in the test series (19 malaria infected samples and 12 uninfected controls). Thumbnail pictures show for each patient ten of the
128 sample areas (i.e. detections) with highest probability of malaria infection detected by the image analysis algorithm and presented to the expert
in the panel view described in Figure 4. Parasitemia was only calculated for cases considered as malaria positive based on visual inspection of the
highest scoring detections. Note that only part of the erythrocytes were successfully segmented by the algorithm and therefore also the ground truth
annotations in the segmented cells is lower than the total number of annotated parasites in a sample.
doi:10.1371/journal.pone.0104855.g006
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The corresponding agreement between the human observer

and the algorithm on a sample level as measured by the kappa test

was 0.84. The AUCROC and AUCPR of the classification was

0.997 and 0.901 respectively. Based on the classification results,

parasitemia was calculated for all test samples as a ratio of infected

erythrocytes to all segmented erythrocytes and the correlation

coefficient between the automated and human observer-based

parasitemia counts was 0.97 (Fig. 7). Only certain parasites (label

1) were considered when calculating the ground truth parasitemia.

Two clear outliers are seen in the parasitemia calculation

(Figure 6 and 7). The first sample (no 57552) is an outlier in both

of the plots (in 7A and in the top left corner of 7B), whereas the

latter sample (no 57544) is the bottom right outlier in 7B. In the

first sample (parasitemia overestimation) there is a lot of fine debris

on top of the erythrocytes and in second sample (parasitemia

underestimation) there are a substantial number of weakly stained,

thin throphozoite rings that the algorithm misses (for sample

details please see: http://fimm.webmicroscope.net/research/

momic/mamic).

Discussion

The present study describes a computer vision assisted method

for screening of digitized thin blood films to detect ring-stage

malaria parasites (early stage trophozoites of P. falciparum). A

decision support system, which aids the microscopist in malaria

diagnostics, is proposed. We show that image analysis combined

with visualization of selected sample areas and a human expert

decision on diagnosis is feasible and in the current patient series

achieves an accuracy comparable to the malaria diagnostic quality

criteria defined for a qualified microscopist [12]. In our approach,

we do not aim to make the final diagnosis by a fully automated

method, but rather present regions of interest in the digitized thin

blood film that are indicative of a malaria infection and thus

support the microscopist in performing the diagnosis.

In our study, each of the two experienced microscopists

evaluated a panel of the 128 top ranking detections out of an

average of approximately 6.000 detections identified by the

algorithm in each thin blood film sample in the test set. The

sample area presented in the panel corresponds approximately to

one high power (1006) field-of-view in a conventional microscope

(1126107 mm = 0.12 mm2) as compared to the total digitized area

of a sample that contained in average 549 fields-of-view (6 mm2).

The diagnostic tool achieved a sensitivity of 95% and 90% for

each of the two microscopists, with a specificity of 100% on a

patient level in the series of 19 malaria-infected samples and 12

uninfected controls.

Of the two microscopists who assigned the diagnosis using the

decision support system, one made a single and the other two false

negative decisions, i.e. they incorrectly interpreted positive malaria

samples as uninfected. Both microscopists missed a malaria

diagnosis in the same malaria positive case. The two misclassified

samples are case numbers 57516 and 57551 and both had a very

low number of annotated parasites, representing the second and

third lowest levels of parasitemia in the test series (0.025–0.127%).

(http://demo.webmicroscope.net/montagetest.aspx). The prior

sample also contained debris and the latter a very high platelet

count. One of the microscopists was doubtful regarding the

diagnosis of this particular case and thus, in a true clinical setting

confirmation would typically involve a tie-breaking smear read

from the most senior microscopist, if the original two readers

cannot agree on the sample positivity, species speciation, and

parasitemia.

Most of the previous studies on computer vision applications for

malaria diagnostics show results on an image (field-of-view) or

erythrocyte level and only a few on a patient level. We were not

able to find previous studies that would have used a semi-

automated approach similar to ours, where a human observer

makes the diagnostic decision based on screening with image

analysis. In one study on a fully automated approach showing

patient level results, thin and thick blood films from 174 patients

were analyzed with a computer algorithm based on pattern, color

and shape features, and a sensitivity of 92% and specificity of 90%

was reported [30]. Direct comparisons with our results are difficult

because both thin and thick smears, parasites in different stages

and representing several different species were analyzed, whereas

we studied ring-form trophozoites of P. falciparum in thin smears

only. We decided to only analyze thin smears although we

recognize that thick smears may have higher sensitivity based on

human observer analysis. Thin blood films have a sensitivity

limitation as compared to thick film reading, i.e. to obtain the

same sensitivity as that for thick film at high power fields for ten

minutes, a thin field must be examined for 30 minutes [18].

Figure 7. The agreement between the estimated parasitemia
and ground truth is shown with A) a logarithmic agreement
plot and B) a Bland-Altman plot.
doi:10.1371/journal.pone.0104855.g007
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Another study on two sets of 20 and 41 thin smears from

patients with early stage ring-form parasites reported a sensitivity

of 100% in both series and specificities of 50% and 88%,

respectively [31]. In a study on thin blood films from nine patients,

also representing different species, the sensitivity of an algorithm

based on area granulometry and a multi-class K nearest neighbor

classifier was 72.4% and specificity 97.6% [32]. One could thereby

argue that our semi-automated approach seems to be roughly on

par with previously reported computer vision methods with regard

to diagnostic accuracy on a patient level.

In contrast to the limited number of publications regarding the

detection of malaria parasites on a patient level, there are a

number of machine vision applications for detecting parasites on

an erythrocyte level. Previous reports have included results on

analysis of 2,000–30,000 erythrocytes for identification of malaria

parasites [15,31,32] and some have used only some tens of

microscope view fields for testing the performance [17,32]. The

sensitivity of the erythrocyte level detection of infection in our test

set was 84.7% and the specificity 99.9%. A previous study, also in

thin films, used a binary classifier to decide whether the

erythrocyte is infected or not, followed by a multiclass classifier

to assign the erythrocyte to a certain malaria infection life stage

showed a sensitivity of 94% and a specificity of 99.7% based on

700 infected and 11.800 uninfected erythrocytes [16]. Our

approach was to first segment strongly stained areas and then

extract a series of features i.e. LBP/VAR and SIFT descriptors for

classification. To our knowledge there is only one previous study in

which texture features have been utilized for malaria detection

[33]. In that study the algorithm was tested on a dataset that

consisted of 825 erythrocytes representing different stages of both

P. falciparum and P. vivax and achieved a sensitivity of 99.0%

and a specificity of 99.8%. Our somewhat lower sensitivity as

compared to other similar studies could partly be explained by the

large number of erythrocytes analyzed - in average more than

50,000 erythrocytes per sample and an area that corresponds to

500–600 high-power (1006) fields of view in a conventional

microscope, and a total of more than 900,000 cells.

In addition to aiding the malaria diagnosis on a patient level, the

method described here allows automated calculation of parasit-

emia. Parasitemia was only calculated for cases that were

considered positive based on visual inspection of the panel of

sample areas with the highest probability of malaria infection. Our

approach shows a high level of agreement (correlation coefficient

0.97) between the parasitemia as counted by a human observer

and the level estimated by the computer vision method.

Parasitemia was calculated on erythrocytes that were easily

segmented, i.e. approximately 56% of erythrocytes. A potential

drawback of our parasitemia estimation method is that if the

segmented erythrocytes differ in their parasite count compared to

the unsegmented erythrocytes, it might give rise to a biased

parasite count. This is possible if parasite-containing erythrocytes

are morphologically different compared to uninfected red blood

cells. Other possible sources of bias in the parasitemia calculation

include debris on top of the erythrocytes and throphozoite rings

with aberrant morphology. It can be challenging for the algorithm

to account for these artifacts and the problem might be best

tackled by a general sample quality check, before running the

parasitemia calculation.

Previous studies regarding automated calculation of malaria

parasitemia reported correlation coefficients ranging from 0.97 to

0.99 [15,16]. One study analyzed nine thin blood films including a

total of 2,400 erythrocytes and compared the performance of a

computer vision algorithm to human professionals. The algorithm,

which included segmentation of nucleated components (e.g. white

blood cells, trophozoites and gametocytes) and erythrocytes

combined with object size based filters achieved a correlation of

0.97 with human observer based parasitemia assessement and a

sensitivity of 97% [15].

Parasite clearance rates are essential for measuring treatment

outcome of antimalarial drug efficacy particularly in clinical trials

assessing artemisinin resistance. A robust and accurate automated

method for determination of parasite clearance profiles could

significantly reduce the workload also in this context, since

readouts are usually performed by manual microscopy and

requires at least four data points [34]. We therefore plan to

evaluate the feasibility of the current method for parasite clearance

assessment within a future field study.

The trophozoite ring-stage is the most common P. falciparum
stage in a sample of peripheral blood from an individual with a

malaria infection. The trophozoite ring-stage is the most common

P. falciparum stage in peripheral blood samples from malaria

infected individuals but late-stage tropohozoites, schizonts and

gametocytes are occasionally seen. Thus, blood films with

falciparum other than early ring stages as well a vast number of

staining and sample qualities need to be trialed. Also, in future

proof-of-concept studies, the time breakdown for capturing and

processing the required number of images per slide, and how the

method compares to routine slide examination should be

addressed. Due to the visual similarity of the trophozoite in

different malaria species, the method presented here most

probably has the capability to also detect rings of vivax, ovale

and malariae, but use of the method for speciation remains to be

explored in further research.

Diagnostic tests for the detection of malaria should be rapid and

have a high degree of accuracy. Furthermore, tests must be of low-

cost, easy to use and easily available [9]. New molecular tests for

malaria detection, such as RDTs and nucleic acid tests as well as

mass spectrometry, have been developed. However, manual

microscopy remains the gold standard diagnostic method for

malaria [18]. An advantage of malaria microscopy is the

multiplexed capacity to identify parasite co-infections such as

trypanosomiasis and leishmaniasis. Other differential diagnosis

such as lymphopenia or lymphocytosis, lymphoproliferative

disorders, thrombocytopenia, and anemia (including sickle cell

disease) can be made from a thin blood smear [35]. Multiplexed

image analysis could allow several image analysis processes to be

run in parallel with the ability to combine automated analysis of

parasites with quantitative and morphological analysis of blood

cells as an aid in the differential diagnosis of patients with fever.

Automated microscopy of malaria parasites from digitized blood

films has several advantages as compared to the approved manual

approach. For example, the automated machine vision methods

allow task shifting where a healthcare professional with limited

expertise in microscopy can perform advanced analysis and

receive instant diagnostic support [36].

We used a high-resolution scanning microscope with a 636 oil

immersion objective to acquire the images. The digitization

hardware is a challenge when implementing automated vision

methods in low resource settings or in small and medium sized

diagnostic centers in developed countries. The costs of high

throughput scanners for sample digitization have so far prevented

transfer of the new technology to low-resource settings. However,

the system described here will be further assessed also in

combination with less expensive digitization systems. Motorized

scanning systems have been described that can be integrated with

a conventional light microscope [37]Also, recent development

allows decreasing the size of a microscope to construct miniatur-

ized digital microscopy-imaging devices that are capable of
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producing high-resolution images [38,39,40,41]. This can be

achieved by the use of compact objective lenses combined with an

image sensor [38] or with methods where the biological sample is

placed close to the surface of an image sensor and illuminated with

light emitting diodes [39]. Automated analysis can equally be

applied to images generated by these devices.

An interesting alternative to our approach is a large-scale public

experiment where images from malaria suspected blood films

where classified by 1000 untrained, crowd sourced interpreters

worldwide and combined into a diagnostic decision, resulting in an

accuracy comparable to those of expert microscopists [42].

Positive effects of increased diagnostic throughput are improved

case management, a more rational anti-malarial drug use,

including increased access to treatments since a larger proportion

of patients will be verified, and reductions in the development of

resistance to antimalarial combination therapies. The massive

investments in antimalarial drug development [43], need to be

accompanied by a parallel commitment to improve diagnostic

tools and their availability.

We present a novel system for decision support in P. falciparum
microscopy using an automated machine vision method combined

with a panel display showing regions of interest from a virtual thin

blood smear of patients with suspected malaria infection. From

each blood smear, an area equivalent to roughly 500 microscope

high-power fields-of-view, covering an area with approximately

50.000 red blood cells, is compressed into a single easy-to-read

panel showing malaria suspected areas of interest to aid the

microscopist in assessing the malaria diagnosis.
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