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Abstract

The hierarchical structure of spider dragline silk is composed of two major constituents, the amorphous phase and
crystalline units, and its mechanical response has been attributed to these prime constituents. Silk mechanics, however,
might also be influenced by the resistance against sliding of these two phases relative to each other under load. We here
used atomistic molecular dynamics (MD) simulations to obtain friction forces for the relative sliding of the amorphous phase
and crystalline units of Araneus diadematus spider silk. We computed the coefficient of viscosity of this interface to be in the
order of 102 Ns/m2 by extrapolating our simulation data to the viscous limit. Interestingly, this value is two orders of
magnitude smaller than the coefficient of viscosity within the amorphous phase. This suggests that sliding along a planar
and homogeneous surface of straight polyalanine chains is much less hindered than within entangled disordered chains.
Finally, in a simple finite element model, which is based on parameters determined from MD simulations including the
newly deduced coefficient of viscosity, we assessed the frictional behavior between these two components for the
experimental range of relative pulling velocities. We found that a perfectly relative horizontal motion has no significant
resistance against sliding, however, slightly inclined loading causes measurable resistance. Our analysis paves the way
towards a finite element model of silk fibers in which crystalline units can slide, move and rearrange themselves in the fiber
during loading.
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Introduction

Spider dragline or major ampullate (MA) silk is one of the

toughest materials known [1], by combining not only strength and

extensibility but also stiffness. It is essentially a nano-composite, in

a first approximation consisting of two major components, stiff

highly ordered crystalline units interspersed in a soft unstructured

amorphous matrix. However, the two components are built from

the same molecules, spidroin proteins, albeit with markedly

different mechanical properties in the two phases.

Spidroin proteins of the mechanically robust dragline silk

feature repetitive sequence motifs composed of a polyalanine (A)n,

where n ranges from 6 to 9 amino acids [1–3]. These short

peptides organize themselves into mechanically strong crystal

blocks measuring 2–5 nm on a side [4]. These crystalline units

constitute 10–25% of the fiber volume in dragline silk [1,5]. They

are followed by a glycine-rich motifs that form the amorphous

phase, which are composed of (GGX)n and (GPGXX)n, with n is

in the range from 20 to 30 amino acids [1]. The amorphous region

is predominantly disordered [2,6,7] and the peptide sequences are

oriented along the fiber axis during stretching experiments [1,8,9].

Thus, dragline silk is a semicrystalline material with crystals of a

well-defined nanometer size reminiscent of a nanocomposite,

which is imprinted by the protein sequence.

The high stiffness and yield strength of silk fibers have been

attributed to the b-sheet crystals, whereas the high extensibility is

thought to arise from the amorphous glycine-rich domains [10].

Molecular Dynamics (MD) simulations have increasingly helped to

gain further insight into the force-bearing structures and

interactions within the crystal [11–13] and the amorphous phase

under mechanical load [14]. The crystalline component of silk

fibers behaves like an elasto-plastic material, which undergoes

non-reversible rupture in response to applied forces [15]. The

amorphous phase is softer and features a rate-dependent behavior,

i. e., it is a viscoelastic material [14].

However, to our knowledge, the mechanical resistance, or

friction, at the crystalline-amorphous protein-protein interface

within the fiber has not yet been characterized to date. Depending

on the extent of interfacial friction, crystals are able to slide, and

thereby redistribute within a silk fiber under mechanical load.

Such a mechanism has not been considered in the existing

structure-based fiber models of dragline silk [10,13,16–19].

Molecular friction has been systematically assessed for proteins

at inorganic (hydrophobic or hydrophilic) surfaces using both

single molecule force spectroscopy and MD simulations [20–22].
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We here focus on the friction between the amorphous and

crystalline domains of dragline silk fibers. We assessed friction

forces at the interface by MD simulations, and from there deduced

a coefficient of viscosity at the viscous limit, analogously to our

previous determination of the coefficient of viscosity within the

amorphous phase [14]. We employed the coefficient of viscosity in

proof-of-principle finite element models. Our quantitative analysis

of the friction between them presents an important step towards

developing a bottom-up visco-elastoplastic model for dragline silk

fibers.

Materials and Methods

Molecular Dynamics Simulations
We constructed a composite model of crystalline units and the

amorphous phase of spider silk from the MA gland of Araneus
diadematus [1]. We built crystalline units composed of the repeat

units found to be present in Araneus diadematus spider silk fibers,

AAAAAAAA. We arranged five layers of b-sheets, each consisting

of five b-strands of the respective sequence, such that the model

exhibits optimal hydrogen bonding, as previously described [12].

Next, we constructed the amorphous phase from a represen-

tative 24-residue sequence (GPGGYGPGSQGPSGPG-

GYGPGGPG, where G, P, Y, S, Q are glycine, proline, tyrosine,

serine, and glutamine, respectively) of Araneus diadematus MA silk

[14]. We constructed our friction model such that two crystalline

units were 3 nm apart, and seven bundles of the amorphous, each

containing eight fully stretched peptides, were positioned between

and around these two units (Figure 1A). This model, in total

consisting of 50 crystalline and 56 amorphous peptides, was

constructed using the software Visual Molecular Dynamics (VMD)

[23]. For subsequent MD simulations, we used the GROMACS

4.5.3 package [24], and the OPLS-AA force field [25] for the

protein. Simulation boxes of *12.0618.6612.0 nm3 were used.

The crystalline units and the amorphous phase models were

subsequently solvated in TIP4P water [26]. We note that semi-

ordered regions, supposedly formed by (GA)n repeats, were not

part of our simulation system. Here, we combined the two

extremes only, fully ordered and fully disordered phases. The

solvent included Na and Cl ions with a concentration of 0.1 mol/

liter, resulting in a system size of *0.31 million atoms. Periodic

boundary conditions were employed to remove artificial boundary

effects. We chose a cutoff of 1.0 nm for non-bonded interactions,

and the Particle Mesh Ewald (PME) method [27] to account for

long-range electrostatic interactions. To increase the simulation

time step, we used LINCS [28] to constrain all bond vibrations. A

time step of 0.002 ps was used. Simulations were performed in the

NPT (isothermal-isobaric) ensemble with a temperature of 300 K

and a pressure of 1 bar. We used Nosé-Hoover [29,30]

temperature coupling with a coupling time constant 0.1 ps, and

Parrinello-Rahman [31,32] pressure coupling with a coupling time

constant of 1 ps. The simulation systems were relaxed by energy

minimization. We then performed 500 ps position-restrained

simulations to equilibrate the solvent, subjecting each protein

atom to a harmonic potential with a force constant of 1660 pN/

nm. Finally, all models were fully equilibrated for 200 ns allowing

the silk peptides to adopt relaxed conformations and to partially

entangle within the amorphous phase as well as with the crystalline

units. The resulting equilibrated simulation systems served as

starting points for force-probe Molecular Dynamics (FPMD)

simulations [33].

In the FPMD simulations, seven bundles of the amorphous

phase were pulled in the upward direction, as schematically shown

in Figure 1A, B. Forces were applied by attaching one-dimen-

sional harmonic springs with a force constant of 830 pN/nm

acting at the center of mass of the terminal residues of the each

bundle of the amorphous phase. The goal of this study was to

compute friction between the amorphous phase and crystalline

units as they slide relative to each other. Therefore, the crystalline

units were position-restrained along the pulling direction as well as

in one lateral direction (as shown in Figure 1A), subjecting each

protein atom in this part to a harmonic potential with a force

constant of 1660 pN/nm. The springs were moved with constant

velocities ranging between 0.02 and 20 m/s. There was no

external force exerted perpendicular to the pulling direction on the

crystalline units as well as the amorphous phase. The FPMD

simulations were stopped after the amorphous phase detached

from the crystalline units.

To obtain a shear stress, which then can be converted into a

coefficient of viscosity, we calculated the contact area between the

amorphous phase and crystalline units which gives rise to the

resistance area against sliding. Microscopic contact areas between

a polymer surface and a crystalline surface as well as between

polymer surfaces have been previously calculated on a molecular

scale to determine shear stresses [34,35]. Here, we used the solvent

accessible surface area (SASA) as the contact area between the

amorphous phase and crystalline units. We subtracted the SASA

of the whole protein (the amorphous phase bundles and crystalline

units) from the sum of the areas of only the amorphous phase

bundles and crystalline units, when considered in isolation, which

then, after division by two, gives the interface or contact area. We

used a solvent probe of radius 0.14 nm (recommended probe

radius for water) for this purpose [24].

Finite Element Model
For the finite element calculations of the friction model, the

commercial solver LS-DYNA (version: ls971s R5.1.1) [36] was

used together with the Pre/Post tool LS-Pre-Post [37]. A

rectangular cube of the crystalline unit and a rectangular plate

of the amorphous phase were modeled by using 8 node hexahedral

(brick8) elements. In our previous work, we studied the crystalline

component [15] as well as the amorphous phase of Araneus
diadematus dragline spider silk [14]. In that study, we concluded

that the crystal component behaves like an elastoplastic material,

which was described with the *MAT_003 material model (suited

to model isotropic and kinematic hardening plasticity) [36]. The

amorphous phase has a rate-dependent behavior, which accord-

ingly was described with a viscoelastic material model, *MAT

VISCOELASTIC (*MAT_006) [36].

In this work, we modeled the contact between the amorphous

phase and crystalline unit as *CONTACT SURFACE TO

SURFACE. Generally in LS-DYNA modeling, the contact

between two bodies is defined by an interface made up of slave

and master sides. This is a two-way treatment of a contact, which

means that both the master and slave surfaces of the contact are

checked for penetration during the simulations. In any explicit-

integration scheme, it is imperative that for proper load transfer

between the two bodies in contact the slave side mesh is finer than

the master side mesh. For this simulation, the amorphous phase is

taken as the slave side, while the crystalline unit is defined as the

master side. Friction in LS-DYNA is calculated by a Coulomb

friction formulation [36].

The segment-based penalty method for a contact was used in

this work. The interface surfaces were modeled by two dimen-

sional (2D) shell elements with the null material (*MAT_009). It is

advantageous to model contact surfaces via shell elements which

are not part of the structure, but this requires to define areas of

contact between the bodies. The null material behaves in a fluid-
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like manner, and we assigned as input parameter the dynamic

viscosity coefficient which was obtained from the above MD study.

In our friction model, the amorphous component plate was

restrained in an upward direction but kept free in the other two

direction, and load was applied to the cube of the crystalline unit.

Results and Discussion

To assess the frictional forces between the amorphous and

crystalline phase of spider silk at atomistic scale, we here used

atomistic FPMD simulations. We closely followed the protocol that

we previously employed to assess frictional forces within the

amorphous phase [14]. The simulation setup is depicted in

Figure 1A and B, showing a schematic representation of the

simulation system with boundary conditions and the actual

simulation system, respectively. In our simulations, we used two

crystalline units of 565 strands and seven bundles of the

amorphous phase of Araneus diadematus spider silk (for details

on the model setup and boundary conditions see Materials and

Methods).

A harmonic spring was connected to the termini of the seven

bundles of the amorphous phase, and moved at constant velocity,

while the other termini of the bundles were kept free to move. By

pulling out seven bundles of the amorphous phase, away from the

Figure 1. Setup of an FPMD simulation for assessing molecular friction between seven bundles of the amorphous phase and two
crystalline units. (A) Schematic representation of the model before equilibration (left). The two crystalline units (red) are 3 nm apart, and seven
bundles of the amorphous phase (blue) are placed around it. The loading and boundary conditions of the model are indicated (right). A harmonic
spring that moves with constant velocity V was connected to the termini of the seven bundles. The crystalline units were position-restrained in
pulling and in one lateral direction. (B) The MD simulation system (left) with a front and top view of mid-sections (middle), and an enlarged view of
interactions between the crystalline and amorphous component (right).
doi:10.1371/journal.pone.0104832.g001
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crystalline units they surround, we could measure the friction force

upon sliding the amorphous phase relative to the crystalline units.

We obtained peak frictional forces for both amorphous-crystalline

and amorphous-solvent friction for different pulling velocities. We

next separated the frictional forces of the amorphous phase with

crystalline units from frictional forces with water. To this end, we

compared the peak forces obtained for the sliding of bundles of the

amorphous phase to the peak force required to pull these bundles

with the same pulling velocity through water, as observed in

additional FPMD simulations with all bundles pulled in the same

direction without crystalline units. Figure 2 shows the frictional

force per residue for dissociating the bundles from crystalline units

(red), for dragging them through water (green), and their

difference, i. e., the amorphous-crystalline friction (black). Data

was obtained at different pulling velocities, and averages and

standard errors over four independent FPMD simulations are

given. Note that the friction force corresponds to an effective mean

force, i. e., we assume that force is on an average equally shared by

all contacting residues between the two phases.

For low velocities (,2 m/s), total friction forces and amor-

phous-crystalline friction forces are of similar magnitude, i. e.,

water gives rise to an only minimal resistance against the sliding of

the amorphous phase. For velocities beyond 2 m/s, amorphous-

water friction substantially contributes to the total frictional force.

We note that we did not observe water molecules inbetween the

amorphous phase and crystalline units, so that friction with water

is effectively restricted to the outer surface of the amorphous phase

in our simulation system, i. e., amorphous-crystalline friction is dry

(Figure S1 in File S1). Figure 2 shows that the water friction force

grows nearly linearly with applied velocity. A straight line would

follow the linear viscous law, Fw=N~c0|V [21], where Fw is the

water friction force, N is the number of residues are in contact,

and V the applied constant velocity. From the simulations, the per-

residue friction coefficient, c0, with water is *0:8|10{12 Ns/m,

which is very close to the experimental value of bulk water of

1610212 Ns/m [38,39], and the same as determined previously

for a single amorphous bundle [14].

Viscous Friction Coefficient
In the experiments, such as force spectroscopy experiments or

when biological molecular motors are active, the applied external

force causes molecular motions in the mm/s range. Therefore, time

scales of experiments typically fall into the viscous linear response

regime, where friction forces are proportional to velocities. Thus,

to extract the viscous friction coefficient from the sliding of the

amorphous phase relative to the crystalline units in our

simulations, we have to extrapolate our data to the viscous

regime. In the viscous regime, the coefficient of viscosity does not

depend on the shear stress. For an extrapolation as robust as

possible, we tried to push the limit towards longer time scales as far

as we could. In our simulations, we were only able to reach

0.02 m/s as lowest pulling velocity, which, however, is still distant

from the viscous regime.

In this work, we used a stochastic model which describes the full

velocity dependence of the friction force per residue [21]. In our

previous work, the earlier proposed stochastic model [21,22] was

modified to extract the viscous friction coefficient from the sliding

of silk peptide chains [14]. Here, analogously, the friction

coefficient per residue can be calculated according to

cresi~c0z
c0

m
Y

maFa{c

kBTN
,
mUbond

kBT

� �
: ð1Þ

Here, a is a lattice constant, m, the cooperativity of bonds, Ubond

the bond strength, and Fa{c=N denotes the frictional force

between the amorphous and crystalline phase per residue. In the

Fokker-Planck equation, a bond refers to an adhesive bond, in our

case between the amorphous and crystalline phase. Note that we

assume the friction force Fa{c to be equally distributed on all N
residues. The stochastic model is used to fit the simulation data set

by varying the bond cooperativity, the strength of bonds, or the

lattice constant. In this way, we could extract the coefficient of

viscosity g or the viscous friction parameter between the

amorphous phase and crystalline units of spider dragline silk from

our MD simulations. We also extracted a friction coefficient per

residue, as shown in Figure S2 in File S1.

The coefficient of viscosity g is defined by Newton’s law of shear

viscosity, with t~g|dv=dx, where t is the shear stress, and dv=dx
is the shear velocity or velocity gradient. Figure 3 shows the

coefficient of viscosity per residue, g~t|dx=(VN) from the

solution of the Fokker-Planck equation, as a function of t|dx=N.

When fixing the strength of individual residue bonds to the value

mUbond=kBT = 8.4, and treating the periodicity a as fitting

parameter, which controls the lateral position of the scaling

function (red lines in Figure 3), we obtained a value ma of

1.3260.33, which covers the range of the simulation data. Fixing

the parameter ma to 1.32 and varying the strength of individual

residue bonds (red solid and black line in Figure 3) yields a

strength of mUbond=kBT = 10.361.9. Fits with mUbond=kBT of

8.4 and ma of 1.32 are representing the data best (solid red line).

From our simulation results, the coefficient of viscosity or

dynamic viscosity per residue with water at high velocity of

*0.861023 Ns/m2, which is same as that of our previous work

[14], and also close to the experimental value of the dynamic

viscosity of water 161023 Ns/m2 [40,41]. Note that the crystals

feature two distinct surfaces, one hydrophobic surface type with

exposed alanine sidechains parallel to the b-sheet plane in the

crystals, and another hydrophilic type with backbone hydrogen

bond acceptors and donors. These two types might feature

different levels of friction, but we here obtained an effective

coefficient of viscosity representing the average friction on the both

surface types.

We obtained a coefficient of viscosity or the viscous friction

parameter between the amorphous phase and crystalline units of

Figure 2. Friction force per residue (F=N) as a function of
pulling velocity (V ) when pulling the amorphous phase along
the crystalline units. Both amorphous-crystalline and amorphous-
water friction contribute to the total friction.
doi:10.1371/journal.pone.0104832.g002
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spider dragline silk of 260.26102 Ns/m2. The obtained coeffi-

cient of viscosity is two orders of magnitude lower than that within

the amorphous phase, which is 160.56104 Ns/m2 [14]. We note

that the actual uncertainty in the coefficient of viscosity is larger

than what the given error suggests. The reason is that the data

does not fall into the turnover regime into the viscous limit, as we

do not achieve sufficiently long time scales in our MD simulations.

However, the fitting was robust with respect to variations of

mUbond=kBT , and the best fitting values fall into the previously

obtained range of values [14,21,22]. Interestingly, the bond

strength we obtain here is lower than the one we obtained within

silk peptide bundles, which reflects the lower hydrogen bond

density at the partially hydrophobic crystal surfaces. We empha-

size that the extrapolation serves as an estimate largely for the

order of magnitude of the coefficients derived for subsequent

upscale finite element simulations.

FEM to Viscous Friction
We next determined the friction between the crystalline and

amorphous blocks by finite element modeling, using the coefficient

of viscosity determined from MD simulations as described above.

The mechanical properties of the elastoplastic crystalline [15] and

the viscoelastic amorphous phase [14] were directly adopted for

these FEM simulations.

To describe the friction in this model, we included a lubrication

film of 2D shell elements of the null material between the

amorphous phase and the crystalline unit. The lubrication film

was defined with contact surfaces as shown in Figure 4 (right).

Load was applied to the crystalline cube and the amorphous plate

was fixed at the bottom as shown in Figure 4 (left). The load was

transferred from the cube to the amorphous plate through the

viscous lubrication film. We assigned a coefficient of viscosity to

the contact surfaces, as obtained from MD simulations (see above).

The viscous layer gives rise to a sliding friction between them in a

rate-dependent manner.

Figure 5 shows stress as a function of relative velocity for the

friction model. Here, we studied two load cases as idealized cases

of the complex situation in tensed silk fibers. In the first loading

case, the crystalline cube was pulled horizontally along the

amorphous plate, corresponding to a force parallel to a silk fiber

Figure 3. Simulated coefficient of viscosity per residue as a
function of shear stress|dx=N. Red and black lines present fits of
the stochastic model to the simulation data with varying ma and
mUbond=kBT , respectively. The solid red line shows the best fit to the
data.
doi:10.1371/journal.pone.0104832.g003

Figure 4. Finite element modeling of interfacial friction.
Schematic picture of the finite element model with boundary
conditions (left). The model includes the crystalline unit (blue), the
amorphous phase (yellow), and contact surfaces (right). The master
segment was assigned to the crystalline unit surface (magenta), and the
slave segment to the amorphous phase surface (brown).
doi:10.1371/journal.pone.0104832.g004

Figure 5. Stresses in the crystalline and amorphous compo-
nents as well as the interface segments as a function of their
relative velocity. (A) The crystalline cube was pulled horizontally
along the amorphous rectangular plate of 0.5 nm thickness. (B) The
crystalline cube was pulled with a 10 degree angle with respect to
horizontal plane along the amorphous component of 2.85 nm
thickness.
doi:10.1371/journal.pone.0104832.g005
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axis. For fast relative velocities (.1 m/s), stresses in the crystalline

component as well as in the interface were of high magnitude, and

increased with increasing relative velocities. For low relative

velocities (,1 m/s), stresses in both components and in the

interface were not significant (nearly zero) as shown in Figure 5A.

However, no significant stresses occurred in the amorphous phase

for all relative velocities. In the second loading case, the crystalline

cube was pulled along a direction forming a 10 degree angle with

the horizontal amorphous plate (Figure 5B). This slight loading

inclination, stresses upon relative sliding of the two phases were

significant even for velocities smaller than 1 m/s.

Taken together, our FEM simulations predict that in the

situation of perfect relative horizontal motion, there is no

significant resistance against sliding at low to medium velocities.

However, slightly inclined loading may cause substantial resistance

to the sliding relative to each other, and resistance increases with

increasing relative velocities.

Conclusions

Here, we have quantified the viscous friction between the

amorphous phase and the crystalline unit of Araneus diadematus
silk using MD simulations. The coefficient of viscosity for this

interface is in the order of 102 Ns/m2. Remarkably, this value is

two orders of magnitude smaller than the coefficient of viscosity we

previously obtained for the relative sliding of peptides within the

amorphous phase [14]. Thus, disordered peptides of the amor-

phous matrix slide along the surface of crystalline units with much

less hindrance as opposed to sliding within other entangled

disordered chains. This large difference of the two proteineous

components can be due to both the difference in their sequence

and structure. The crystalline unit comprises only alanine residues,

i. e., sidechains of relative small and homogeneous size, thereby

minimizing the molecular ruggedness of the crystalline surface.

Secondly, the surfaces of crystalline units are flat also due to the

straight b-strand configuration therein, as opposed to the

entanglement of proteins within the disordered amorphous matrix.

Our finite element model allowed to quantify the frictional

behavior between these two components as it might occur within

the context of silk fibers for the experimental range of pulling

velocities. We concluded that a perfectly relative horizontal

motion has no significant resistance against sliding. However, a

slightly inclined loading may cause a high resistance to sliding.

Our results within this simple and very reduced model suggest that

crystalline units can slide, move and rearrange themselves in the

fiber during loading, a scenario with potential impact for silk

mechanics.

On the basis of MD simulations and deduced parameters

presented herein and previously [13–15], a refined finite element

model of full silk fibers can be established, in which crystalline

units are connected to the amorphous phase along the fiber axis

direction, while no connections but frictional forces are defined

between them in the direction perpendicular to the fiber axis. Such

a bottom-up computational model eventually allows to test the role

of relative sliding and frictional forces between the ordered and

disordered phases for the outstanding toughness of silk fibers.
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and friction coefficient per residue using the solution of the Fokker-
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measured by pfg-nmr on full length and fragments of the alzheimer ab(1–40)

peptide. determination of hydrodynamic radii of random coil peptides of varying

length. Magn Reson Chem 40: S89–S97.

39. Smith PE, van Gunsteren WF (1993) The viscosity of spc and spc/e water at 277

and 300 k. Chem Phys Lett 215: 315–318.

40. Swindells JF, Coe JR, Godfrey TB (1952) Absolute viscosity of water at 20-

degrees-c. J Res Nat Bur Stand 48: 1–31.

41. Eicher LD, Zwolinski BJ (1971) High-precision viscosity of supercooled water

and analysis of extended range temperature coefficient. J Phys Chem 75: 2016–

2024.

Friction between Crystalline and Amorphous Phase

PLOS ONE | www.plosone.org 7 August 2014 | Volume 9 | Issue 8 | e104832


