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Abstract

We present a systematic approach for prediction purposes based on panel data, involving information about different
interacting subjects and different times (here: two). The corresponding bivariate regression problem can be solved
analytically for the final statistical estimation error. Furthermore, this expression is simplified for the special case that the
subjects do not change their properties between the last measurement and the prediction period. This statistical framework
is applied to the prediction of soccer matches, based on information from the previous and the present season. It is
determined how well the outcome of soccer matches can be predicted theoretically. This optimum limit is compared with
the actual quality of the prediction, taking the German premier league as an example. As a key step for the actual prediction
process one has to identify appropriate observables which reflect the strength of the individual teams as close as possible. A
criterion to distinguish different observables is presented. Surprisingly, chances for goals turn out to be much better suited
than the goals themselves to characterize the strength of a team. Routes towards further improvement of the prediction are
indicated. Finally, two specific applications are discussed.
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Introduction

Panel data analysis deals with a regression procedure where

individual subjects as well as information at different times is taken

into account [1]. The update of estimators with time can be

related to Bayesian approaches [2,3] as explicitly discussed, e.g., in

[4]. For Gaussian statistics there exists a direct connection between

Bayesian inference and a regression analysis; see, e.g., [5].

Actually, Bayesian inference to soccer has recently been discussed

in Ref. [6].

Of key interest is the knowledge about the quality of the

estimator. Here we simplify the general result by using the

assumption that the underlying property of the subject does not

change between the final measurement and the prognosis time

interval. This does not necessarily hold for the time of earlier

measurements. However, due to the random noise, by which the

most recent measurement may be disturbed, it may still be

favorable to take into account older pieces of information. Having

an explicit expression of the estimator quality it is possible to judge

the relevance of the available information for the prediction

process in a detailed manner. Furthermore, we can define the limit

of optimum prediction and judge, how far a specific prediction

procedure differs from this limit.

We apply this approach to the prediction of soccer matches but

we expect that it may have a broader applicability for many

different types of sports and beyond where the future achievements

of, generally speaking, different subjects is constant between the

most previous measurement and the near future.

To set the present approach into perspective, we would like to

summarise some specific approaches for soccer prediction. In one

type of models [7–10] appropriate parameters are introduced to

characterise the properties of individual teams such as the offensive

strength. Of course, the characterisation of team strengths is not

only restricted to soccer; see, e.g., [11]. The specific values of these

parameters can be obtained via Monte-Carlo techniques. These

models can then be used for prediction purposes and allow one to

calculate probabilities for individual match results. A key element

of these approaches is the Poissonian nature of scoring goals [12–

14]. Beyond these goals-based prediction properties also results-

based models are used. Here the final result (home win, draw,

away win) is predicted from comparison of the difference of the

team strength parameters with some fixed values [15]. The quality

of both approaches has been compared and no significant

differences have been found [16]. Going beyond these approaches

additional covariates can be included. For example home and

away strengths are considered individually or the geographical

distance is taken into account [16]. Recently, also the ELO-based

ratings have been used for the purpose of forecasting soccer

matches [17]. Recent studies suggest that statistical models are

superior to lay and expert predictions but have less predictive

power than the bookmaker odds [17–20]. This observation

strongly suggests that either the information, used by the

bookmakers, is more powerful or, alternatively, the inference

process, based on the same information, is more efficient.

Probably, both aspects may play a role.

The structure of this paper is as follows. First, we introduce the

statistical background of prediction. In particular we show that

under the general assumptions, mentioned above, the quality of

the estimation can be determined in simple analytical terms. Then
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this general scheme is applied to the prediction of soccer matches,

using the German premier league (Bundesliga) as an example. It

can be shown that all assumptions, used in the previous Section,

are fulfilled to a very good approximation. Furthermore, it is

shown that chances for goals possess a very high information

content about the individual team strengths and are, thus, chosen

for the respective covariates. Subsequently, the theoretical results

are compared with the explicit bivariate regression analysis. The

specific setting is chosen such that one wants to predict the

outcome of the second half of a season, based on knowledge of a

variable number of matches from the first half of the same season

as well as all matches of the previous season. In particular we

discuss the dependence of the prediction quality on the number of

matches, taken into account. Furthermore, it is shown, how the

present concepts can be applied to the prediction of single

matches. We end with a discussion.

The Statistical Background of Prediction

Variables
We consider two successive time intervals, in which we measure

the independent variables X and Y . For the later application to

soccer this might be the accumulated goal difference during the

previous season and during the present season, measured

individually for each team. Here we consider differences in order

to capture both the offensive and defensive strength. Specifically,

we perform this analysis after half of the present season is over.

Naturally, this can be easily generalized to other situations. The

aim is to predict the goal difference Z, i.e. the dependent variable,

of each team during the second half of the season. This setup is

sketched in Fig.1. The prediction quality can be explicitly

expressed and compared with the theoretical optimum.

Regression
First, we briefly review some key relations of regression analysis.

We start with the linear relation Z~bY for the independent

variable Y and the dependent variable Z. Note that we assume all

variables fulfill the condition that their first moment is zero.

Generalisation is, of course, straightforward. The regression

problem requires the minimisation of S(Z{ẐZ)2T with respect to

b where ẐZ~bY is the predictor of Z. Substituting the resulting

value of bopt~corr(Y ,Z)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var(Z)=Var(Y )

p
yields for the opti-

mum quadratic variation, denoted x2(Y ),

x2(Y )~Var(Z) 1{½corr(Y ,Z)�2
h i

ð1Þ

where Var(Z) denotes the variance of the distribution of Z and

corr(Y ,Z)~
SYZTffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var(Y )Var(Z)
p ð2Þ

is the Pearson correlation coefficient between the variables Y and

Z. Eq.1 has a simple intuitive interpretation: The higher the

correlation between the variables Y and Z, the better the

predictability of Z in terms of Y .

For the present work we are mainly dealing with the bivariate

regression ẐZ~aXzbY . Via normal equations, one can obtain

general expressions for the regression coefficients a and b.

Interestingly, the prediction quality of the bivariate prediction

can be analogously expressed to Eq.1 and reads

x2(X ,Y )~x2(Y ) 1{½corr(X{Y ,Z{Y )�2
h i

ð3Þ

where the partial correlation coefficient

corr(X{Y ,Z{Y )~
corr(X ,Z){corr(X ,Y )corr(Y ,Z)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1{corr(X ,Y )2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1{corr(Y ,Z)2
q ð4Þ

is used and x2(Y ) is defined as in Eq.1. The second factor on the

right-hand side of Eq.3 explicitly contains the additional informa-

tion of the variable X as compared to Y . One can easily show that

in agreement with expectation Eq.3 is completely symmetric in X
and Y .

Here we present a straightforward derivation of Eq.3. Let dY Z

denote the solution of the regression problem Z~dY . Accord-

ingly, dY X is the solution of the regression problem X~dY . In a

next step one defines the new variables ~ZZ~Z{dY ZY and
~XX~X{dY X Y . For these new variables the correlation with Y is

explicitly taken out. A straightforward calculation shows that the

Pearson correlation coefficient corr(~XX , ~ZZ) is exactly given by the

partial correlation coefficient corr(X{Y ,Z{Y ).

Now we consider the regression problem of interest

Z~aXzbY . In a first step it is formally rewritten as

Z{dY ZY~a(X{dY X Y )z(b{dY ZzadY X )Y : ð5Þ

Using the above notation and introducing the new regression

parameter ~bb we abbreviate this relation via

~ZZ~a~XXz~bbY : ð6Þ

By construction the observable Y is uncorrelated to ~XX and ~ZZ.

Therefore the independent variable Y does not play any role for

the prediction of ~ZZ so that effectively one just has a single-variable

regression problem. Therefore one can immediately write

x2(X ,Y )~Var(~ZZ) 1{½corr( ~XX ,~ZZ)�2
h i

: ð7Þ

The first factor is identical to x2(Y ) whereas the Pearson

correlation coefficient in the second factor is identical to

corr(X{Y ,Z{Y ). This concludes the derivation of Eq.3.

Prediction for individual subjects/teams
As introduced, the variables X ,Y ,Z denote the output of a team

or, more generally, of some subject during three successive time

intervals. For the first time interval, the outcome of team i is

Figure 1. Schematic representation of the general prediction
setup.
doi:10.1371/journal.pone.0104647.g001
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denoted xi. Conceptually, this value has contributions from the

true underlying team strength sX ,i as well as from random non-

predictable effects EX ,i, i.e.

xi~sX ,izEX ,i: ð8Þ

Thus, only in the absence of random effects the team strength sX ,i

could be directly identified with the outcome xi. In what follows

we use the terminology of soccer but this approach can be directly

applied to other cases where the observable is the sum of the

properties of the respective subject and some random effects.

Following the previous discussion we only consider observables

X for which the first moment disappears after averaging over all

teams. Naturally, the same holds for the team strength observable

SX . Squaring Eq.8 and averaging over all teams yields

Var(X )~Var(SX )zVar(EX ): ð9Þ

Analogous relations hold for Var(Y ) and Var(Z).

For the evaluation of the prediction quality Eq.3 one needs to

calculate individual correlations such as corr(Y ,Z). A straightfor-

ward calculation yields

corr(Y ,Z)

~
corr(SY ,SZ)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1zVar(EY )=Var(SY )
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1zVar(EZ)=Var(SZ)
p :

ð10Þ

Again, analogous expressions hold for corr(X ,Z) and corr(X ,Y ).

Eq.10 allows one to identify two distinct reasons why the

correlation of Y and Z is smaller than unity. First, the team

strength may change between the two time intervals, i.e.

corr(SY ,SZ)v1. Second, the random effects, which influence

the observables Y and Z, may play an important role

(Var(EY ),Var(EZ)w0).

The subsequent discussion is based on the mathematical identity

corr(X ,Y )

corr(X ,Z)corr(Y ,Z)

~
corr(SX ,SY )

corr(SX ,SZ)corr(SY ,SZ)
1z

Var(EZ)

Var(SZ)

� �
:

ð11Þ

As a first step of simplification we want to estimate the team

strength SZ rather than Z itself. Then the prediction quality is

denoted by ~xx2(X ,Y ). All relations remain identical except

Var(EZ)~0 in the evaluation of quantities, occurring in Eq.3.

Naturally, one has the simple relation

x2(X ,Y )~~xx2(X ,Y )zVar(EZ): ð12Þ

As the second step we consider the special case that the team

strengths are the same in the second and third time interval,

belonging to Y and Z, respectively. Actually, it has been already

shown in Ref. [21] that apart from short-time fluctuations the

team strength remains constant during the course of a season. As a

consequence one has SY&SZ , i.e. nearly the same team strength

in the first and the second half of a season. Mathematically, we

assume a strict equality. The corresponding empirical result will be

discussed further below. A mathematical consequence is (see below

for specific data) corr(SX ,SY )~corr(SX ,SZ). Under this assump-

tion, Eq.11 can be rewritten as

corr(X ,Y )~corr(X ,SZ)corr(Y ,SZ): ð13Þ

Inserting this relation into Eq.3 for the prediction quality of SZ

the general expression simplifies significantly and one obtains

~xx2(X ,Y )~Var(SZ)
(1{½corr(Y ,SZ)�2)(1{½corr(X ,SZ)�2)

1{½corr(X ,Y )�2
: ð14Þ

This is the key relation to be used when estimating the quality of

the prediction. Apart from the assumption of constant properties

during the final two time intervals, this relation is generally valid.

Application to the Case of Soccer Prediction:
Concepts

General
Our general goal is the prediction of the future results of soccer

matches. Specific data are taken for the German premier league

(Bundesliga), employing information about all matches between

the seasons 1995/96 and 2010/11. During a season a team has 34

matches.

Our goal is the prediction of the aggregated results zi of each

team i of the second half of a season, based on knowledge about

NY match results yi from the first half of the season as well as the

NX ~34 results xi from the previous season. As the dependent

variable zi we choose the goal difference but a similar analysis

could be also performed for points; see again Fig.1. Of course, due

to the generality of our approach also different prediction

problems can be handled. For the explicit calculations of the goal

differences we correct for the home advantages [5] so that the

statistical properties are independent of the home advantage.

Disentangling random and systematic effects
For our analysis it is essential to decompose the variables X ,Y

and Z into its systematic parts (SX ,Y ,Z ) and its random

contributions (EX ,Y ,Z); see Eq.8. As mentioned above, zi will be

identified as the goal difference of team i after NZ matches,

normalised by NZ . In case of matches under identical conditions

the random effects are averaged out as reflected by the standard

scaling relation Var(EZ)!1=NZ where the proportionality con-

stant is denoted VZ. Thus, we have

Var(EZ)~
VZ

NZ

: ð15Þ

By studying the dependence of Var(Z) on NZ the systematic and

random contributions to Var(Z), as expressed in Eq.9, can be

identified. Of course, analogous relations hold for X and Y .

Strictly speaking, the scaling with the inverse number of the

matches breaks down for NZ close to unity because then different

strenghts of the opponents no longer average out. In practice it

turns out that for NZw4 the difference of the NZ opponents has

sufficiently averaged out. This dependence on the number of

considered matches has been explicitly analysed in Ref. [5,22]. For

the present set of data we obtain Var(SZ)~0:21 and VZ~2:95.

Actually, VZ is very close to the total number of goals per match

(2.85). This expectation is compatible with the assumption of

independent Poisson processes.

Optimum Prediction: Concepts & the Case of Soccer

PLOS ONE | www.plosone.org 3 September 2014 | Volume 9 | Issue 9 | e104647



Choice of observables
The goal is to predict the goal difference Z or, alternatively, the

team strength SZ . A natural choice for the independent variables

X and Y are the goal differences in the respective time intervals.

In what follows, goal differences are denoted as DG. However, as

will be shown below, this choice is far from optimum. Generally

speaking, one aims for observables which contain as much

information as possible about the team strength.

How to capture the information content of a given observable?

For this discussion we restrict ourselves to the prediction problem

Y?Z to be solved via a simple univariate regression as

summarised above (see Eq.1). For this analysis we use

NY ~NZ~17, i.e. all matches from the first and second half of

the season, respectively. The quality of the prediction is captured

by corr(Y ,Z). The larger the value corr(Y ,Z), the better the

prediction and thus the higher the information content of Y about

the team strength. From the empirical data we obtain

corr(Y~DGY ,Z~DGZ)~0:56.

Can one increase corr(Y ,Z) significantly beyond the value of

0.56 by using other observables? The scoring of goals is the final

step in a series of match events. One may thus hope that there

exist other match characteristics which are even more informative

about the team strength. A possible candidate is the number of

chances for goals. They are provided by a professional sports

journal (www.kicker.de) for all seasons, considered in this work.

We denote the chances for goals as C+ and the goals as G+. The

sign indicates whether it refers to the considered team (+) or the

opponent of that team (2).

Next we define the scoring efficiencies p+ via the relation

G+~C+
:p+: ð16Þ

Here, pz(~Gz=Cz) denotes the probability that the team is able

to convert a chance for a goal into a real goal and 1{p{ that the

team manages to not concede a goal after a chance for a goal of

the opponent. Averaging over all teams and seasons one obtains

Sp+T~0:24. Thus, every forth chance for a goal ends up in a

goal.

In Fig.2 the actual scoring efficiencies pz after a season are

shown together with the respective values of DC. Very clearly, the

goal efficiencies are widely distributed between approx. 15% and

35%. On average, better teams with a larger value of DC have a

slightly better efficiency to score goals and more likely avoid to

concede goals (correlation coefficients +0:26). Despite this small

correlation, the large scatter of p+ cannot be explained in terms of

DC.

This large unexplained variance seems to imply that the scoring

efficiencies strongly vary from team to team in an a priori

unknown way. As a consequence the chances for goals would

hardly contain additional information about the expected number

of goals, which a team is going to score in the future. In particular,

the estimation of the team strength, which is defined on the basis

of goals, would hardly be improved by taking into account the

chances for goals.

With the definition DC~Cz{C{ this statement is equivalent

to the presence of a weak correlation between DCY and DGZ .

However, this preliminary conclusion is wrong. Rather the

correlation coefficient turns out to be corr(Y~DCY ,Z~
DGZ)~0:65 which is much larger than the value of corr(Y
~DGY ,Z~DGZ)~0:56. Stated differently, the chances for goals

are by far more informative for the prediction of the team strength

than the goals themselves!

Why chances for goals are so informative
This observation could be rationalized under the hypothesis that

the scoring efficiencies are very similar for all teams. Qualitatively,

one can argue in this limit that random effects are stronger for

goals than for chances for goals, since the number of goals is

typically smaller than the number of chances for goals. To quantify

this aspect, we consider a simple example of a fictive coin-tossing

tournament where the head appears with probability p which in

this simple example is given by 1/2. A team is allowed to toss the

coin M times per round. In the first round this results in g1 times

tossing the head. Thus, in the first round one has observed the

number of tosses M as well as the number of heads g1. In the

relation to soccer M would correspond to the number of chances

for goals and g1 to the number of goals in that match. In order to

keep the argument simple we assume that M is a constant whereas

in a real soccer match M can vary. How to predict the expected

number of heads g2 in the next round? Here we consider two

different approaches. (1) The prediction is based on the

achievement of the first round, i.e. on the value of g1. Then the

best prediction is g2~g1. The variance of the statistical error of

the prediction can be simply written as
P

g1,g2
p(g1)p(g2)(g1{g2)2

where p(g) is the binomial distribution. A straightforward

calculation yields for this variance a value of 2Mp(1{p). (2)

The prediction is based on the knowledge of tossing attempts M. If

furthermore the value of p is known the optimum prediction is, of

course, pM. The variance of the statistical error is given by the

binomial distribution, i.e. by Mp(1{p). Stated differently,

knowing the number of attempts to reach a specific goal (here

tossing a head) is more informative than the actual number of

successful outcomes as long as the probability p is well known.

Note that in this limit the common value of the scoring efficiency is

very well determined because it results from averaging over all

teams.

This hypothesis seems to contradict the results Fig.2, as

presented above. However, a priori the large fluctuations of p+
in Fig.2 do not necessarily contradict the presence of a rather

uniform value of p+ for all teams. Rather, this apparent

disagreement can be easily resolved by discussing in more detail

the possible reasons for the strong fluctuations of p+ when

comparing different teams. In general, these fluctuations are a

superposition of two effects: (i) true differences between teams and

(ii) statistical fluctuations, reflecting the random effects in the 34

soccer matches of the season. In analogy to the previous discussion

both effects can be disentangled by studying the dependence of the

variance of p+ on the number of matches N, which has been used

for the averaging. The results of this analysis is shown in Fig. 3.

One can see that the extrapolation to large N, i.e. the systematic

Figure 2. The efficiency factors p+ as a function of the
differences of the chances for goals DC.
doi:10.1371/journal.pone.0104647.g002
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team-specific variance of p+, yields a value (0.0002) which is much

smaller than the variance for N~34 (0.0012), i.e. after averaging

over a whole season. Thus, the large fluctuations in Fig.2 are

mainly of statistical nature and the efficiency to score a goal from a

chance for a goal is basically the same for all teams! We note in

passing that to a large extend the residual variance of 0.0002 can

be explained via the above-mentioned effects that better teams

have a slightly higher scoring efficiency.

Based on this intriguing result we will identify X and Y as the

differences of the chances of goals in the respective time intervals,

denoted DCX and DCY . In analogy to Eq.9 and Eq.15 we can

identify the disentanglement into systematic and random contri-

butions. The results are listed in Tab.1.

As expected the statistical characterisation of the random

components of X (complete season) and Y (first half of a season)

are very similar because both deal with chances for goals. The

small remaining differences express the fact that the statistical

properties of the first and the second half of the season are slightly

different [22]. Finally, we note in passing (data not shown) that

knowledge of the goal differences of 2N matches has the same

information content as knowing the chances of goals of just

(approx.) N matches.

General statements about the degree of predictability
In the explicit form of corr(Y ,Z) (see Eq.10) all terms on the left

and right side except for corr(SY ,SZ) have been quantified so far,

either via the information in Tab.1 or via explicit determination of

corr(Y~DCY ,Z~DGZ), yielding corr(Y~DCY ,Z~DGZ)
~0:65 (with the choice NY ~NZ~17). This allows one to

determine the correlation between the team strength in the first

half and the second half of the league. We obtain

corr(SY ,SZ)~1:00. This has two important implications. First,

the variation of the team strength during a single season is basically

absent, as already reported in [5]. Second, the team strength as

defined via the chances for goals (corresponding to SY ) is, apart

from a proportionality factor, basically identical to the definition of

the team strength as defined via the goals (corresponding to SZ ).

Both results are very promising with respect to the ability to

predict soccer matches. In particular, the key approximation,

entering Eq.14, is indeed very well fulfilled.

We mention in passing [22] that a closer analysis reveals that

the team strength fluctuates with a small amplitude of approx.

A~0:17 and with a decorrelation time of approx. 7 matches.

Since we average over a larger number of matches and,

furthermore, restrict ourselves to the prediction of the total second

half, these temporal fluctuation are to a large extent averaged out

and do not show up in the present statistical analysis.

In case that the team strength SY is perfectly known,

i.e. Y~SY , Eq.10 yields (using EY ~0) corr(SY ,Z)~

1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1zVZ=½17Var(SZ)�

p
~0:74. One may compare this limit of

optimum prediction with the case where Y was calculated based

on the the chances for goals (correlation of 0.65) or based on the

goals (correlation of 0.56). This clearly reveals that using the

chances for goals instead of the goals yields a significant step

towards the theoretical optimum.

The final unknown in our prediction scheme are values of

corr(SX ,SY ) and corr(SX ,SZ) which can be determined in

analogy to corr(SY ,SZ). Explicit calculation yields corr(SX ,
SZ)~0:88 and corr(SX ,SY )~0:86. Both values are identical

within statistical errors (corr(SX ,SZ){corr(SX ,SY )~0:02+
0:02). This is compatible with the observation that the team

strength does not vary within a season but vary within the summer

break. For future purposes we use the average value of

corr(SX ,SY ,Z)~0:87 for the characterization of the correlation

of the team strength between two seasons.

Application to the Case of Soccer Prediction:
Results

Prediction of team strength
To check our analytical results we perform an explicit

multivariate regression analysis to estimate Z based on knowledge

of X and Y by using standard algorithms. To capture the

dependence on the information content of the first half of the

present season we also vary the number of considered matches

NY . To improve the statistical quality of the data for NY v17 we

always average over different random selections of NY matches

from the first half of the season. For the determination of DCX we

choose all matches, i.e. NX ~34 (thus taking the whole season). To

check the relevance of the information from the previous season

we alternatively set X~0, i.e. ignore the information from the

previous season.

One technical aspect needs to be mentioned. In a given season

two or three teams have just been promoted. Thus, no data about

the previous season are available. Therefore, we set the value of xi

for the differences of the chances for goals for the promoted team

to a constant value xprom. This value is determined by the

condition that the resulting average value xi (averaged over all

teams of the present season) is zero.

The numerical results are shown in Fig.4. We start with the case

X~0. One can see that (trivially) for NY ~0 the standard

deviation in the estimation of the team strength is identical to the

standard deviation of the SZ-distribution because no team-specific

information has been used. The longer the season, the more

information is available to distinguish between stronger and

weaker teams. Using the information of the complete first half of

the season (NY ~17) the statistical uncertainty decreases to 0.22.

Figure 3. The variance of the distribution of scoring efficiencies
in dependence of the number of match days.
doi:10.1371/journal.pone.0104647.g003

Table 1. The different systematic and random contributions
of the observables, relevant for this work.

Var(Si) Vi

X : DCX 2.32 14.1

Y : DCY 2.66 14.2

Z : DGZ 0:21 2.95

doi:10.1371/journal.pone.0104647.t001
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We have repeated the same calculation by identifying Y with

the goal differences DGY . The prediction quality is significantly

worse and one obtains an uncertainty of 0.30 rather than 0.22

after NY ~17 matches.

When additionally incorporating the information from X , the

statistical uncertainty is already quite small at the beginning of the

season (0.3). Of course, when increasing NY it further decreases.

Even after 17 matches the additional gain of using X is significant

(0.19 vs. 0.22). Thus, despite the slight decorrelation of the team

strength during the summer break it is advantageous to take into

account the information from the previous season even after half

of the present season has been played.

Furthermore, we compare in Fig.4 the actual uncertainty of the

prediction of Z with the theoretical expectation as expressed by

Eq.12 and Eq.14. One finds a very close agreement with the actual

data. This serves as a consistency check of our whole procedure

and just reflects the fact that the assumptions, underlying the

derivation of Eq.14, are fulfilled very well.

Finally, we explicitly apply this formalism to the prediction of a

specific season of the Bundesliga. We aim to predict the goal difference

of the 2nd half based on previous information. The regression

problem reads DĜGZ~a(NY )DCX zb(NY )DCY (NY ) where the

weighting factors depend on the number of matches, included from

the first half of the present season. They are listed in Tab.2 for different

values of NY . Naturally, for NY ~0 the estimation is only based

on DCX . Here the regression coefficient can be also calculated

analytically using the values, mentioned in this work. Specifically,

one gets a(NY ~0)~17corr(DCX ,DGZ)=Var(DCX )~17corr(SX ,

SZ)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var(SX )Var(SZ)

p
=Var(DCX )~17:0:88:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:32:0:21
p

=(2:32z

14:1=34)&3:8 which is very close to the numerically determined

value of 3.71. As expected, more information during the present

season, i.e. larger NY , leads to a stronger weighting of DCY . After

NY ~12 matches the information contents of the previous season is

basically equal to that of the first matches of the present season.

Based on these regression parameters we explicitly predict the

goal difference of the second half for the two cases NY ~0 and

NY ~17. We present data for the season 2007/08. Both

predictions for DGZ are listed in Tab.3 together with the actual

values of DGY and DGZ during that season.

One can see that for most cases the prediction before the season

and in the middle of the season agree quite well, i.e. no dramatic

reevaluations of the team strength as compared to the previous

year was necessary. Notable exceptions are München (estimation

of +10 before the season and +21 after half of the season) and

Leverkusen (increase from +2 to +9). Obviously, this reevaluation

reflects that the fact that both teams played much better during the

first half of that season (goal differences of +23 and +16 for

München and Leverkusen, respectively) than expected before-

hand.

The final column also contains information about the logarithm

of the market value (taken from www.transfermarkt.de) as an

independent variable for a trivariate regression problem. The

scaling of the team strength with the logarithm of the market value

has been explicitly shown in previous work [22]. The resulting

modifications in the estimation of DGZ are small but significant.

When averaging over all years between 2001/02 and 2010/11, for

which the market value is available, it turns out that the prediction

quality improves by 0.02 for NY ~17. Thus, relative to 0.19 a

further significant improvement can be achieved.

Prediction of single matches
Please note that the estimation of DGZ is the basis for many

other types of prediction. Since DGZ is nothing else than the team

strength, this value can be directly taken to estimate individual

matches. For example, on the 18th match day of the season 2007/

08 Cottbus was playing vs. Leverkusen. As shown in Refs. [21,22]

the expected goal difference during a match of team i and j in the

Bundesliga is given by the difference of the team strength of both

teams plus some team-independent contribution, reflecting the

home advantage. Nonlinear effects can be neglected. For this

specific match the expected outcome was (using the final column

in Tab.3): ({12)=17{(z8)=17z0:3~{0:9, using the home

advantage of approx. 0.3 during that season. Thus, the best

estimation for the resulting goal difference of that match, based on

the available information used in this work, is -0.9. Actually, the

final result was 2:3.

Here is a brief summary of the different prediction steps,

following the general procedure in [21] and in agreement with

previous work (e.g.[10]).

1. Calculation of the team strength via a linear regression

approach. As main parameters enter DCX , DCY , and the

logarithm of the market value of the team at the beginning of

the season. Naturally, for a match on the M-th match day one uses

NY ~M{1. Minor further improvements can be reached by

introducing an index for promoted teams and by taking into

account short-time fluctuations of the team strength by using the

results of the last seven matches as an individual parameter [22].

In total, this ends up in a five-dimensional regression analysis. The

regression parameter have been obtained from comparison of all

seasons between 1995/96 and 2010/11, excluding the season

which predictions are performed.

Figure 4. The prediction quality of the team strength,
determined via

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~xx2(X ,Y )

p
, as a function of the number of

match days NY . Different choices of variables are shown. For the
second and third case (DGY and DCY , respectively) the information
from the previous season is neglected. The solid lines are based on the
explicit formulas for the prediction quality.
doi:10.1371/journal.pone.0104647.g004

Table 2. The two regression parameters as a function of NY .

NY a(NY ) b(NY )

0 3.71 0

4 3.20 0.82

8 2.60 1.70

12 2.23 2.30

17 1.86 2.77

doi:10.1371/journal.pone.0104647.t002
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2. Calculation of the sum of goals by a corresponding regression

analysis, taking into account the goals, scored in the present season

so far, and the goals of the previous season [21]. However, for the

calculation of the outcome of individual matches this step is by far

less important than the estimation of the team strength.

3. Estimation of the team-independent home advantage in the

corresponding season in analogy to the previous step [22].

4. Calculation of the expectation value of goals of both teams

from steps 1–3.

5. Estimating possible final scores by assuming independent

Poisson processes.

6. Correcting for the effect that draws are more likely than

expected on the expense of matches with goal differences +1 [23].

Note that in earlier work goals rather than chances for goals

were employed. We would like to stress again that the critical part

of this endeavor is the determination of the team strength as

described in this work.

To characterize the quality of the present approach we have

compared the predictions of single matches with odds from

Oddset, using data between the seasons 2002/03 and 2006/07,

where the odds were available to us. Specifically, we used the

scaled inverse odds as an estimate of the respective probabilities for

a win of the home team, a draw, or a win for the away team. An

objective measure is the parameter

K~{S ln (probability for win, draw, loss)T ð17Þ

where the probability for the actual outcome is taken as the

argument of the logarithm. One can show that the value of K is a

Table 3. The predictions of the goal difference of the second half of the Bundesliga-season 2007/08 for each team, based on the
differences of chances for goals DCX of the previous season (3rd column) or, additionally, on the differences of chances for goals
DCY of the first 17 matches of the present season (4th column).

17DGY 17DGZ 17DGZ,est(NY ~0) 17DGZ,est(NY ~17) 17DGZ,est(NY ~17)

plus market value

B. München 23 24 10 21 23

Bremen 18 12 11 15 14

Hamburg 11 10 3 9 10

Leverkusen 16 1 2 9 8

Schalke 9 14 8 12 11

Karlsruhe 22 213 28 26 27

Hannover 21 21 3 21 22

Stuttgart 21 1 9 5 6

Frankfurt 24 23 2 23 24

Dortmund 24 28 0 0 2

Wolfsburg 0 12 24 25 22

Hertha 25 0 25 28 25

Bochum 22 24 21 24 27

Bielefeld 219 26 26 211 210

Rostock 210 212 28 211 213

Nürnberg 27 29 1 1 1

Cottbus 210 211 28 210 212

Duisburg 212 27 28 213 212

The estimation in the final column also involves information about the market value. The actual goal differences of the first half of that season and the second half are
included in the first two columns, respectively.
doi:10.1371/journal.pone.0104647.t003

Table 4. The K-value for the regression model during the seasons 2002/03 and 2006/07 as well as for the Oddset-odds.

first 10 matches of season all 34 matches

Only home advantage 1.073 1.057

+ matches of present season 1.054 1.013

+ matches of previous season 1.027 1.004

+ market value 1.019 1.000

Oddset 1.025 1.012

Difference 0.006+0.009 0.012+0.004

The impact of adding additional information to the model is listed.
doi:10.1371/journal.pone.0104647.t004
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minimum if the predicted probabilities for a win, a draw, and a

loss are identical to the true probabilities. Analogous measures can

be already found in literature, e.g. [10,24]. One can see in Tab.4

the additional consideration of new information indeed gives rise

to a lower value of K . Furthermore, restricting the choice of

matches to those taking place during the first 10 match days, the

prediction becomes worse (larger K ). In particular, the additional

impact of the market value is larger, if restricting oneself to the first

10 matches of the season. When averaging over all matches in

these seasons [22], it turns out that the K-value of the present

approach is smaller than the K-value for the Oddset-odds by

0:012+0:004. Thus, the comparison yields a highly significant

improvement of the present model as compared to the Oddset-

odds. The size of this improvement is non-negligible if compared

to the variations of K when adding different pieces of information;

see Tab.4.

Discussion

The main goal of this work is to provide a theoretical framework

which allows one to determine the quality of the prediction.

Conceptually, it is related to the Bayesian approach because it

takes into account the impact of additional information as well as

the impact of decorrelations on the estimation of future events. As

a formal framework we have used a multivariate regression

approach.

The prediction of soccer results is a particularly nice case study

of this approach due to the availability of well-defined data and

due to the popular interest in this matter. Beyond the application

of the analytical results it turned out to be essential to search for

observables (here: chances for goals) with a high information

content.

One interesting question arises: is the residual statistical error of

SZ for NY ~17 small or large? This question may be discussed

from two different perspectives. First, one may want to predict the

outcome of the second half of the league. Then the uncertainty is

given by 17
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2(X ,Y )

p
~17

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~xx2(X ,Y )zVZ=17

p
. These values are

plotted for different prediction scenarios in Fig.5. One can see how

the additional information decreases the uncertainty of the

prediction. Most importantly, the no man’s land below an

uncertainty of
ffiffiffiffiffiffiffiffiffiffiffiffi
17VZ

p
~7:1 cannot be reached by any type of

prediction. The art of approaching this perfect prediction thus

resorts to decrease the present value of 7.8 to a value closer to 7.1.

Second, one may be interested in the prediction of a single match.

This case is somewhat different. Since the team fluctuations are

very difficult to predict, the fluctuation amplitude A~0:17 (see

above) serves as a scale for estimating the highest possible quality

of match prediction. If the uncertainty is much smaller than A any

further improvement would be irrelevant due to the non-

predictable fluctuations of the team strength. However, in the

present case the statistical error after NY ~17 is close to A so that

a further reduction of ~xx2(X ,Y ) would still be relevant for

prediction purposes of individual matches.

Repeating this analysis for the prediction of the points in the

second half of the season the statistical uncertainty of the

estimation corresponds to approx. 6 points (standard deviation).

This corresponds to lose rather than to win two matches or vice

versa.

Note that the chances for goals are not a completely objective

observable because finally also the subjective judgement of a sports

journalist may influence its estimates. In this sense the high

information content of chances for goals indicates that the

subjective component is quite small and the general definition is

very reasonable. Of course, in the future one may look for strictly

objective match observables taken by commercial companies to

further improve the information content. In any event, the chances

for goals are by far more informative than the actual results, as

typically taken for prediction purposes.

As demonstrated above, the present results can be directly

applied to the prediction of individual soccer matches. The reason

is that the team strength, as estimated via the above regression

analysis, is the key input for the formalism of single-match

prediction, as outlined in Ref. [21,22].

Of course, it is conceivable that the general ideas can be used

for different applications under the condition that very recent

(exact but noisy) and more previous information (slightly changed

but low noise level) is present. Note that the type of data is

identical to panel data, popular in socio-economic studies. Popular

cohort studies deal with the time-evolution of the income or the

health situation (see, e.g., [25-27]). For the testing of stochastic

concepts sports data are, of course, particularly suited, because of

the easily accessible and reliable data basis.
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