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Abstract

PCB 180 is a persistent non-dioxin-like polychlorinated biphenyl (NDL-PCB) abundantly present in food and the
environment. Risk characterization of NDL-PCBs is confounded by the presence of highly potent dioxin-like impurities. We
used ultrapure PCB 180 to characterize its toxicity profile in a 28-day repeat dose toxicity study in young adult rats extended
to cover endocrine and behavioral effects. Using a loading dose/maintenance dose regimen, groups of 5 males and 5
females were given total doses of 0, 3, 10, 30, 100, 300, 1000 or 1700 mg PCB 180/kg body weight by gavage. Dose-
responses were analyzed using benchmark dose modeling based on dose and adipose tissue PCB concentrations. Body
weight gain was retarded at 1700 mg/kg during loading dosing, but recovered thereafter. The most sensitive endpoint of
toxicity that was used for risk characterization was altered open field behavior in females; i.e. increased activity and distance
moved in the inner zone of an open field suggesting altered emotional responses to unfamiliar environment and impaired
behavioral inhibition. Other dose-dependent changes included decreased serum thyroid hormones with associated
histopathological changes, altered tissue retinoid levels, decreased hematocrit and hemoglobin, decreased follicle
stimulating hormone and luteinizing hormone levels in males and increased expression of DNA damage markers in liver of
females. Dose-dependent hypertrophy of zona fasciculata cells was observed in adrenals suggesting activation of cortex.
There were gender differences in sensitivity and toxicity profiles were partly different in males and females. PCB 180 adipose
tissue concentrations were clearly above the general human population levels, but close to the levels in highly exposed
populations. The results demonstrate a distinct toxicological profile of PCB 180 with lack of dioxin-like properties required
for assignment of WHO toxic equivalency factor. However, PCB 180 shares several toxicological targets with dioxin-like
compounds emphasizing the potential for interactions.
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Introduction

Polychlorinated biphenyls (PCBs) include a number of persistent

and potent organic pollutants ubiquitously present in human and

animal tissues, food and in the environment. Based on their

structure and toxicological properties the group of 209 different

PCB congeners is divided into 12 dioxin-like PCB (DL-PCB)

congeners and 197 non-dioxin-like PCB (NDL-PCB) congeners.

DL-PCBs can adopt a planar conformation, because they have no

or only one chlorine substitution in the ortho position. They bind
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to the aryl hydrocarbon receptor (AHR) with high affinity and

elicit dioxin-like (DL) toxic effects. In contrast, NDL-PCBs are

non-planar, do not bind to AHR and are therefore assumed to

have a different toxicological profile that varies depending on

chemical structure [1].

NDL-PCBs form the majority of total PCBs in the environment

and food, and therefore they form a significant portion of human

PCB exposure. A World Health Organization (WHO) mother’s

milk survey carried out in 2001–2002 on 102 human milk pools

from 26 countries world-wide indicated that NDL-PCBs account

for 90% of total PCBs [1,2]. In spite of the abundance of NDL-

PCBs their toxicity is poorly characterized in terms of the

spectrum of effects and potency. Due to lack of relevant data the

Scientific Panel on Contaminants in the Food Chain of the

European Food Safety Authority (EFSA) was not able to establish

health based guidance values for NDL-PCBs [1].

The main problem with the majority of existing data on NDL-

PCB toxicity is the simultaneous presence of highly potent DL

congeners that makes it impossible to distinguish the specific effects

of NDL-PCBs from those of DL compounds. Even trace levels of

DL impurities may have toxicologically significant effects overrid-

ing the effects of NDL-PCBs [3]. Typical higher total doses of

NDL-PCBs in toxicity studies are on the order of hundreds of mg/

kg bw, and even doses below 1 mg WHO-TEQ/kg bw of DL

impurities may be of toxicological significance [4]. Thus, DL

impurity levels as low as 10 mg WHO-TEQ/g NDL-PCB

(0.001%) or even below may confound the outcome. Many

previous studies have been carried out using technical PCB

mixtures with variable amounts of DL constituents, such as

polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs)

or DL-PCBs. In most studies with single NDL-PCB congeners or

reconstituted mixtures the levels of DL impurities were not

quantified or sufficiently reported. It is therefore likely that the

outcome of these studies is variably affected by the simultaneous

exposure to DL compounds. Similarly, epidemiological studies

have not been able to address specific effects of NDL-PCBs,

because humans are always exposed simultaneously to complex

mixtures of DL and NDL compounds.

A wide variety of toxic effects, including effects on liver, thyroid

function, behavior, central nervous system, endocrine system,

reproduction and development and immunology [1,5], have been

ascribed to NDL-PCBs, and the fact that most of them are also

characteristic for DL compounds makes it difficult to differentiate

between the causative groups of compounds. Overall, for most

studied endpoints the potency of NDL-PCBs has been reported to

be clearly lower than that of DL-PCB 126, the most potent DL-

PCB.

Most toxicity studies on NDL-PCBs have been carried out with

2,29,4,49,5,59-hexachlorobiphenyl (PCB 153). Dietary exposure of

rats to PCB 153 (PCDD/F impurities .1.0 mg/g) for 90 days

revealed e.g. enlarged fatty livers with cytoplasmic vacuolization,

increased activity of liver microsomal xenobiotic metabolizing

enzymes, reduced follicle size of the thyroid gland, reduced hepatic

and pulmonary vitamin A levels and neurochemical alterations in

several regions of brain mainly in females [6]. The no-observable-

adverse-effect level (NOAEL) was 0.5 mg/kg diet (equivalent with

34 mg/kg bw/day or a total dose of 3.1 mg/kg bw). Similar but

milder alterations were observed in an analogous study with

2,29,3,39,4,49-hexachlorobiphenyl (PCB 128; no PCDD/F impu-

rities detected at detection limit of 1.0 mg/g) [7]. As compared to

PCB153, the lower potency of PCB128 was associated with lower

tissue concentrations due to faster elimination.

In a National Toxicology Program (NTP) study, PCB 153

(purity .99%, DL impurities not reported) was administered to

female rats by oral gavage 5 days per week for up to 2 years [8].

The main toxicological findings included increased liver and

kidney weights, increased liver pentoxyresorufin-O-deethylase

(PROD) and 7-ethoxyresorufin-O-deethylase (EROD) activity,

hepatocyte hypertrophy, diffuse fatty change and bile duct

hyperplasia in the liver, decreased serum thyroid hormone

concentrations, follicular cell hypertrophy of the thyroid gland,

chronic active inflammation in the ovary and oviduct and

inflammation of the uterus. As equivocal evidence for carcinogenic

activity 4 cases of cholangioma and one hepatocellular adenoma

were observed at high exposure levels.

The present study is focused on improving the risk assessment of

NDL-PCBs by providing missing critical health hazard informa-

tion and clarifying biological mechanisms underlying different

toxic effects. As the first step towards understanding the toxicity

profile of NDL-PCBs a series of comprehensive in vitro screening

of 17 different assays and QSAR modeling of 19 ultrapure

congeners and several other reference PCBs were carried out

[9,10]. NDL-PCBs were selected using a statistical molecular

design covering the entire domain of tri- to hepta-chlorinated

NDL-PCBs and including congeners abundant in environmental

and human tissue samples [11]. Principal component analysis

(PCA) of the data from this screening revealed a multivariate

toxicity profile that could be divided into three major clusters: DL-

PCBs and two separate NDL-PCB groups. The first NDL-PCB

group included smaller, ortho-substituted congeners with higher

biological activity in most of the assays: PCBs 28, 47, 51, 52, 53,

95, 100, 101, 104 and 136. The second group included the most

abundant congeners with high biological activity in three

endocrine related assays: PCBs 19, 74, 118, 122, 128, 138, 153,

170, 180 and 190. In order to get insight into the toxicity profile

and potency of NDL-PCBs in vivo two different types of congeners

were selected for 28-day toxicity studies, the heptachlorinated PCB

180 (the present study) and the tetrachlorinated PCB 52 (Roos et
al., in preparation). These two congeners were considered of

highest priority, because (1) they represent different toxicity profile

clusters among NDL-PCBs, (2) both of them are abundant in

environmental and human samples belonging to the ‘‘six indicator

PCBs’’ [1], and (3) no appropriate toxicity studies were available

for either of them.

PCB 180 is a toxicologically significant major indicator PCB,

because it is very accumulative due to slow elimination. The

estimated elimination half-life is 11.5 years in adult humans [12],

9.8 years in early adolescent children [13] and 90 days in rats

[14,15]. PCB 180 is also able to transfer rapidly across the

placental barrier [16]. The specific aims of this study were (1) to

establish the toxicological profile of PCB 180 by defining target

organs and dose-response relationships (benchmark doses, BMDs)

for toxic effects, and (2) to establish the relationship between toxic

effects and tissue PCB 180 levels. Hepatic effects observed in the

animals of this study were recently reported [17], and effects of in
utero/lactational exposure to PCB 180 and PCB 52 will be

reported separately (Roos et al., in preparation).

Materials and Methods

Ethics Statement
All animal work was conducted in strict accordance with

relevant national and international guidelines. The study protocol

was approved by the National Animal Experiment Board of

Finland (license No. ESLH-2006-07965/Ym23).
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Chemicals
PCB 180 (2,29,39,4,49,5,59-heptachlorobiphenyl; CAS 35065-

29-3; molecular weight 395.3; batch No. 6115) was purchased

from Chiron, Trondheim, Norway and analysed. In brief, 20 mg

PCB 180 was dissolved in n-hexane and applied on an activated

carbon column, flushed with n-hexane and then back-flushed with

toluene to recover DL contaminants [18]. The toluene fraction

was analyzed using a gas chromatograph interfaced with a high

resolution mass spectrometer tuned for identification of DL-PCBs

and PCDD/Fs. The purity of PCB 180 as stated by the supplier

was 98.9% and the analyzed level of dioxin-like impurities as

represented by sum of WHO-TEQ contamination was 2.7 ng/g

PCB 180. The PCB was dissolved in purity controlled (0.2 pg

WHO-TEQ/g) corn oil (Sigma Aldrich, Munich, Germany; batch

No. 065K0077) applying the same protocol as described above for

PCB 180, which served also as control.

Animals
Outbred male and female Sprague-Dawley rats (Rattus

norvegicus) were obtained from Harlan Netherlands (Zeist, The

Netherlands). During the study they were kept in a conventional

laboratory animal unit subjected regularly to health surveys

consisting of serological and bacteriological screening as suggested

by FELASA [19]. These surveys indicate that the animals were

free of typical rodent pathogens. The rats were acclimatized to the

experimental conditions for one week before commencing with

dosing. At the start of the treatment the rats were 6 weeks old and

the mean body weight (6SD) of males was 186.3614.1 g and that

of females 136.366.8 g. Altogether 40 male and 40 female rats

were used. Rats were randomized by body weight into 8

experimental groups of 5 males and 5 females. The rats were

housed in stainless steel, wire-bottomed cages 5 rats/cage

(45638619 cm) and given standard pelleted R36 feed (Lactamin,

Sweden), and tap water ad libitum. The room was artificially

illuminated from 7 am to 7 pm, and air-conditioned to provide

about 8 air changes per hour. The ambient temperature

(mean6SD) was 21.360.5uC and the relative humidity 4867%.

The animals were individually identified by a tattoo on pinna, and

the treatment groups were labeled with color codes.

Experimental design
The experimental protocol followed the OECD 407 Guideline

on Repeated dose 28-day oral toxicity study in rodents, which was

enhanced for detection of endocrine, neurotoxicity, retinoid, bone

and DNA damage endpoints. In order to improve the assessment

of dose-response relationships [20] the number of rats per gender

per dose group was reduced to 5 and the amount of dose groups

was increased to 8. To rapidly achieve the kinetic steady state, the

total dose was divided into 6 daily loading doses and 3 weekly

maintenance doses, which were calculated according to the

formula [21].

x�0~x0
1

1{e{Kt

� �

where x�0 = loading dose

x0 = maintenance dose

K = elimination rate constant ~
ln 2

t1=
2

� �

t = dosing interval

using a half-life t1=
2

� �
of 90 days [14,15].

Corn oil (control) or PCB 180 dissolved in corn oil was

administered by oral gavage at 4 ml/kg body weight using a metal

cannula with a ball tip. Loading doses were administered on days

0–5 and maintenance doses on days 10, 17 and 24 of the study.

Selection of the highest dose was based on a pilot study.

Experimental groups and doses are given in Table 1.

The rats were observed for clinical signs twice daily except

during weekends once daily, and they were weighed every second

day during loading dosing period and at least once weekly

thereafter. Food and water consumption per cage was recorded

once weekly. For determination of the stage of the estrous cycle

vaginal smears were collected from female rats daily starting from

day 23 of the study. This was done to ensure that the females were

at the diestrous stage during necropsy.

At the end of the treatment period (males on study day 28–31,

females on study day 28–32) the rats were anesthetized with CO2/

O2 (70/30%). Blood samples were drawn from the left ventricle

using Venoject needles (Terumo) and Vacuette EDTA and serum

blood collection tubes, and the rats were killed by exsanguination.

Table 1. Treatment groups and doses. Loading dose was administered on study days 0–5 and maintenance dose on study days
10, 17 and 24.

Treatment group
Total dose
(mg/kg bw)

Loading dose
(mg/kg bw) Maintenance dose Number of animals

Weekly dose
(mg/kg bw)

Apparent daily dose
(mg/kg/day) Males Females

1. Control 0 660 360 0 5 5

2. PCB180 3 660.44 360.136 19.4 5 5

3. PCB180 10 661.44 360.45 64.3 5 5

4. PCB180 30 664.32 361.36 194 5 5

5. PCB180 100 6614.4 364.5 643 5 5

6. PCB180 300 6643.2 3614 2000 5 5

7. PCB180 1000 66144 3645 6430 5 5

8. PCB180 17001 516288 3691 13000 5 5

1The target total dose of group 8 was 2000 mg/kg bw, but due to unexpected decrease in body weight (Fig. 1.) the third loading dose was omitted for animal welfare
reasons, and the rats received only the corn oil vehicle.
doi:10.1371/journal.pone.0104639.t001
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EDTA blood was used for hematology investigations (see below).

Serum was separated, divided into aliquots, frozen in liquid

nitrogen and stored at 270uC for further analysis (see below). A

complete necropsy (macroscopic observations, tissue sampling for

molecular biology, biochemistry, histopathology, analytical chem-

istry and organ weights) was performed on each rat. The weights

of the following organs were recorded: adrenals, brain, epididy-

mides, heart, kidneys, liver, lungs, ovaries, pituitary, prostate

(ventral), seminal vesicles, spleen, testes, thymus, thyroids (with

parathyroids) and uterus. For molecular biology and biochemical

analyses samples from brain, liver, kidney, bones, and several

other tissues were snap frozen in liquid nitrogen and stored at 2

80uC for further analysis. In addition, perirenal adipose tissue and

liver samples were stored at 220uC for determination of PCB 180

tissue concentration. Tissue samples for histopathology were

preserved in 10% neutral buffered formalin except testis and

epididymis, which were fixed in Bouin’s solution for 24 h after

which they were transferred into 70% ethanol.

Open field test for locomotor activity
During the last 5 days of the study (days 24–28), rats were tested

for locomotor activity in an octagonal open field (diameter 75 cm).

The behavior was recorded on videotapes and automatically

evaluated with a program for behavioral analyses (Ethovision,

Noldus, NL). Each rat was tested for 5 min on each of the 5 days

to allow the examination of habituation. Sequence of the rats to be

tested was varied according to a permutation scheme to exclude a

systematic influence of daytime on the outcome. For analyses, the

area of the open field was divided in an inner zone (diameter

50 cm) and an outer ring (width 12.5 cm). Total distance moved

during the recording period, distance moved in the inner zone of

the open field, distance moved in outer zone, time in inner zone,

and time in outer zone were extracted as parameters from the

recordings.

Adipose tissue PCB 180 concentrations
Perirenal adipose tissue samples from each treatment group and

gender were pooled (5 individuals per pool), freeze-dried and dry

weight was determined. The samples and blanks were extracted by

accelerated solvent extraction (ASE) using hexane:dichloro-

methane (1:1), followed by an acid silica column cleanup. PCBs

103 and 198 were used as internal standards. Two blanks and a

reference material were measured in the series. The extracts were

analyzed by gas chromatography with electron capture detection

(GC-ECD) with a double column system (CP-SIL 8 CB and CP-

SIL 19 CB). Concentrations were calculated using external

calibration standards. The concentrations were corrected for the

blank signal. Determination of total lipids was performed

according to Bligh and Dyer [22].

Hematology
Basic blood picture analysis was carried out using Advia 120

analyzer (Bayer, later Siemens Diagnostic Division, Dublin,

Ireland). This analysis includes red cell count (RBC), hemoglobin

(HB), hematocrit (HCT), platelet count (PLT), leukocyte total

count (WBC) and differential count as well as the calculated red

cell and platelet parameters mean corpuscular volume (MCV),

mean corpuscular hemoglobin (MCH), mean corpuscular hemo-

globin concentration (MCHC), red cell distribution width -

standard deviation (RDW-SD), platelet distribution width (PDW)

and mean platelet volume (MPV). Blood cell counting is based on

isovolumetric sphering and fixing the cells, stains and light

scattering. Visual leukocyte differential counting was done after

May-Grünwald-Giemsa staining.

Clinical chemistry
Spectrophotometric methods were used for the determination of

serum total calcium [23], cholesterol [24], creatinine [25], glucose

[26], triglycerides [27] and urea [28]. Serum sodium, potassium

and chloride concentrations were measured directly by ion

selective electrodes. The analyses were performed by a clinical

chemistry analyzer (Konelab 30i, ThermoFisher Scientific,

Vantaa, Finland). Plasma lactate dehydrogenase (LD) activity

was measured according to the recommendations of the Interna-

tional Federation of Clinical Chemistry (IFCC 1994/I) using

Konelab 60i clinical chemistry analyzer. Methods and results for

liver related parameters (serum alanine aminotransferase [ALT]

activity, alkaline phosphatase [ALP] activity, albumin, total

protein and total bilirubin are reported separately [17].

Thyroid hormones
Serum free triiodothyronine (FT3), free thyroxine (FT4) and

thyroid stimulating hormone (TSH) were measured by Elecsys

2010 immunochemistry analyzer using Roche FT3, FT4 and TSH

reagents (all from Roche Diagnostics GmbH, Mannheim,

Germany). The test principle is electrochemiluminescence immu-

noassay (ECLIA).

The potencies of 4 theoretically possible mono-hydroxyl

metabolites of PCB 180 (39-OH-PCB 180, 49-OH-PCB 172, 39-

OH-PCB 182 and 5-OH-PCB 183; structural formulas in Table

S13) to compete with T4 for binding to transthyretin (TTR) were

determined using a binding assay where the test compound

competes with radiolabeled [125I]-T4 for binding to human TTR

(Sigma Aldrich) complex during an overnight incubation at 4uC
[29]. Full dose-response curves within the range of 1–100 nM

were determined for each OH-PCB metabolite.

Steroids and gonadotropins
Serum testosterone, estradiol and progesterone concentrations

were measured by time-resolved immunofluorometric assay,

DELFIA (PerkinElmer Life and Analytical Sciences, Turku,

Finland) after diethyl ether (Merck KGaA, Darmstadt, Germany)

extraction. Ether-extracted serum samples were reconstituted to

DELFIA Diluent II buffer (PerkinElmer Life and Analytical

Sciences, Turku, Finland) and used for analysis. The sensitivity of

the assay was 100 pg/ml for testosterone, 13.6 pg/ml for estradiol

and 250 pg/ml for progesterone. The intra- and interassay

coefficients of variation (CV) were below 6 and 12%, respectively.

To enhance the sensitivity, commercial tracer and antiserum were

additionally diluted 5:8 with assay buffer (PerkinElmer Life and

Analytical Sciences, Turku, Finland) in testosterone assay. For

estradiol and progesterone, dilution rate was 1:2. Serum follicle

stimulating hormone (FSH) and luteinizing hormone (LH) levels

were determined from unextracted samples by DELFIA as

described previously [30,31]. The sensitivity of the rat FSH assay

was 0.1 mg/l, intra-assay CV 4.3% and inter-assay CV 10.4% at

4.8 mg/l, and the sensitivity of the rat LH assay was 0.03 mg/l,

intra-assay CV 19% at 0.04 mg/l, .5% at .1 mg/l and inter-

assay CV 12.5% at 0.24 mg/l and 7.8% at 0.78 mg/l.

Retinoid analyses
Retinoids in liver, serum, and kidney were analyzed according

to Schmidt et al. [32]. The polar retinoids 9-cis-retinoic acid (9-cis-
RA), 13-cis-retinoic acid (13-cis-RA), 13-cis-4-oxo-retinoic acid

(13-cis-4-o-RA), 9-cis-4-oxo-13,14-dihydro-retinoic acid (9-cis-4-o-

13,14-dh-RA), all-trans retinoic acid (all-trans RA) and the apolar

retinoids retinol and retinyl palmitate were extracted by a single

liquid-extraction, separated from each other via solid-phase

Toxicological Profile of PCB 180 in Rats
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extraction using an aminopropyl phase, and then injected onto

two different HPLC systems that were coupled with UV detection.

The polar retinoids were separated on a Spherisorb ODS2 column

(2.16150 mm, 3 mm particle size, Waters, Eschborn, Germany)

using a binary gradient and UV detection at 340 nm. The limits of

detection (LOD) for all-trans RA and 9c-4o-13,14-dh-RA were 0.7

and 1.0 pmol/g tissue, and 0.3 and 0.6 pmol/ml serum,

respectively. Retinol and retinyl palmitate were separated on a

J’sphere ODS-H80 (4.66150 mm, 4 mm particle size) obtained

from YMC (Schermbeck, Germany), and were detected at 325 nm

[32]. The LOD for retinol and retinyl palmitate were 5.6 and

5.5 pmol/g tissue, and 4.2 and 4.2 pmol/ml serum, respectively.

Liver DNA damage markers
Liver p53, Mdm2 and DNA damage related markers were

assessed by Western blotting analysis. Proteins of the liver

homogenates were quantified using Coomassie Plus Protein Assay

Reagent (Pierce, Täby, Sweden). The samples were subjected to

SDS-PAGE, the separated proteins were transferred to a

polyvinylidene difluoride membrane (Bio-Rad, Hercules, CA,

USA) and blocked in 10% non-fatty milk for 1 h. The protein

bands were subsequently probed with antibodies overnight at 4uC.

The primary antibody for total p53 DO-1 was purchased from

Novocastra (Newcastle, UK). Primary antibodies for DNA-

damage marker were phospho-p53 (Ser-15), phospho-Chk2

(Thr-68), phospho-Mdm2 (Ser-166), phospho-Akt (Ser-473) (Cell

Signaling Technology, Stockholm, Sweden) phospho-Erk (Tyr-

204) (E-4) and the loading control Cdk2 (M2) (sc-7383 resp. sc-

163, Santa Cruz Biotechnology, Santa Cruz, CA, USA).

Secondary antibodies used were goat anti-rabbit IgG, goat anti-

mouse IgG (sc-2004 resp. sc-2005, Santa Cruz Biotechnology). No

signals were obtained when primary antibodies were omitted.

Cdk2 was used as a loading control. The results were visualized by

the ECL or ECL plus detection kits (Amersham GE Healthcare

Bio-sciences AB, Uppsala, Sweden). Cdk2 was used as a loading

control. The densitometric analysis was made with Image J version

1.34s software

Histopathology
After fixation, the samples were dehydrated, paraffinized and

embedded according to standard sampling and trimming proce-

dures. Sections of 4 mm were stained with hematoxylin and eosin

in an automated way. Microscopic observations were done by

initial unblinded comparison of control and top dose samples.

Intermediate dose samples were assessed when effects were

suggested by initial observations, or otherwise (e.g. effects in

organ weights). Slide reading for such affected endpoints was

refined by blind and/or semi-quantitative scoring.

For immunohistochemistry of TSH and ACTH in the pituitary

routine sections were deparaffinized in a graded series of xylol/

ethanol. Endogenous peroxidase activity was blocked in a 1/1

methanol/distilled water solution with 1/100 0.3% H2O2 added.

Antigen exposure was improved by 30 min trypsin incubation

(0.25% wt/vol trypsin with 0.02% wt/vol CaCl2 in distilled water),

and background staining was reduced by 15 min incubation with

blocking reagent (Perkin Elmer) and 1% wt/vol in phosphate-

buffered solution. Subsequent 60 min incubation with purified

rabbit polyclonal IgG against rat TSH (Biogenesis), 1/1600

dilution, or against ACTH (Phoenix Pharmaceuticals), 1/1000

dilution, was followed by incubation with a biotinylated anti-rabbit

second antibody in the case of TSH (1/200, 30 min; Vector) and

avidin-biotin complex (Vector) according to instructions of the

manufacturer; both antisera were diluted in the 1% blocking

reagent solution, or with a peroxidase conjugated anti-rabbit

second antibody (DAKO) in the case of ACTH. Immunostaining

was completed with incubation with a standard diaminobenzidine

(Sigma) solution for 5 min and counterstaining with hematoxylin

(Mayer procedure). Immunostaining was evaluated by comparing

the quantity and staining intensity of positive cells between control

and high dose samples.

Sperm analyses
Frozen right cauda epididymides were homogenized for 2 min

using Ultra Turrax homogenizer (model T25 basic, IKA-WERKE

GmbH, Staufen, Germany) in 20 ml 0.9% saline containing

0.05% Triton X-100 and 0.01% thiomersal. Homogenates were

diluted to about 16106 sperms/ml, and counts from 4 hemocy-

tometer chambers were counted and averaged.

Bone geometry, densitometry and biomechanics
Hind limbs were collected and frozen at 220uC. Dissected right

tibias were cleaned from soft tissue and stored in Ringer solution at

220uC until analysis. The length of each bone was measured

using an electronic sliding caliper to the nearest 0.01 mm (IP65,

Sylvac SA, Crissier, Switzerland). The tibias were scanned using

the peripheral quantitative computed tomography (pQCT) system

(Stratec XCT Research SA+) with software version 5.50 (Norland

Stratec Medizintechnik, GmbH, Birkenfeld, Germany) The scans

of metaphysis and diaphysis were performed at sites distanced

10% and 45%, respectively, of the length from the growth plate,

respectively. The thresholds for defining trabecular bone were 280

and 400 mg/cm3, while cortical bone was defined above a

threshold of 710 mg/cm3. The voxel size was 0.07 mm.

For biomechanical testing hind limbs were defrosted and tibial

shafts tested with a three-point bending test using a custom made

testing apparatus [33,34]. Each bone was placed on a support with

a span length of 13 mm and bending load was applied with a

constant speed of 0.155 mm/sec until failure. The breaking force,

bending stiffness and yield force were defined from load-

displacement data. Stiffness was calculated as the slope of the

linear part of load-displacement curve. Yield force was defined as a

corresponding force where the fit for stiffness separated from the

measured load-displacement curve. The breaking force was

defined as bending load at maximum. Corresponding to these

forces also both failure and yield deformations were evaluated.

Brain amino acid analyses
The right hemisphere of cerebrum was rapidly weighed and

homogenized in ice cold 7% HClO4 [35] using a glass/teflon

Potter-Elvehjem homogenizer (Schwaben Prazision Nordlingen

type L43). a-Amino adipic acid was used as internal standard.

Samples were neutralized to pH 6.5–7.5 with ice cold KOH/HCl

and centrifuged for 20 min at 20 000 g and 4uC in a Sorvall

RMC-14-micro centrifuge [36]. Pellets were frozen at 240uC for

later protein determination by the BCA-assay [37]. Supernatants

were stored at 240uC, filtered with Nylon-66 micro filters (mesh

0.22 mm; Nalgene) prior to HPLC analysis.

Total amino acids in extracts were analyzed, using a reversed-

phase HPLC (ChromSpher 5 C18 column; length 25 cm, inner

diameter 4.6 mm; Varian) fitted with a fluorescence detector

(Shimadzu, Kyoto, Japan), after derivatization with o-phthaldial-

dehyde (OPA; Sigma) [36]. The mobile phase comprised 75%

50 mM phosphate buffer, pH 5.25, and 25% methanol, changing

linearly to 25% phosphate buffer and 75% methanol during

26.5 min after which the methanol concentration was linearly

reduced to 15%. Each sample was eluted for 45 min with a flow

rate of 0.4 ml/min. A mixture of the amino acids of interest was

run as external standards at 100 mM. L-Amino acid standards for
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aspartic acid, glutamic acid, serine, glutamine, glycine and

alanine] were obtained from Pierce (Rockford, Ill., USA), whereas

taurine, c-amino butyric acid, glutathione and a-amino adipic acid

standards were from Sigma-Aldrich. Chromatograms were ana-

lyzed using the software Lab Solutions (Shimadzu). Both genders

of rats exposed to PCB 180 at 0, 10, 30, 300 or 1000 mg/kg bw

were analyzed.

Brain dopamine and nicotinic receptor analyses
Brain homogenate of male rats exposed to PCB 180 at 0 or

1000 mg/kg bw was centrifuged for 30 min at 100 000 g and 4uC
using a Beckman Ultracentrifuge. The membrane containing

pellet was homogenized in 15 volumes of 50 mM Tris-HCl buffer

at pH 7.4, incubated at 25uC for 30 min, and centrifuged again at

100 000 g. The pellet from the second centrifugation was dissolved

in 4 ml 0.32 M sucrose/g brain (v/w), with a final protein

concentration of 0.25 g/ml and frozen at 240uC.

Dopamine receptors D1 and D5 were analyzed as described

before [38,39]. In brief, 50 ml (0.7 mg protein) of the membrane

preparation was incubated with 124–132 ml buffer (50 mM tris-

HCL, 120 mM NaCl, 5 mM KCl, 2,5 mM CaCl2 and 1 mM

MgCl2, pH 7.4) and 100 nM ketanserine (Tocris Bioscience,

Bristol, UK; to block binding of SCH23390 to the 5-HT receptor)

to a final volume of 200 ml. For measuring unspecific binding

1 nM SCH23390 was added to the same mixture. Finally, 1 nM

[3H]SCH23390 was added to all samples to measure binding of

the receptors or unspecific binding. The samples were incubated

for 30 min at 25uC followed by vacuum filtration and scintillation

counting.

Nicotinic receptor subunits a4 and b2 were analyzed as above

with the following modifications: 8 ml (0.1 mg protein) of the same

membrane preparation was incubated with 415–472 ml buffer

(50 mM tris-HCL, pH 7.4), 0.1–1 nM [3H]epibatidin and

0.1 mM (-)nicotine for measuring unspecific binding, to a final

volume of 500 ml. For analysis of low and high affinity binding sites

1 nM and 0.1 nM [3H]epibatidin, respectively, were used. The

samples were incubated with [3H]epibatidin for 1 h followed by

vacuum filtration and scintillation counting.

Samples were vacuum filtrated trough Whatman glassfiber-

filters (type GF/B, 25 mm) and washed 363 ml ice-cold

incubation buffer. To reduce unspecific binding, the filters where

pre-wetted in 1% polyetylenimine for 60 min. The filters were

placed into a filtration bucket and coupled to a mechanical

vacuum pump. After filtration the bucket was disassembled and

the filters transferred into plastic tubes and 4 ml filtercount fluid

was added. Radioactive binding was measured as disintegration

per minute (DPM1) in a scintillation counter (Tri-Carb 3100TR,

Perkin Elmer). The analyses were carried out in duplicates

Statistics and margin of exposure calculations
Statistical calculations were performed with the SPSS software

package (SPSS Inc., Chicago, IL, USA). For comparisons between

groups the equality of variances was first confirmed with Levene’s

test. If the variances were homogenous one-way analysis of

variance (ANOVA) was carried out followed by Tukey HSD test.

Retinoid and bone densitometry calculations were performed with

Graphpad Prism software version 5.04. For comparisons between

groups the equality of variances was first confirmed with Bartlett’s

test. If the variances were homogenous one-way analysis of

variance (ANOVA) was carried out followed by Dunnet’s post hoc

test. If the variances were heterogeneous even after appropriate

transformations, the nonparametric Kruskal-Wallis test was

carried out followed by Dunn’s test. The limit for statistical

significance was p,0.05 (two tailed). ANOVA polynomial and

linear contrasts, and the corresponding non-parametric Terpstra-

Jonckheere test were used for testing trends. Statistical analyses

were conducted separately for males and females.

Data were also analyzed using the BMD method, which is based

on dose-response modeling of the full data set using a nested family

of exponential and Hill models [20]. The analyses were done on

data of males and females combined, using sex as a covariate. The

software (PROAST 20.2 and 32.2) then detects significant

differences between responses in males and females. In that case,

different Critical Effect Doses (CEDs) and CEDs at the lowest

bound of the confidence interval (CED-L) were generated for each

sex. If no difference between sexes is detected, a CED and CED-Ls

for the combined data is generated. However, this was also done if

the curve fits are close, and separate analyses for males and

females were then performed manually. CEDs and CED-Ls were

calculated at the predefined Critical Effect Size (CES) of 5%

(EFSA standard) or 10%. Additionally, a CES of 100% was used

for CED estimations of intermediate signaling molecules, e.g.

DNA damage related protein levels, as they do not directly

represent the effect in general.

Margin of exposure (MoE) values were calculated by dividing

adipose tissues PCB 180 concentration based CED-L values by

human median PCB 180 concentration from different cohorts.

They include values from the WHO mother’s milk survey in

2001–2002 [1,2], adipose tissue from the Finnish general

population in 1997–1999 [83] and, plasma from the Baltic Sea

fisherman cohort in 1997–1999 [41] and placenta from a Danish–

Finnish joint prospective cohort in 1997–2001 [40]. WHO has

established uncertainty factors (UF) for estimating tolerable intake

levels of environmental chemicals [41]. As rat and human tissue

concentration data are used no interspecies toxicokinetic UF is

needed. A toxicodynamic factor of 2.5 is applied to cover the

interspecies variability and a factor of 10 to cover the inter-

individual variability in humans. Thus, the UF of 25 is considered

adequate for human health endpoints of NDL-PCBs.

Quality assurance
The in-life phase of the study was carried out according to the

principles of Good Laboratory Practice (GLP) at the National

Institute for Health and Welfare. The Institute does not have an

official GLP status, but the study was audited and site-visited by

the internal Quality Assurance Unit.

Results

Group mean values (6SD) and statistically significant differ-

ences from controls for most of the analyzed parameters are

presented in Tables S1–S12. Significant dose-responses and the

outcome of BMD modeling at CES of 5 and 10% are shown in

Tables 2 and 3 based on total dose or adipose tissue PCB 180

concentration, respectively.

In life observations
There was no mortality. Body weight development was retarded

at 1700 mg/kg bw and slightly also at 1000 mg/kg bw in both

genders during the loading dosing, but recovered completely by

the end of the study (Fig. 1). Due to unexpected decrease in body

weight at the highest dose the third loading dose was replaced with

corn oil vehicle. The top dose (1700 mg/kg bw) animals showed

slightly and transiently reduced activity during loading dosing.

Feed consumption was temporarily reduced in males maximally

by about 25% at the two highest doses and in females maximally

by about 20% at the three highest doses during loading dosing, but
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Table 2. Significant dose-responses of PCB 180 based on total dose.

Parameter CES 5% CES 10%

Sex Model
CED (mg/kg
bw)

CED-L (mg/kg
bw)

Ratio CED/
CED-L

CED (mg/kg
bw)

CED-L (mg/kg
bw)

Ratio CED/
CED-L

Maximum
responseb(%)

Open field behavior

Percent time in
inner zone, day 24

F E4 0.35 0.11 3.18 0.71 0.23 3.09 107

Percent distance in inner
zone, day 24

F E4 0.87 0.25 3.48 1.84 0.53 3.47 53.0

Habituation, time F E2 184 118 1.56 378 243 1.56 237.7

Habituation, distance F E2 216 138 1.57 444 283 1.57 233.2

Hematology

Red blood cell count M E4 138 82.2 1.67 436 252 1.73 212.5

Red blood cell count F E2 638 514 1.24 1310 1056 1.24 212.8

Hematocrit M E4 140 66.3 2.11 481 NAa NA 211.8

Hematocrit F E2 832 646 1.29 1710 1327 1.29 210.0

Hemoglobin M E4 201 62.8 3.20 NA NA NA 28.60

Hemoglobin F E2 739 600 1.23 1520 1233 1.23 211.1

Platelet count M E4 40.7 9.68 4.20 143 NA NA 12.0

Red cell distribution
width - SD

F E3 1400 1093 1.28 1650 1498 1.10 11.5

Clinical chemistry

Chlolesterol M E4 38.3 19.5 1.96 79.0 40.4 1.95 80.8

Chlolesterol F E2 192 167 1.15 375 326 1.15 54.1

Triglycerides M E4 3.31 1.90 1.74 6.92 3.97 1.74 262.2

Total protein M E4 255 134 1.90 702 379 1.85 14.1

Glucose M E2 198 146 1.36 408 300 1.36 235.6

Glucose F E2 677 408 1.66 1390 839 1.66 212.1

Alkaline phosphatase M E2 542 327 1.66 1110 672 1.65 214.9

Alkaline phosphatase F E4 67.6 30.1 2.25 154 68.5 2.25 225.7

Albumin M E2 1550 1090 1.42 3040 2130 1.43 5.50

Potassium F E2 1210 786 1.54 2490 1614 1.54 27.00

Total Bilirubin F E4 4.12 0.67 6.13 10.3 1.63 6.32 217.9

Thyroid

Thyroid gland weight M E2 239 168 1.42 467 328 1.42 41.4

Thyroid gland weight F E2 443 257 1.72 910 528 1.72 217.9

Relative thyroid gland
weight

M E2 223 163 1.36 435 319 1.36 45.2

Relative thyroid gland
weight

F E2 468 265 1.76 961 545 1.76 217.0

Serum free T4 (S-fT4) M E4 38.1 26.8 1.42 79.4 56.0 1.42 266.7

Serum free T4 (S-fT4) F E2 128 106.6 1.20 263 219 1.20 249.4

Serum free T3 (S-fT3) M E2 290 218 1.33 596 448 1.33 226.0

Serum free T3 (S-fT3) F E2 354 233 1.52 727 479 1.52 221.8

Serum TSHc M E4 0.0747 0.0139 5.37 0.149 0.0278 5.35 5170

Serum TSHc F E2 32.5 19.9 1.64 63.5 38.8 1.64 1181

Large thyroid follicles (%) F E4 22.6 11.6 1.95 131 81.0 1.62 271.0

Gonadotropins

Serum LH M E2 266 150 1.77 547 309 1.77 227.9

Serum FSH M E2 377 263 1.44 775 540 1.44 220.6

Retinoids

Liver retinol concentration M E4 31.9 6.10 5.23 56 10.4 5.40 246.8

Liver retinol concentration F E2 156 119 1.31 374 263 1.42 242.9
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Table 2. Cont.

Parameter CES 5% CES 10%

Sex Model
CED (mg/kg
bw)

CED-L (mg/kg
bw)

Ratio CED/
CED-L

CED (mg/kg
bw)

CED-L (mg/kg
bw)

Ratio CED/
CED-L

Maximum
responseb(%)

Liver retinyl esters
concentration

M E4 21.5 12.9 1.67 43.9 26.6 1.65 262.8

Liver retinyl esters
concentration

F E2 122 104 1.17 252 214 1.18 250.9

Liver all-trans RA
concentration

M E2 450 268 1.68 879 523 1.68 20.3

Liver 9c-4o-13,14-dh-RA
conc.

F E4 12.2 8.77 1.39 25.3 18.2 1.39 278.2

Liver retinol amount M E2 437 261 1.67 897 536 1.67 218.1

Liver retinyl esters amount M E2 145 123 1.18 296 252 1.17 245.2

Liver retinyl esters amount F E2 254 189 1.34 522 388 1.35 229.0

Liver all-trans RA amount M E4 21.7 9.07 2.39 44.7 18.7 2.39 92.7

Liver 9c-4o-13,14-dh-RA
amount

F E4 13.1 8.29 1.58 27.2 17.2 1.58 270.3

Kidney retinol
concentration

M E2 200 149 1.34 390 291 1.34 51.5

Kidney retinol
concentration

F E2 335 216 1.55 655 421 1.56 27.8

Kidney retinyl esters
concentration

M E4 9.88 3.35 2.95 20 6.77 2.95 254

Kidney all-trans RA
concentration

F E2 457 321 1.43 892 626 1.42 19.9

Kidney retinol amount M E2 206 147 1.40 402 288 1.40 50.4

Kidney retinol amount F E2 355 221 1.61 694 431 1.61 26.9

Kidney retinyl esters
amount

M E4 9.14 3.10 2.95 18.5 6.26 2.96 260

Kidney all-trans RA
amount

F E2 494 319 1.55 965 625 1.54 16.5

Serum retinol
concentration

F E2 400 242 1.65 781 474 1.65 23.1

Bone densitometry

Cortical area of diaphysis M E2 1380 820 1.68 NA NA NA 26.10

Trabecular area of
metaphysis

F E2 1040 602 1.73 NA NA NA 8.30

Bone biomechanics

F yield F E2 476 266 1.79 978 547 1.79 216.7

Organ weights

Liver weight M E4 11.6 5.48 2.12 24.2 11.4 2.12 66.0

Liver weight F E2 225 188 1.19 439 368 1.19 44.6

Relative liver weight M E4 15.6 9.84 1.59 32.5 20.5 1.59 67.0

Relative liver weight F E2 218 194 1.13 427 378 1.13 46.2

Relative thymus weight M E2 527 299 1.76 1030 585 1.76 17.1

Ovaries weight F E4 46.8 6.15 7.61 120 15.4 7.78 17.0

DNA damage markers CES 100%

Liver p53 F E4 14.1 5.89 2.39 472 210 2.25 142

Liver p53 Ser15 F E5 79.2 19.5 4.07 101 93.0 1.09 181

Liver pChk2 Thr68 F E5 72.9 31.5 2.31 81.1 41.8 1.94 185

Liver enzymesd

EROD activity M 0.40 0.30 1.33 0.70 0.50 1.40

EROD activity F 2.20 1.70 1.29 4.40 3.40 1.29

PROD activity M 0.90 0.70 1.29 1.30 1.00 1.30

PROD activity F 3.50 2.50 1.40 5.10 3.60 1.42
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recovered thereafter. Water consumption was unaffected (data not

shown).

Adipose tissue PCB 180 concentrations
Background adipose tissue PCB 180 concentrations in control

rats at the end of the study were within the range of human

background levels, indicating lack of contamination in the animal

room. PCB 180 concentrations reflected accurately the adminis-

tered doses (Fig. 2, Table S1). Females had higher adipose tissue

concentrations than males, especially at the two highest dose

levels, but liver concentrations were more similar. For comparison,

liver concentration data [17] are also shown. Overall, the lipid

based adipose tissue concentrations were slightly (up to two times)

higher than liver concentrations, but on dry weight basis the

difference was an order of magnitude or even more.

Open field test for spontaneous locomotor activity
Distribution of activity between the inner and outer zones of the

open field was significantly affected by PCB 180 only in females

(p,0.05). On study day 24 (1st test day), there were dose-related

increases in percentage of time and distance moved in the inner

zone (CED 0.35 mg/kg bw, 1.55 mg/g lipid and CED 0.87 mg/kg

bw, 4.12 mg/g lipid, respectively, Tables 2 and 3, Fig. 3) and,

conversely, decreases in percentage of time and distance in the

outer zone of the open field. These differences ameliorated across

the five days of testing, as demonstrated by significant interactions

between exposure and test days for both measures (percentage of

time in inner zone - p,0.05; percentage of distance moved in

inner zone - p,0.01), indicating differences in habituation

between groups. As a consequence, dose-response relations were

no longer significant on day 28. To quantify effects on habituation,

the mean of time in inner zone across test days 2–5 was divided by

time in inner zone on day 1. This revealed a dose-dependent

decrease (CED 184 mg/kg bw, 1130 mg/g lipid). A similar

calculation for habituation of the percentage of distance moved

resulted in dose-related decreases with a CED 216 mg/kg bw

(1340 mg/g lipid). Trend analysis of total distance moved (sum of

activity in both zones) revealed a quadratic relation to dose across

all test days (p,0.05) and on each of the days 2–5 (p,0.05), with

elevated activity values at intermediate dose levels compared to

controls and the top dose group. There were no clear-cut

differences in total distance moved between test days, irrespective

of exposure. Thus, total activity did not habituate across the days

of measurement. No significant dose-response relations were found

in exposed males.

Hematology
Results of hematological analyses are shown in Table S2. The

characteristic feature was significant and dose-related decreases in

the amount of red blood cells (RBC, HCT) and blood HB in both

genders. Males were more sensitive and the lowest CED was for

RBC, 138 mg/kg bw (598 mg/g lipid) for males and 638 mg/kg

bw (4170 mg/g lipid) for females (Fig. 4, Tables 2 and 3). MCV

was not affected in males, but showed an increasing trend in

females. MCH and MCHC were not affected in females, but an

increasing trend was observed in males. As these trends were

within normal range of variation the observed effect can be

regarded as normocytic and normochromic anemia, and only red

blood cells were affected.

Clinical chemistry
Results of clinical chemistry analyses are shown in Table S3.

Serum cholesterol levels were significantly increased both in males

(CED 38.3 mg/kg bw, 177 mg/g lipid) and in females (CED

192 mg/kg bw, 640 mg/g lipid) (Tables 2 and 3). In males, serum

triglyceride levels were significantly decreased (CED 3.31 mg/kg

bw, 12.5 mg/g lipid) and total protein levels increased at $

1000 mg/kg bw (CED 255 mg/kg bw, 1080 mg/g lipid). In

females, serum ALP activity was slightly, but significantly

decreased at the two highest dose levels (CED 67.6 mg/kg bw,

308 mg/g lipid) [17].

Thyroid hormones
Serum levels of free T4 and free T3 were dose-dependently

decreased in both genders males being more sensitive. CED values

for T4 were 38.1 mg/kg bw (158 mg/g lipid) and 128 mg/kg bw

Table 2. Cont.

Parameter CES 5% CES 10%

Sex Model
CED (mg/kg
bw)

CED-L (mg/kg
bw)

Ratio CED/
CED-L

CED (mg/kg
bw)

CED-L (mg/kg
bw)

Ratio CED/
CED-L

Maximum
responseb(%)

CYP2B1 mRNA M 0.70 0.40 1.75 1.00 0.50 2.00

CYP2B1 mRNA F 1.70 0.90 1.89 2.20 1.20 1.83

CYP3A1 mRNA M 1.40 0.90 1.56 2.90 1.80 1.61

CYP3A1 mRNA F 1.50 0.70 2.14 2.90 1.40 2.07

UGT1A1 mRNA M 13.3 6.60 2.02 26.9 13.5 1.99

UGT1A1 mRNA F 49.0 26.2 1.87 99.0 53.2 1.86

UGT1A6 mRNA M 3.20 2.20 1.45 6.50 4.50 1.44

UGT1A6 mRNA F 23.6 16.4 1.44 47.4 32.9 1.44

T4 UGT activity, pooled data
m+f

M+F 23.1 13.0 1.78 47.5 26.7 1.78

aNot available.
bCalculated as the percent difference between controls and high dose according to the fitted model.
cHalf min value added to zeros.
dData from Roos et al., 2011.
doi:10.1371/journal.pone.0104639.t002
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Table 3. Significant dose-responses of PCB 180 based on adipose tissue concentration.

Parameter CES 5% CES 10%

Sex Model
CED (mg/g
lipid)

CED-L (mg/g
lipid)

Ratio CED/
CED-L

CED (mg/g
lipid)

CED-L (mg/g
lipid)

Ratio CED/
CED-L

Maximum
responseb (%)

Open field behavior

Percent time in inner zone,
day 24

F E4 1.55 0.525 2.95 3.17 1.07 2.96 111

Percent distance
in inner zone, day 24

F E4 4.12 1.16 3.54 8.69 2.423 3.59 53.0

Habituation, time F E2 1130 739 1.53 2320 1518 1.53 240.1

Habituation, distance F E2 1340 865 1.55 2740 1777 1.54 235.2

Hematology

Red blood cell count M E4 598 337 1.77 1890 NAa NA 212.4

Red blood cell count F E2 4170 3327 1.25 8560 6834 1.25 213.0

Hematocrit M E4 601 247 2.43 2090 NA NA 211.7

Hematocrit F E2 5430 4178 1.30 11100 8582 1.29 210.1

Hemoglobin M E4 872 227 3.84 NA NA NA 28.59

Hemoglobin F E2 4840 3889 1.24 9930 7989 1.24 211.3

Platelet count M E4 156 36.4 4.29 539 NA NA 12.0

Red cell distribution
width - SD

F E3 8370 5756 1.45 10700 9281 1.15 11.1

Clinical chemistry

Chlolesterol M E4 177 91.4 1.94 365 189 1.93 81.7

Chlolesterol F E4 640 387 1.65 1330 813 1.64 53.8

Triglycerides M E4 12.5 7.26 1.72 26.2 15.2 1.73 262.5

Total protein M E4 1080 575 1.88 2970 1629 1.82 14.2

Glucose M E2 866 632 1.37 1780 1297 1.37 235.4

Glucose F E2 4450 2648 1.68 9140 5440 1.68 212.2

Alkaline phosphatase M E2 2300 1393 1.65 4730 2861 1.65 215.4

Alkaline phosphatase F E4 308 136 2.27 701 309 2.27 225.7

Albumin M E2 6750 4696 1.44 13200 9174 1.44 5.49

Potassium F E2 7900 5086 1.55 16200 10450 1.55 27.07

Total Bilirubin F E4 19.4 3.77 5.14 48.2 8.98 5.37 218.2

Thyroid

Thyroid gland weight M E2 1030 720 1.43 2010 1407 1.43 41.9

Thyroid gland weight F E2 3010 1698 1.77 6190 3488 1.77 217.6

Relative thyroid gland weight M E2 958 710 1.35 1870 1388 1.35 45.7

Relative thyroid gland weight F E2 3220 1759 1.83 6610 3614 1.83 216.5

Serum free T4 (S-fT4) M E4 158 117 1.35 328 243 1.35 267.2

Serum free T4 (S-fT4) F E2 821 683 1.20 1690 1402 1.21 250.7

Serum free T3 (S-fT3) M E4 428 196 2.18 976 449 2.18 225.0

Serum free T3 (S-fT3) F E2 2280 1496 1.52 4680 3072 1.52 222.5

Serum TSHc M E4 0.29 0.04 6.50 0.58 0.09 6.50 5450

Serum TSHc F E2 206 126 1.63 402 246 1.63 1355

Large thyroid follicles (%) F E4 105 52.7 1.99 218 110 1.99 270.9

Gonadotropins

Serum LH M E2 1160 648 1.79 2390 1331 1.80 227.8

Serum FSH M E2 1600 1116 1.43 3290 2292 1.44 221.1

Retinoids

Liver retinol concentration M E4 31.2 18.8 1.66 66.6 40.0 1.66 244.6

Liver retinol concentration F E2 1000 762 1.31 2060 1565 1.32 243.9

Liver retinyl esters
concentration

M E4 108 60.1 1.80 225 126 1.79 263.4
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Table 3. Cont.

Parameter CES 5% CES 10%

Sex Model
CED (mg/g
lipid)

CED-L (mg/g
lipid)

Ratio CED/
CED-L

CED (mg/g
lipid)

CED-L (mg/g
lipid)

Ratio CED/
CED-L

Maximum
responseb (%)

Liver retinyl esters
concentration

F E2 793 670 1.18 1630 1375 1.19 251.9

Liver all-trans RA
concentration

M E2 1920 1143 1.68 3750 2233 1.68 20.7

Liver 9c-4o-13,14-dh-RA
concentration

F E4 55.5 39.6 1.40 115 82.1 1.40 278.2

Liver retinol amount M E2 1860 1111 1.67 3820 2282 1.67 218.5

Liver retinol amount F E2 2840 1476 1.92 5820 3032 1.92 218.5

Liver retinyl esters amount M E2 620 525 1.18 1270 1078 1.18 245.7

Liver retinyl esters amount F E2 1620 1206 1.34 3300 2477 1.33 230.1

Liver all-trans RA amount M E2 95.1 36.8 2.58 196 76 2.58 92.7

Liver 9c-4o-13,14-dh-RA
amount

F E4 59.6 37.4 1.59 124 77.9 1.59 270.3

Kidney retinol concentration M E2 863 640 1.35 1690 1250 1.35 51.9

Kidney retinol concentration F E2 2060 1346 1.53 4030 2630 1.53 30.7

Kidney retinyl esters
concentration

M E4 42.2 13.6 3.10 85.2 27.5 3.10 256

Kidney all-trans RA
concentration

F E2 2930 2052 1.43 5720 4009 1.43 20.7

Kidney retinol amount M E2 897 638 1.41 1750 1244 1.41 49.0

Kidney retinol amount F E2 2240 1398 1.60 4370 2731 1.60 28.0

Kidney retinyl esters amount M E4 38.8 12.5 3.11 78.3 25.2 3.11 253

Kidney all-trans RA amount F E2 3290 2092 1.57 6430 4088 1.57 18.2

Serum retinol concentration F E2 2470 1521 1.62 4820 2970 1.62 25.0

Bone densitometry

Cortical area of diaphysis M E2 5930 3506 1.69 12200 7202 1.69 26.19

Trabecular area of
metaphysis

F E2 6230 3714 1.68 12200 7255 1.68 9.25

Bone biomechanics

F yield F E2 2860 1647 1.74 5880 3384 1.74 218.3

Organ weights

Liver weight M E4 42.3 19.8 2.13 88.4 41.3 2.14 65.0

Liver weight F E4 512 263 1.95 1090 565 1.93 43.1

Relative liver weight M E4 61.0 34.8 1.75 127 72.4 1.75 66.0

Relative liver weight F E4 552 359 1.54 1170 766 1.53 44.8

Relative thymus weight M E2 2230 1270 1.76 4350 2480 1.75 17.6

Ovaries weight F E4 201 31.7 6.34 510 79.6 6.41 17.0

Relative ovaries weight F E5 661 67.5 9.79 826 164 5.04 16.0

DNA damage markers CES 100%

Liver p53 F E4 65.2 30.0 2.18 2240 1053 2.13 141

Liver p53 Ser15 F E5 361 124 2.91 438 411 1.07 181

Liver pChk2 Thr68 F E5 337 98.2 3.43 382 165 2.31 185

Liver enzymesd

EROD activity M E4 1.41 0.850 1.66 2.82 1.71 1.65

EROD activity F E5 33.6 15.8 2.13 57.0 29.6 1.93

PROD activity M E5 3.87 2.74 1.41 5.49 4.04 1.36

PROD activity F E5 26.4 13.5 1.96 36.5 20.2 1.81

CYP2B1 mRNA M E5 1.52 0.584 2.60 2.15 0.895 2.40

CYP2B1 mRNA F E5 12.4 5.74 2.16 15.5 7.76 2.00

CYP3A1 mRNA M E4 5.88 3.63 1.62 11.8 7.26 1.63
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(821 mg/g lipid) in males and females, respectively, and CED for

T3 290 mg/kg bw (428 mg/g lipid) and 354 mg/kg bw (2280 mg/

g lipid), in males and females, respectively (Fig. 5, Tables 2, 3 and

S4). The decrease in free T3 was modest, and reached statistical

significance only in males at 1000 mg/kg bw. Serum TSH levels

showed an increasing trend in males (CED 0.07 mg/kg bw,

0.29 mg/g lipid), but due to high within group variability the

differences between controls and treated groups did not reach

statistical significance.

All four potential mono-hydroxyl metabolites of PCB 180 were

able to displace T4 from TTR. Average IC50 values (n = 2) ranged

from 13.0 to 19.6 nM, with 49-OH-PCB 172 being the most

potent competitor. Compared to the natural ligand T4, the tested

OH-PCBs had relative potencies 3.1 to 4.6 times higher for TTR

binding. Dose-response curves and IC50 and relative potency

values of the four mono-hydroxyl PCB metabolites are given in

Table S13.

Table 3. Cont.

Parameter CES 5% CES 10%

Sex Model
CED (mg/g
lipid)

CED-L (mg/g
lipid)

Ratio CED/
CED-L

CED (mg/g
lipid)

CED-L (mg/g
lipid)

Ratio CED/
CED-L

Maximum
responseb (%)

CYP3A1 mRNA F E4 6.75 3.19 2.12 13.5 6.39 2.11

UGT1A1 mRNA M E2 175 134 1.30 342 262 1.31

UGT1A1 mRNA F E2 423 305 1.30 826 596 1.39

UGT1A6 mRNA M E4 15.6 8.99 1.74 31.3 18.0 1.74

UGT1A6 mRNA F E4 73.8 37.8 1.95 149 76.42 1.95

aNot available.
bCalculated as the percent difference between controls and high dose according to the fitted model.
cHalf min value added to zeros.
dEnzyme induction data from Roos et al., 2011.
doi:10.1371/journal.pone.0104639.t003

Figure 1. Body weight development of male (upper curves) and female (lower curves) rats. The arrows indicate dosing. Due to
unexpected decrease in body weight at the highest dosage group (1700 mg/kg bw) the third loading dose was omitted (dotted arrow) and the rats
of this group received only the corn oil vehicle. After loading dose period the body weight development recovered and body weights were similar at
the end of the study. Each data point represents mean 6 SE (n = 5).
doi:10.1371/journal.pone.0104639.g001
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Steroids and gonadotropins
In females, serum estradiol levels showed only some non-

significant decreases at the 3 highest dose groups, but no clear

changes were seen in serum progesterone or LH levels (Table S5).

In males, serum testosterone levels were non-significantly de-

creased at the highest dose only. A significant decreasing trend was

observed in serum LH and FSH levels, the latter being

significantly below controls at 1700 mg/kg bw (CED 266 and

358 mg/kg bw [648 and 1116 mg/g lipid] for LH and FSH,

respectively).

Retinoids
Tissue retinoid concentrations are shown in Table S6, and liver

and kidney retinoid amounts in Table S7. Liver retinol concen-

trations were dose dependently decreased in both males and

females with CED of 32 and 156 mg/kg bw (31 and 1000 mg/g

lipid), and max. decreases of 47 and 43%, respectively (Tables 2, 3

and S6). Liver retinyl ester concentrations were also dose-

dependently decreased in both males and females with CED of

22 and 122 mg/kg bw (108 and 793 mg/g lipid) and max.

decreases of 63 and 52%, respectively. Dose-dependently

increased liver concentrations of all-trans RA were only seen in

males (CED 450 mg/kg bw, 1920 mg/g lipid, max. increase 20%),

while liver concentrations of 9c-4o-13,14-dh-RA were reduced

only in females (CED 12 mg/kg bw, 56 mg/g lipid, max. decrease

78%). Corresponding results were obtained for the total retinoid

contents of liver and kidneys (Table S7). Concentrations of 9-cis
RA and 13-cis RA were below the detection limit in all liver

samples.

Kidney retinol concentrations were dose-dependently increased

in both males and females (CED 200 and 335 mg/kg bw [863 and

2060 mg/g lipid], max. increases 52 and 28%, respectively

(Tables 2, 3 and S6). Kidney retinyl ester concentrations were

dose-dependently increased only in males (CED 9.9 mg/kg bw,

42 mg/g lipid, max. increase of 254%), while kidney all-trans RA

concentrations were dose-dependently increased only in females

(CED 457 mg/kg bw, 2930 mg/g lipid, max. response 20%).

Corresponding results were obtained for the total retinoid contents

of the kidneys (Table S7). Concentrations of 9-cis-RA, 13-cis-RA

and 13-cis-4o-RA were below the detection limit in all kidney

samples.

Serum retinol concentrations were dose-dependently increased

in females only (CED 400 mg/kg bw, 2470 mg/g lipid, max.

increase 23%). Serum retinyl ester concentrations were not

affected (Tables 2, 3 and S6). Concentrations of 9-cis RA, 13-cis
RA and 13c-4o-RA were below the detection limit in all serum

samples.

p53 and DNA damage markers
Expression of the tumor suppressor protein p53 was dose-

dependently increased in livers of female rats (CED 472 mg/kg

bw, 2240 mg/g lipid) (Fig. 6, Tables 2 and 3), but no changes were

observed in expression of p53 regulating pMdm2 Ser166 or

markers of activated protein kinase B/extracellular-regulated

kinases (Akt/Erk) signaling Akt Ser473and Erk Tyr204 (data not

shown). The ability of PCB 180 to activate DNA-damage signaling

was studied by analyzing the expression of p53 Ser15, cH2AX

Ser319 and pChk2 Thr68. These markers were dose-dependently

increased at 100 mg/kg bw and above with CED (100%) of

Figure 2. Lipid based adipose tissue and liver PCB 180 concentrations at the end of the study. Pooled samples of treatment groups (5
individuals per pool), log-log scale. Liver data from Roos et al., 2011 [17]. PCB 180 tissue concentrations reflected accurately the administered doses.
doi:10.1371/journal.pone.0104639.g002
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101 mg/kg bw (438 mg/g lipid) for p53 Ser15, and 81.1 mg/kg

bw (382 mg/g lipid) for pChk2 Thr68 (Fig. 6, Tables 2 and 3;

CED for cH2AX Ser319 could not be determined). None of these

markers were changed in livers of males.

Organ weights
Absolute organ weights are shown in Table S8. Liver weights

were dose-dependently increased in both genders, more in males

than in females, with CED values of 11.6 and 225 mg/kg bw (42.3

Figure 3. BMD analysis of percentage of time (A) and distance moved (B) in the inner zone of open field. Time and distance in the inner
zone were dose-dependently increased in females on study day 24 (1st test day). Small symbols indicate individual samples, large circles the group
mean; the vertical dotted line indicates the dose (CED) with 5% increase (CES -0.05) compared to background (a parameter).
doi:10.1371/journal.pone.0104639.g003
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and 512 mg/g lipid) and max. increases of 66 and 45%,

respectively (Tables 2 and 3) [17]. Thyroid weights were dose-

dependently increased in males (CED 239 mg/kg bw [1030 mg/g

lipid], max. increase 17%), but decreased in females (CED

443 mg/kg bw [3010 mg/g lipid], max. decrease 18%). Ovary

weights were increased with CED of 46.8 mg/kg bw [201 mg/g

lipid] and max. increase of 17%. It is important to note that

thymus weight, the sensitive indicator for exposure to dioxin-like

compounds, was not decreased.

Histopathology
In the liver, a dose-related increase in incidence and severity of

centrilobular hypertrophy was observed in males and females with

CED of 14.8 and 205 mg/kg bw, respectively, for mild

hypertrophy [17]. Males were more sensitive both in terms of

CED and severity.

In the thyroid gland, there was a dose-related decrease of the

area of large follicles in females (Fig. 7; CED 131 mg/kg bw,

105 mg/g lipid), indicating depletion of follicle contents. In control

males the proportion of large follicles was much lower than in

control females (comparable with high dose females), and the area

of large follicles was not affected by the treatment. At high

magnification, a dose-dependently increasing hypertrophy of

follicle epithelial cells was observed in females (Fig. 7). Males

had a higher basal score for hypertrophy, and no significant

treatment-related increase.

In the adrenal cortex, cells of zona fasciculata showed activation

as indicated by hypertrophy and vacuolization (Fig. 8). Semi-

quantitative staging of hypertrophy revealed dose-dependent

responses. Females were more sensitive showing progression of

hypertrophy to further stages compared to males, and they also

had a lower CED (2.0 mg/kg bw) than males (594 mg/kg bw).

Similar to the zona fasciculata, there was hypertrophy and

vacuolization in cells of the zona reticularis with a significant dose

response in females. The inner zones of the cortex occasionally

also showed hyperemia with a significant dose response in females

but not in males. The CEDL for this effect in females was

2526 mg/kg bw.

In the pituitary, there were vacuoles or extracellular deposits in

the frontal lobe of the top dose animals in 4/5 males and 2/5

females (Fig. 9). To assess whether these cysts resulted from

hyperproduction and/or -secretion of pituitary hormones, immu-

nohistochemical detection of TSH and ACTH was performed.

Only occasionally slight staining for TSH in some of these

vacuoles/deposits, and a few moderately staining vacuoles/

deposits with ACTH in two male samples were observed. In

males, the density of TSH positive cells appeared to be higher in

top dose samples compared to controls (Fig. 9).

No exposure related overt effects were observed in the pancreas,

including Langerhans islets, the testis, prostate, epididymis,

seminal vesicle, thymus, spleen, ovary, mammary gland and

Figure 4. BMD analysis of red cell count (A), hematocrit (B) and
hemoglobin (C) in males (triangles) and females (circles). These
parameters were dose-dependently decreased in both genders. Small
symbols indicate individual samples, large symbols the group mean; the
vertical dotted line indicates the dose (CED) with 5% decrease (CES -
0.05) compared to background (a parameter). (Optimal models used for
CED calculations as shown in Table 2 were determined separately for
females and males and are not necessarily the same shown here).
doi:10.1371/journal.pone.0104639.g004
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kidney. Morphometric analysis of thymus of control and top dose

males confirmed the lack of an effect by histological reading

(cortex/medulla ratio was 3.561.3 in controls and 3.060.7 in top

dose samples).

Sperm analyses
Cauda epididymal sperm density analyzed for control and high

dosage (1700 mg/kg bw) males were not affected by the treatment

(Table S9).

Bone geometry, densitometry and biomechanics
None of the examined bone morphological or densitometry

parameters were dose dependently altered according to one-way

ANOVA (Table S10). However, using the benchmark dose

approach a dose dependent decrease of the cortical area of tibial

diaphysis was observed in males with a CED of 1380 mg/kg bw

(5930 mg/g lipid) and max. decrease of 6.5% (Tables 2 and 3). In

females a dose dependent increase of the trabecular area of

metaphysis was observed with a CED of 1040 mg/kg bw

(6230 mg/g lipid) and max. increase of 8.2% (Tables 2 and 3).

Biomechanical testing with three-point bending test of tibial

shaft revealed decreased yield force in females (CED 476 mg/kg

bw, 2860 mg/g lipid, max. decrease 18%; Tables 2, 3 and S10).

This indicates that less force was needed to reach plastic

deformation where cracking is initiated and bone starts to break.

Brain amino acid analyses
Amino acid concentration in cerebrum did not show significant

differences between controls and PCB 180 exposed groups (Table

S11). However, glutathione concentration showed a significant

decreasing trend (p = 0.037) in males with a max. decrease of 18%

at 1000 mg/kg. The likely explanation for decreased glutathione

levels is PCB 180 -induced oxidative stress [42].

Brain dopamine and nicotinic receptor analyses
No significant differences between controls and the 1000 mg/kg

bw dosage group were found in the specific [3H]SCH23390

binding to the D1/D5 dopamine receptors in cerebrum (Table

S12). Similarly, comparison of the specific binding of [3H]epiba-

tidin to the high or low affinity sites on the nicotinic receptor

subunit a4/b2 showed no significant difference.

Discussion

The present study is the first report on comprehensive

toxicological profile of the major indicator PCB 180. Use of

ultrapure test compound made it possible to examine the effects of

PCB 180 without contribution of DL impurities. The dose-levels

were selected to cover the whole spectrum of biological effects

from subtle induction of xenobiotic metabolism to clear toxicity.

Because of the loading dose/maintenance dose protocol the

adipose tissue PCB 180 concentrations at the end of the study

represent the kinetic steady state and make it possible to relate the

observed effects to the internal dose. Furthermore, by using

Figure 5. BMD analysis of serum free T4 (A), serum free T3 (B)
and serum TSH (C) in males (triangles) and females (circles). T4
and T3 were dose-dependently decreased in both genders, and TSH
increased in males only. Small symbols indicate individual samples,
large symbols the group mean; the vertical dotted line indicates the
dose (CED) with 5% decrease or increase (CES -0.05) compared to
background (a parameter). (Optimal models used for CED calculations
as shown in Table 2 were determined separately for females and males
and are not necessarily the same shown here).
doi:10.1371/journal.pone.0104639.g005

Toxicological Profile of PCB 180 in Rats

PLOS ONE | www.plosone.org 16 August 2014 | Volume 9 | Issue 8 | e104639



internal dose at steady state it is possible to directly compare and

extrapolate tissue levels associated with observed effects to

corresponding human/wildlife situations.

PCB 180 showed a phenobarbital type of induction of

xenobiotic metabolism consistent with induction of CYP2B1 and

UGTs 1A1 and 1A6, likely due to activation of the constitutive

active (androstane) receptor (CAR) [17]. Recently, pronounced

CAR activation along with minor effects on the pregnane-X-

receptor (PXR) were reported in rat hepatocytes treated with

various NDL-PCBs, including PCB 180 [43]. Lack of the typical

AHR dependent responses on hepatic CYP1A1 induction [17],

thymus weight and histology, as well as body weight development

confirm that PCB 180 lacks several of the specific effects required

for assignment of a toxic equivalency factor (TEF) for DL

compounds according to the WHO [44].

PCB tissue concentrations
The lipid based adipose tissue PCB 180 concentrations in the

exposed animals ranged from 15.5 mg/g lipid at a total dose of

3 mg/kg bw up to 11 300 mg/g lipid at 1700 mg/kg bw (Fig. 2,

Table S1). For comparison, in the WHO mother’s milk survey

carried out in 2001–2002 the range of PCB 180 concentrations

was 0.006–0.337 mg/g lipid (median 0.046 mg/g lipid) [1,2]. The

same figures for the sum of PCBs were 0.045–1.37 mg/g lipid

(median 0.272 mg/g lipid). In Baltic fishermen the range of PCB

180 concentrations was 0.19–1.2 mg/g lipid (median 0.460 mg/g

lipid) and that for the sum of PCBs 0.950–8.700 mg/g lipid

(median 2.70 mg/g lipid) [45]. Thus, the lowest dose level of this

study resulted in 13-fold higher PCB 180 adipose tissue

concentration than the maximum value in the Baltic fisherman

cohort, but if the comparison is made to the maximum

concentration of the sum of PCBs, the difference is only 1.8-fold.

Comparison with the median values of the WHO mother’s milk

and the Baltic fisherman cohorts reveals 337- and 34-fold

difference for PCB 180 and 57- and 5.7–fold difference for the

sum of PCBs. Thus, the lipid based tissue concentrations of the rats

were clearly above the general population levels, however close to

the levels in highly exposed human populations.

In-life observations and behavioral effects
Daily loading dosing at the two highest dose levels resulted in

transiently reduced feed consumption and activity, and retarded

body weight development that subsided on transition to the weekly

maintenance dose schedule. In previous studies with NDL-PCBs

128 and 153 [7,8,46] no effects on body weight or feed intake were

reported, most likely because the daily doses were much lower. In

the present study the daily dose during loading dosing was

288 mg/kg bw, whereas for example in the study of Chu et al. [6]

Figure 6. Densitometric analysis of Western blots for total p53 (A), p53 Ser15 (B), pChk2 Thr68 (C) and cH2AX Ser139 (D) protein in
livers of females. Tumor suppressor protein p53 and the DNA damage signaling markers were dose-dependently increased only in females. Each
column represents mean 6 SD (n = 5) as percent of control after adjustment to the loading control (Cdk2). Data was obtained from at least three
independent analyses.
doi:10.1371/journal.pone.0104639.g006
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Figure 7. Microphotographs of the thyroid gland of female rats and BMD analysis of follicle depletion. Decrease of follicle contents is
illustrated by comparing samples from controls (A) and 300 mg/kg bw (B). BMD analysis of follicle depletion (measured as the estimated area with
large follicles on representative sections at low power magnification) indicated that this effect was dose-dependent (C). Small circles indicate
individual samples, large circles group means; the vertical dotted line indicates the dose (CED) with 5% decrease (CES -0.05) compared to background
(a parameter). The thyroid glands also showed follicle epithelium hypertrophy as illustrated by comparing 10 (D) and 300 mg/kg bw (E). Epithelium
cell height is indicated by bars at basal and apical cell borders.
doi:10.1371/journal.pone.0104639.g007
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the estimated daily dose of PCB 153 (given in diet) was only

4.13 mg/kg bw. The observed transient alterations are clearly

different from the more permanent wasting syndrome induced by

DL compounds [47], and considering the long elimination half-life

of PCB 180 [14,15] the likely explanation is a local effect on the

GI tract.

Altered locomotor activity of female rats was observed in the

open field conducted during study days 24–28. This effect was

mainly expressed on distribution of activity, namely, increases in

distance moved and time in the inner zone. The changes were

present only on the first day of testing, showing quick habituation

thereafter which resulted in a similar distribution of activity in all

groups by the end of the testing period. On the other hand, total

activity in both zones was slightly elevated only in intermediate

dose groups compared to controls and the top dose group, an

effect which did not habituate. Altogether, these findings suggest

an effect on emotional responses to an unfamiliar environment in

exposed females, together with impaired behavioral inhibition. In

contrast to behavioral alterations, amino acid concentrations or

receptor binding at dopamine D1/D5 receptors and nicotinic

receptors were not affected in whole cerebrum. Spontaneous

locomotor activity is a highly integrative behavior, which as such

may be affected by different chemicals and via different

mechanisms. Altered locomotor activity is among the most

frequently reported behavioral effects after exposure to single

PCB congeners and mixtures in different species (reviewed in

[48]). Frequently, sensitivity differences have been reported

between genders. Also, impaired response inhibition has been

observed in PCB exposed male and female Long Evans rats [49],

male monkeys (Macaca fascicularis) [50] and human children

[51]. A similar effect as detected here for PCB180 has been

described previously for NDL-PCB 47 and DL-PCB 77 after in
utero and lactational exposure in rats [52] and after developmental

exposure to Aroclor 1254 in female mice [53]. Furthermore,

increased locomotion was detected after subacute exposure to

Aroclor 1254 in mice, together with elevated dopamine

concentration in the striatum and loss of dopaminergic neurons

in the midbrain [54]. The failure to find an effect on dopamine

receptors in our study does not exclude possible PCB 180-induced

changes in neurotransmitter levels. Further experiments should

include analyses of dopamine concentrations and binding related

to the D2 receptor family in a region-specific approach. The

Figure 8. Microphotographs of the adrenal cortex and BMD analysis of zona fasciculata activation. Two stages of activation of zona
fasciculata are shown in comparison with no activation: A, no activation (stage 0, 0 mg/kg bw); B, moderate activation with vacuolization and slight
hypertrophy (stage 2, 10 mg/kg bw); C, strong activation with severe hypertrophy (stage 4; 300 mg/kg bw). This staging system was used for semi-
quantitative assessment of the population, as shown in the BMD graphs for males (D) and females (E). In these graphs, the lines separate the fractions
of the population with the indicated stages of activation, e.g. in control males, similar fractions are at stage 0, 1 and 2, whereas at the highest dose,
most samples are at stage 2. Vertical dotted lines show the dose at which the average animal (horizontal dotted line) progresses to a further stage of
activation.
doi:10.1371/journal.pone.0104639.g008
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dopaminergic system appears to be critically involved in the

etiology of attention deficit hyperactivity disorder (ADHD) [55,56]

and PCB exposure was shown to affect behavioral domains that

are altered in children suffering from ADHD [57,58]. The present

study showed that the alteration of activity is in fact the most

sensitive effect of PCB 180 (CED 0.35 mg/kg bw, 1.55 mg/g lipid)

observed after exposure of young adult female rats. The same

batch of ultrapure PCB 180 was shown to induce increased

consumption of sweetened solution in female offspring [59] and

impaired learning in both genders of rat offspring [60] after in
utero/lactational exposure, and to alter response rate on an

operant conditioning task [61] after neonatal exposure.

Hematology and clinical chemistry
Dose-dependently and significantly decreased number of red

blood cells (decreased RBC and HCT) was observed at the three

highest dose-levels of PCB 180 in males and two highest dose-

levels in females. This change was associated with decreased blood

HB concentration, although with slightly higher CED. Due to

characteristics of normochromic and normocytic anemia the likely

reasons are decreased erythropoiesis and increased hemolysis.

Because serum bilirubin levels were not increased, hemolysis is not

likely to play a significant role. Similar decreases in number of red

blood cells and blood HB have been reported in previous 13-week

studies with Sprague-Dawley rats after relatively high doses of

mono-ortho PCB 105 [62], DL-PCB 126 [63] and PCDDs

[64,65].

Serum cholesterol levels were dose-dependently and significant-

ly increased in both genders. This is also in accordance with earlier

findings after treatment with mono-ortho PCB 105 [62] and DL-

PCB 126 [63], and therefore increased serum cholesterol seems to

be a common effect of DL- and NDL-PCBs. Males were more

sensitive than females, and serum triglyceride levels were

decreased only in males. Overall, changes in hematological and

clinical chemistry parameters take place at high exposure levels;

among these changes CED for decreased serum triglycerides in

males is exceptionally low (CED 3.31 mg/kg bw, 12.5 mg/g lipid).

Thyroid hormones and thyroid gland
PCB 180 exposure was accompanied by a whole variety of

effects in the thyroid system ranging from decreased levels of

circulating thyroid hormones to altered thyroid gland weight and

histology, as well as increased hepatic expression (mRNA and

protein) and activity of UDP-glucuronosyl transferases (UGTs), the

enzymes responsible for elimination of thyroid hormones [17].

The observed effects are characteristic for DL- and NDL-PCBs as

well as for PCDD/Fs [66,67]. The best-known thyroid effect of

these compounds is increased elimination of thyroid hormones

subsequent to induction of UGTs. Different nuclear receptors

activate the UGT isoforms responsible for thyroid hormone

glucuronidation (UGT1A1 and UGT1A6), and they can be

induced by DL compounds via AHR and by NDL-PCBs via CAR

and PXR[17,66,43]. Comparison of the CED values for thyroid

endpoints (Tables 2 and 3) indicates that the induction of UGTs

takes place at lower exposure levels than the decrease in circulating

thyroid hormones, and therefore UGT induction is a possible

cause for the observed hypothyroidism. In addition, similar

sensitivity difference between genders is observed both in UGT

induction and decreased T4 levels, males being more sensitive (see

below).

Another potentially significant mechanism of PCB-induced

hypothyroidism is the displacement of thyroid hormones from

their transport proteins in blood [68]. This may result in increased

availability of thyroid hormones to conjugation reactions leading

to enhanced elimination. Reduced transport to target cells is

another possible consequence. The main transport protein in

rodents is TTR. TTR plays also a significant role in human fetal

brain development, because it is responsible for transport of

thyroid hormones via placental and blood-brain barriers [69].

Studies for T4 displacement from TTR indicated either only a

very weak potency (relative T4 potency ,0.0038) [9] or modest

potency (relative T4 potency 0.07) [70] for PCB 180. However,

the TTR-binding potency of the PCB 180 mono-hydroxyl

metabolites was 3.1–4.6 times higher than that of T4 (Table

S13). These relative potency factors correspond very well with

factors of 3–10 reported for other hydroxyl metabolites of PCBs in

several studies [29,71,72]. Because TTR plays a significant role in

Figure 9. Microphotograph of frontal lobe of the pituitary of
males. A male at the top dose male (A; 1700 mg/kg bw) showing
vacuoles (left arrow) or extracellular deposits (right arrow). The contents
of these vacuoles/deposits are not unambiguously identifiable with
immunostaining for TSH or ACTH. Immunostaining of the frontal lobe of
the pituitary, however, shows more TSH positive cells at the top dose
(C, 1700 mg/kg bw) compared to controls (B).
doi:10.1371/journal.pone.0104639.g009
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transport of thyroid hormones through the placental and blood-

brain barriers, high affinity of hydroxyl-PCBs to TTR and thyroid

hormone displacement potentially results in an efficient transport

and accumulation of hydroxyl-PCBs into the fetal compartment

and brain at the cost of thyroid hormones [68,73,74]. Chemical

analysis revealed dose-dependently increasing concentrations of

39-OH-PCB 180 in livers of the rats of the present study (Al-Anati

et al., in preparation). At least two of the four potential hydroxyl

metabolites have been found in human tissue, i.e. 39-OH-PCB 180

in adipose tissue [75] and 49-OH-PCB 172 in blood serum

[76,77], although the latter could also be a metabolite of PCB 170

rather than PCB 180. Based on these results, it is therefore likely

that T4 displacement from TTR contributes to enhanced

elimination of thyroid hormones as well as to decreased thyroid

hormone levels and increased levels of PCB 180 hydroxyl

metabolites in the brain.

Histopathology showed that control females have much higher

proportion of large thyroid follicles than control males and that

treatment with PCB 180 results in dose-dependent depletion of

follicle contents only in females. This is in accordance with the

following observations in males only: (1) higher basal TSH levels

and dose-dependently increased circulating TSH (Table S4), (2)

higher basal score for hypertrophy of the thyroid follicle

epithelium, (3) increased density of immunohistochemically

detected TSH positive cells in the frontal lobe of pituitary, and

(4) more sensitive hepatic induction of UGT1A1 and UGT1A6 by

PCB 180 [17]. These findings suggest that for compensation of

decreased thyroid hormone levels, males depend on de novo
synthesis, whereas females can use their thyroglobulin storage.

The consequences of hypothyroidism depend on the stage of

development. In adult animals the signs are rather non-specific

and include altered regulation of normal physiological functions

and reduced rate of metabolism [78,66]. In adult rodents low

circulating thyroid hormone levels result in TSH driven overstim-

ulation of the thyroid gland that may eventually lead to formation

of thyroid tumors. In the 2-year NTP study with PCB 153

decreased serum thyroid hormone concentrations and thyroid

follicular cell hypertrophy were reported, but no thyroid tumors

[8]. Because of lower sensitivity of human hypothalamus-pituitary-

thyroid axis this mode-of-action is not considered relevant for

humans. The most adverse and permanent consequences of

hypothyroidism both in animals and humans have been reported

after developmental disruption of thyroid function. Developing

nervous systems is particularly sensitive and even transient

decrease of thyroid hormone levels may result in adverse outcome.

This mode-of-action is likely to be relevant in humans [66]. In this

study the observed behavioral alterations after adult exposure to

PCB 180 had clearly lower CED values than the thyroid effects

suggesting that these phenomena may not be interrelated.

With regard to the thyroid effects of NDL-PCBs it is important

to note that in the environment they always exist together with DL

compounds, and that these groups of chemicals induce UGTs via

different nuclear receptor pathways (see above). Thus, there is

potential for synergistic (greater-than-additive) interaction [79].

Using a mixture of 2 PCDDs, 4 PCDFs, and 12 PCBs (of which 5

NDL-PCBs) Crofton et al. [79] demonstrated a dose-dependent

synergistic effect for T4 hypothyroidism in rats. Therefore, the

potential interaction with DL compounds emphasizes the signif-

icance of thyroid hormone disruption as an endpoint of toxicity of

NDL-PCBs, although based on CED values thyroid effects are not

highly sensitive.

Retinoids
Exposure to PCB 180 resulted in dose-dependently decreased

hepatic retinol and retinyl palmitate levels, as well as increased

renal retinol levels in both genders. In contrast, hepatic levels of

all-trans-RA and 9c-4o-13,14-dh-RA, renal levels of retinyl

palmitate and all-trans RA, as well as serum retinol levels were

differently affected in male and female rats. As vitamin A is mainly

stored in the liver in the form of retinyl palmitate, the reduction of

both hepatic retinyl palmitate and retinol levels suggests increased

mobilization of retinoids into the active all-trans RA, i.e. retinyl

palmitate is hydrolyzed to retinol, which is further oxidized by

alcohol and aldehyde dehydrogenases to all-trans RA [80,81], as

observed in livers of males. The increased liver weights (max.

increase 65%) probably attenuated the increases in liver all-trans
RA concentrations in males (max. increase 21%) and exaggerated

increases in corresponding amounts (max. increase 93%). Overall,

increased all-trans RA concentrations may have adverse conse-

quences even if moderately affected, as seen in male livers and

female kidneys, since it is involved in the regulation of

fundamental processes related to morphogenesis, apoptosis and

reproduction via the activation of RAR [80,81]. The increased

retinoid mobilization in livers showed gender differences: the

increase in serum retinol of females suggests the release of hepatic

retinol into circulation instead of oxidation to all-trans RA as seen

in males. In addition, there were also marked gender differences in

the endogenous tissue levels of several retinoid forms, most notably

in the renal retinyl palmitate levels.

Similarly with our findings mobilization of hepatic retinoid

stores and increases in renal retinoid levels has been previously

reported after treatment with NDL-PCBs 128 [7] and 153 [6], and

mono-ortho PCB 105 [62], but also DL-PCBs 126 [63] and 77

[82] as well as TCDD [83]. The dose-dependent and profound

decrease of 9-cis-4-oxo-13,14-dihydro-RA in livers of female rats

(CED 12 mg/kg bw, 55.5 mg/g lipid) is noteworthy as this RA-

metabolite binds and activates retinoid receptors and regulates

gene transcription both in vitro and in vivo [84].

It is noteworthy that alterations in retinoid levels took place

largely at similar dose levels with decreased thyroid hormone levels

(Table 2). These two phenomena have been reported to coexist

also after exposure to NDL-PCBs 153 [6] and 128 [7], Aroclor

1254 [85,86], and TCDD [83,87,88]. Thus both AHR dependent

and independent mechanisms seem to be involved. Although the

possible connection between NDL-PCB –induced alterations of

the thyroid and retinoid systems is not known, interactions among

RXR, RAR, PXR; CAR, TR and AHR have been reported [89].

In fact, RXRs, activated by retinoid ligands are involved in thyroid

hormone transcriptional activity via the thyroid hormone receptor

(TR)/RXR heterodimer [89]. Similarly, transcriptionally active

forms of PXR and CAR are PXR/RXR and CAR/RXR

heterodimers, respectively. Furthermore, retinol binding protein

that is responsible for retinol transport in circulation, forms a

complex with TTR to avoid glomerular filtration [80,81].

Therefore the high affinity of hydroxyl-PCBs to TTR may

potentially interfere with retinol transport and clearance.

Liver p53 and DNA damage markers
The study showed that the expression of the tumor suppressor

protein p53 and the DNA-damage signaling proteins p53 Ser15,

cH2AX Ser139 and pChk2 Thr68 were increased by PCB180 in

livers of females. Expression of pMdm2 Ser166 was not affected.

This is in line with our recent findings in the human hepatocellular

carcinoma cell line HepG2 [90]. In contrast to PCB 180, 13 out of

20 tested NDL-PCBs induced phosphorylation of Mdm2 at

Ser166 resulting in attenuated p53 response and lowered basal
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levels of p53. It is likely that the hydroxyl metabolite of PCB 180 is

responsible for the DNA damaging effect. We showed recently

that 39-OH-PCB 180, but not the parent compound induced the

expression of DNA damage markers pChk1Ser317 and cH2AX-

Ser319 in HepG2 cells (Al-Anati et al., in preparation).

Bone effects
In contrast to previous findings with TCDD [91,92], treatment

of young adult rats with PCB 180 resulted only in minor effects on

bone. The only dose-dependent effects on bone geometry were

decreased cortical area of diaphysis in males and increased

trabecular area of metaphysis in females. The latter effect was in

contrast to reduced trabecular area observed after treatment with

TCDD [92]. Biomechanical testing revealed slightly reduced

mechanical strength in terms of decreased yield force of tibial

shaft. NDL-PCB 153 was previously shown to alter bone geometry

and composition in perinatally exposed goats [93] and in in utero
exposed sheep fetuses [94]. Thus, bones are potentially sensitive to

NDL-PCB, and the low potency and minor severity of the effects

in the present study may be due to short duration of exposure as

compared to the bone remodellation cycle of about 30 days in rats.

Gender aspects and sensitivity of different endpoints
Dose-response modeling with the BMD approach makes it

possible to accurately compare gender differences in sensitivity and

sensitivity differences of the studied endpoints. Marked gender

differences in sensitivity were identified for several endpoints of

PCB 180 toxicity (Figs. 10 and 11) indicating different toxicity

profiles in males and females.

Males were more sensitive to all endpoints with significant dose-

responses in both genders except decreased serum ALP. They

included most liver [17] and thyroid related endpoints of which

the induction of CYP2B1 mRNA and the associated PROD

activity were the most sensitive. The likely explanation is that the

higher amount of CAR in cytoplasm of male rat hepatocytes

results in sex-dependent induction of CYP2B1 gene and poten-

tially leads to sexually dimorphic pattern of also other CAR-

mediated responses [95], including UGT induction. The fact that

a very similar gender difference was observed for the decrease in

serum T4 suggests that the more sensitive and more pronounced

UGT induction in males is behind the higher sensitivity of males to

hypothyroidism. In addition, males were more sensitive to anemia,

altered levels of several retinoid parameters, decreased serum

glucose and increased serum cholesterol levels. Furthermore, only

males showed decreased serum gonadotropin and triglyceride

levels, increased serum albumin levels as well as increased liver all-

trans RA and kidney retinyl ester concentrations and amounts.

It is important to note that in spite of sensitivity of males to

majority of the analyzed endpoints only females exhibited altered

open field behavior. Nevertheless, this type of altered behavior

seems not to be limited to females, because PCB exposure has

been earlier reported to result in altered locomotor activity in both

genders [48]. This sensitive endpoint (CED-L 0.525 mg/g lipid)

was selected for the critical effect for risk characterization (for

motivation, see Risk characterization). Induction of DNA damage

markers was also observed only in females. Accordingly, physio-

logical concentration (10 nM) of 17-b estradiol was shown to

amplify 39-OH-PCB 180 –induced DNA damage in HepG2cells

(Al-Anati et al., in preparation). Decreased bone strength,

decreased area of large thyroid follicles, hypertrophy of thyroid

follicular cells as well as decreased retinoid metabolite 9c-4o-

13,14-dh-RA in liver and increased all-trans- RA in kidneys were

also observed only in females, and females were more sensitive to

activation of cells of adrenal cortex zona fasciculata (297-fold

difference in CED values from semi-quantitative evaluation;

Fig. 8). It is therefore obvious that there are not only sensitivity

differences among genders, but the toxicity profile of PCB 180 is

different in males and females.

Sensitivity ranking of the adipose tissue PCB 180 concentration

based CED values for different endpoints is shown in Fig. 11. In

males, induction of certain xenobiotic metabolizing enzymes in

liver was the most sensitive set of endpoints (CEDs within the

range 1–10 mg/g lipid) whereas in females it was the altered

locomotor activity. Interestingly these two sets of endpoints were

observed at very similar exposure level, and in females the

induction of CYP3A1 was almost as sensitive as the percentage of

time in inner zone. These observations indicate that both genders

are responsive to low doses of PCB180, while the functions

affected are partly different. Endpoints with CED values within

10–100 mg/g lipid (in males) included altered retinoid parameters

and increased liver weight whereas other endpoints within broad

endpoint categories ‘‘thyroid effects’’, ‘‘clinical chemistry’’ and

‘‘retinoid metabolism’’ showed rather high variability in both

genders (CEDs .100 mg/g lipid), and sensitivity of biochemical/

molecular endpoints at CED .10 mg/g lipid did not differ from

that of apical/hematological endpoints in this regards. On the

other hand, all endpoints within ‘‘hematology’’ and ‘‘bone effects’’

showed low sensitivity in both genders.

Risk characterization
Risk characterization was carried out by using MoE values for

the most sensitive endpoints of toxicity and human median

exposure values from different cohorts as shown in Table 4.

Altered spontaneous locomotor activity has the lowest CED-L

value with a clear dose-response and was therefore selected for the

critical effect of PCB 180 in young adult rats. Increased serum

TSH in males (CED-L 0.04 mg/g lipid) was considered less valid

because of high variability (CED/CED-L ratio 6.50). Although

species differences in behavior and lack of mechanistic data make

it difficult to assess the clinical significance of altered locomotor

activity, a variety of PCBs and PCDD/Fs have been shown to

induce behavioral effects in animal models at low exposure levels

and possibly with different modes-of-action. Because humans are

exposed simultaneously to all these compounds, our data

emphasize the potential significance of behavioral effects. As

pointed out above, altered locomotor activity is a highly integrative

behavior subject to modulations by a variety of chemicals and

mechanisms, and frequently reported after exposure to PCB

congeners and mixtures in different species (reviewed in [48]),

including humans [51]. It can therefore be regarded as a

potentially relevant endpoint for human health risk assessment.

For comparison, CED-L values for induction of several xenobiotic

metabolizing enzymes [17] (Table 3, Fig. 11) are quite similar

with that of altered locomotor activity indicating that different

unrelated targets are affected at low exposure levels of PCB 180.

Risk characterization based on altered xenobiotic metabolism

would therefore lead to similar outcome.

MoE values in Table 4 indicate that when using the WHO

default UF of 25 and altered locomotor activity as the critical

endpoint tolerable PCB 180 tissue concentration is exceeded in

human cohorts except the Danish–Finnish joint prospective

cohort. Unlike the altered spontaneous locomotor activity (and

induction of xenobiotic metabolizing enzymes in liver [17]) all

other endpoints of toxicity had clearly higher CED-L values

(Table 4, Fig. 11). Tolerable PCB 180 tissue concentration is still

exceeded in the Baltic fisherman cohort for decreased serum

triglycerides and in the highest exposed fisherman for decreased
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liver retinol levels. For all other endpoints the MoE is $25 for all

human cohorts.

Conclusions

It can be concluded that PCB 180 has a distinct toxicological

profile with altered open field behavior in female rats being the

most sensitive endpoint, and induction of certain xenobiotic

metabolizing enzymes takes place at the same exposure levels in

both genders. The profile is partly different in males and females.

Several interacting signaling pathways and nuclear receptor

families are involved in mediating the toxic effects of PCB 180.

Activation of CAR and PXR lead to the characteristic induction of

xenobiotic metabolism, including UGT induction and the

Figure 10. Sensitivity differences between males and females for endpoints showing significant dose-responses. Fold sensitivity
difference is shown as the ratio of adipose tissue PCB 180 concentration based CED values at CES 5%.
doi:10.1371/journal.pone.0104639.g010

Toxicological Profile of PCB 180 in Rats

PLOS ONE | www.plosone.org 23 August 2014 | Volume 9 | Issue 8 | e104639



Figure 11. Sensitivity of endpoints showing significant dose-responses in males (left panel) and females (right panel). Adipose tissue
PCB 180 concentration based CED values at CES 5% (shown in log scale) are ranked according to sensitivity in males. Endpoints are grouped into
biochemical/molecular endpoints, neurobehavioral endpoints and apical/hematological endpoints. Key: endpoints with significant dose-responses in
both genders: black bars; endpoints significant only in males: blue bars; endpoints significant only in females: red bars; endpoints existing only in one
gender: yellow.
doi:10.1371/journal.pone.0104639.g011
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subsequent decrease in circulating levels of thyroid hormones.

Displacement of thyroid hormones from TTR by hydroxyl

metabolites of PCB 180 further contributes to hypothyroidism.

Complex nuclear receptor interactions among TRs, CAR, PXR

and the retinoid receptors RXR and RAR are likely to play a role

in increased mobilization of retinoids and the formation of

biologically active retinoid forms. There is also evidence of

increased expression of DNA-damage signaling proteins and the

tumor suppression protein p53. Furthermore, PCB 180 has some

potency to antagonize both androgen and estrogen receptors as

well as to inhibit gap junctional intercellular communication in
vitro [9].

PCB 180 shares several toxicological targets with DL com-

pounds, including changes in behavior, serum lipids, tissue

retinoid levels, thyroid gland pathology, thyroid hormone levels

and effects on the hematopoietic system. However, the potency of

PCB 180 is lower and most likely the mode-of-action different

from DL compounds. In addition, PCB180 does not induce

several of the characteristic AHR dependent responses, such as

thymus atrophy, permanent body weight reduction, and the

typical CYP induction profile. This study provides new knowledge

for improved PCB risk assessment.
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