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Abstract

Early diagnosis and treatment of rheumatoid arthritis are associated with improved outcomes but current diagnostic tools
such as rheumatoid factor or anti-citrullinated protein antibodies have shown limited sensitivity. In this pilot study we set
out to establish a panel of urinary biomarkers associated with rheumatoid arthritis using capillary electrophoresis coupled to
mass spectrometry. We compared the urinary proteome of 33 participants of the Scottish Early Rheumatoid Arthritis
inception cohort study with 30 healthy controls and identified 292 potential rheumatoid arthritis-specific peptides. Amongst
them, 39 were used to create a classifier model using support vector machine algorithms. Specific peptidic fragments were
differentially excreted between groups; fragments of protein S100-A9 and gelsolin were less abundant in rheumatoid
arthritis while fragments of uromodulin, complement C3 and fibrinogen were all increasingly excreted. The model
generated was subsequently tested in an independent test-set of 31 samples. The classifier demonstrated a sensitivity of
88% and a specificity of 93% in diagnosing the condition, with an area under the receiver operating characteristic curve of
0.93 (p,0.0001). These preliminary results suggest that urinary biomarkers could be useful in the early diagnosis of
rheumatoid arthritis. Further studies are currently being undertaken in larger cohorts of patients with rheumatoid arthritis
and other athridities to assess the potential of the urinary peptide based classifier in the early detection of rheumatoid
arthritis.
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Introduction

Rheumatoid arthritis (RA) is a systemic autoimmune condition

that primarily affects the joints and can lead to joint damage,

disability and premature mortality. Early diagnosis and treatment

of RA are associated with better patient response to treatment

[1,2], reduced co-morbidity and lower mortality [3]. In the initial

stages of the disease, accurate diagnosis can be challenging. In

2010, the American College of Rheumatology and European

League Against Rheumatism (ACR/EULAR) developed a new

approach to classifying RA based on scoring criteria [4]. This

classification system improves sensitivity for the early detection of

the disease compared to the former ACR 1987 classification

criteria. However it has been shown to lead to both over- and

under-diagnosis [5]. The biomarkers rheumatoid factor (RF) and

anti-citrullinated protein antibodies (ACPA) form one of the

current classification criteria, but in isolation the markers lack

sensitivity [6]. Novel biomarkers which could assist in accurate,

early diagnosis would facilitate more effective early intervention

whilst limiting exposure to disease modifying therapy in patients

otherwise destined to remit spontaneously. Recent studies have

sought novel RA biomarkers in peripheral blood and synovial fluid

[7–10]. Despite early promises, none of these approaches have yet

yielded combinations of biomarkers with better specificity and

sensitivity than ACPA used alone.

A novel approach for identification of diagnostic biomarkers in

RA uses capillary electrophoresis coupled to mass spectrometry

(CE-MS). This method has already enabled the identification of

urinary biomarker classifiers for the diagnosis of diseases like

chronic kidney disease [11], acute kidney injury [12], stroke [13],

and cardiovascular diseases [14]. It allows classification of case

versus control groups with good accuracy [15]. The use of urine

rather than blood for the identification of biomarkers has several

advantages, including non-invasive sample collection, a high

stability due to absence of proteolytic agents and a low dynamic

range of analyte concentration which facilitates the detection and

quantification of peptides [16]. Furthermore, discovery of

proteomic biomarkers may be useful in understanding the

molecular mechanisms involved in the onset and progression of

disease [17]. In this study, we aimed to identify potential

biomarkers for the early diagnosis of RA. We hypothesized that

RA-specific peptides would be measured in urine samples of

patients and produce a unique fingerprint of peptides compared to

healthy controls. This was achieved by comparing the urinary
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peptide profile of patients with RA with that of healthy controls.

Our secondary objective was to identify the proteases involved in

generating the RA-specific peptide fragments, using an in silico

approach.

Materials and Methods

RA population and data collection
Patients are recruited to the Scottish Early RA (SERA)

inception cohort if they have newly diagnosed undifferentiated

arthritis or rheumatoid arthritis. Detailed demographic and

clinical data are recorded; samples of blood, urine and synovial

fluid are taken every 6 months, and stored for future analyses.

Patients enrolled in SERA who fulfilled the ACR/EULAR

diagnostic criteria for RA at diagnosis were identified, and 25

ACPA positive (.20 units) and 24 ACPA negative (,7 units)

patients were selected at random. Clinical information on gender,

age, disease duration from onset of symptoms, 28 joint count

disease activity score (DAS28) [18], health assessment question-

naire (HAQ), C-reactive protein (CRP), ACPA and RF values

were collected. Laboratory tests had been analysed in routine

National Health Service (NHS) laboratories across Scotland.

Control population
Controls were volunteers who agreed to participate in

nutritional-based interventions, were at least 18 years of age,

non-smokers and in general good health. They were enrolled in

other on-going proteomic studies and had given written informed

consent prior to starting the studies.

Ethics statement
Cases provided enduring and generic written consent for their

samples to be used in analyses, and the SERA study was approved

by the West of Scotland Research Ethics Committee. Controls

gave written informed consent prior to participating in on-going

proteomic studies approved by the University of Glasgow Faculty

of Medicine Ethics Committee.

Urine collection
For both cases and controls, spot urine samples were collected in

sterile containers at the time of the study visit. One millilitre

aliquots of unprocessed samples were stored at 280uC prior to

being processed as recommended by the European Kidney and

Urine Proteomics and Human Kidney and Urine Proteome

Project and described previously [16]. Most samples were frozen

within 4 hours of collection but samples from remote parts of

Scotland were couriered in chilled containers overnight. Once

frozen, samples were left to defrost at room temperature,

occasionally mixing by gentle inversion, and samples were

defrosted only once.

Urinary proteomic analysis
The urine samples were prepared as previously described by

removing large proteins (.20 kDa), urea, electrolytes and salts,

and by enriching polypeptides [11]. Briefly, 700 mL of urine were

defrosted with the addition of 0.1% PMSF saturated in ethanol

and diluted with 700 mL of a solution containing 2 M urea, 0.1 M

NaCl, 10 mM NH4OH and 0.02% SDS. The mixture was then

filtered through a 20 kDa MW cut-off ultra-centrifugation filter

device (Sartorius Stedim UK Ltd, United Kingdom) at 2,6006g
for one hour at 4uC. A volume of 1.1 mL of the filtrate was then

loaded onto a pre-equilibrated PD-10 desalting column (GE

Healthcare, Sweden) and eluted using 0.01% aqueous NH4OH.

The eluate was subsequently freeze-dried and stored at 4uC prior

to being resuspended in HPLC-grade water to a final protein

concentration of 2 mg/mL for capillary electrophoresis-mass

spectrometry analysis.

Table 1. Baseline characteristics of the training and test set populations (case and control)1.

RA cohort Controls

Training set (n=33) Test set (n =16) Training set (n =30) Test set (n=15)

Age (Years)2 59 (39; 65) 58 (55; 68) 31 (23; 60) 36 (29; 58)

Female3 23 (70%) 13 (76%) 11 (37%) 10 (67%)

Duration of disease (Days) 113 (74; 261) 91 (54; 225) nd nd

ACPA positive 16 (48%) 9 (56%) nd nd

ACPA (Units) 5.7 (3; 161) 47 (2; 214) nd nd

RF4 positive 11 (73%) 6 (86%) nd nd

RF4 (Units) 15 (11; 30) 20 (18; 55) nd nd

DAS28 score 5.5 (4.3; 6.2) 4.5 (3.9; 5.5) nd nd

HAQ score 1.1 (0.8; 1.9) 1.1 (0.5; 1.6) nd nd

CRP abnormal 19 (63%) 11 (73%) nd nd

CRP (mg/l) 20.5 (6. 0; 41.0) 19 (8.3; 38.5) nd nd

nd, not determined; ACPA, anti-citrullinated protein antibodies; RF, rheumatoid factor; DAS28, 28 joint count disease activity score; HAQ, health assessment
questionnaire score; CRP, C-reactive protein.
1Differences between training set and test set within both RA and control groups were not statistically significant (Mann-Whitney for continuous values and Chi Square
for categorical values; p,0.05) with the exception for the proportion of female in the control group between the training and test sets (p,0.05).
2Difference in the median age value between groups is statistically significant between RA and control groups of the training set (p = 0.0023) and between RA and
control groups of the test set (p = 0.0059).
3Difference in the gender distribution between groups is statistically significant between RA and control groups of the training set (p,0.01) but not between RA and
control groups of the test set (p.0.05) (Chi Square test).
4Data missing for 18 patients in the training set and 9 patients in test set, percentage refers to proportion of patients tested.
doi:10.1371/journal.pone.0104625.t001
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Capillary Electrophoresis-Mass Spectrometry (CE-MS)
analysis and Data processing
CE-MS analysis was performed as previously described using a

P/ACE MDQ capillary electrophoresis system (Beckman Coulter,

Fullerton, USA) on line coupled to a MicroTOF MS (BrukerDal-

tonic, Bremen, Germany) [19]. Samples were injected hydrody-

namically at 2.0 psi for 99 sec (ca. 250 nL) and separation of

peptides was achieved by reverse polarity at 25 kV for the first

30 min, and with increasing pressure (up to 0.5 psi) for another

34 min. The cartridge temperature was maintained at 25uC.
Running buffer contained 79:20:1 (v/v) deionised filtered (0.2 mm)

water, acetonitrile and formic acid. Sheath liquid consisted of 30%

2-propanol and 0.4% formic acid in deionised filtered (0.2 mm)

water. The ESI sprayer (Agilent Technologies, Palo Alto, CA,

USA) was grounded, and the ion spray interface potential was set

between 24 and 24.5 kV. Spectra were accumulated every 3

seconds over a range of mass-to-charge ratios from 50 to 3000.

Details on accuracy, precision, selectivity, sensitivity, reproduc-

ibility, and stability of the CE-MS method have been previously

described [11,20]. MosaiquesVisu was used to analyse the CE-MS

data [21]. Peptides are initially characterised by their molecular

mass, CE-migration time, and ion signal intensity (amplitude)

value. Internal standard peptides were used for calibration, as

previously described [22]. All detected peptides were deposited,

matched, and annotated in a MicrosoftSQL database, allowing for

further analysis and comparison between case and control groups.

Statistical analysis and classifier development
Of the initial cohort of RA patients (n = 49) and healthy controls

(n = 45), 33 cases and 30 controls were selected at random to

establish a panel of RA-specific urinary peptides. After testing for

normal distribution, continuous data were compared by the

Mann-Whitney test, as this test has proven to be of superior

statistical power in proteomics datasets [23]. This test is

particularly suited for proteomics data as such data suffer from

missing values leading to non-normal skewed distributions even

after log-transformation. A p-value of ,0.05 was considered to be

statistically significant, after correction for multiple testing. Only

peptides with a frequency of at least 40% in either group were

considered for further analysis. In order to control for the false

discovery rate at 0.05, the p-values were adjusted by the Benjamini

and Hochberg method [24] implemented in the Bioconductor

package multtest [25].

Correlative association between significantly excreted peptides

and potential confounding factors such as age and gender was

assessed in both case and control groups using Spearman’s rank

coefficient correlation (age) and Mann-Whitney test (gender)

followed by p-value adjustment using the Benjamini and

Hochberg method as previously described. Due to the small

sample size of the study, we further analyzed the correlation of the

potential biomarkers with age and gender in a cohort of 500

healthy patients from our database.

Significantly differentially excreted peptides were subsequently

identified using MS-MS and used to develop a biomarker model to

classify between RA and non-RA patients. The remaining 31

samples (16 cases and 15 controls) were used as an independent

validation subset in the support-vector-machine (SVM) based

MosaCluster software [14,19]. The sensitivity, specificity and area

under the receiver operating characteristic (ROC) curve of the

resulting model were calculated using MedCalc version 12.1.3.0

(MedCalc Software bvba, Belgium).

The SVM classifier uses the log transformed intensities of n

peptides as coordinates in an n dimensional space. It then builds

an n-1 hyper plane that spans this space by performing a quadratic

programming optimization of a Lagrangian using the training

labels only while allowing for samples to lie on the wrong side of

the plane. For such misclassification, the SVM introduces a cost

parameter C. Due to the fact that non separable problems in low

dimensions may be separable in higher dimensions, the SVM uses

the so-called Kernel-trick to transform the samples to a higher

dimensional space. Mosacluster uses the standard radial basis

functions as kernel. These functions are Gaussians with the

parameter gamma controlling for the width. The optimal

parameters C and gamma are found via a leave-one-out cross

validation error estimation. Implantation of SMV is popular in

data mining software, and the Kernel-based Machine Learning

Lab (kernlab) package in R in particular is used as a versatile tool

for building SVM-based classifiers [26].

Proteases prediction
In order to link urinary fragments to the proteases involved in

their generation, a predictive analysis was carried out using

Proteasix. This is an open-source tool used to predict the proteases

involved in naturally occurring peptide generation in silico, as

previously described [27]. Briefly, Proteasix is a cleavage site

database that can associate proteases with their corresponding

cleavage site sequences based on octopeptides (P4P3P2P1-

P19P29P39P49). Each peptide is described by the respective

substrate SWISS-PROT identifier or name, peptide start and

peptide end. The search predicts protease association with 0 and

up to 3 mismatches in the cleavage site sequence. After entering

the peptide list, the tool aligns each peptide sequence with the full-

length SWISS-PROT sequence to identify N- and C-term

cleavage sites. Each cleavage site is searched in the database to

retrieve all predicted protease/cleavage site combinations. This

required the generation of a discovery matrix of unique peptide

versus protease, and every matrix point is either 0 (no cut), 1 (cut)

or 2 (cuts both N-and C-terminus). The matrix was subsequently

divided between peptides that were up- or down-regulated based

on the absolute fold-change values, and the occurrences were

computed by summing the matrix points. Data were assessed using

a mathematical approach of frequency analysis. Frequency

analysis uses the calculated frequencies of protease association

Figure 1. Work flow used for the determination of urinary
biomarkers associated with RA.
doi:10.1371/journal.pone.0104625.g001
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with peptides per protease in either up- or down-regulated groups.

The analysis was done using the normal/equal distribution as a

reference. Frequency scores were calculated, per protease, using

the absolute ratios of the difference over the sum of the frequencies

of peptide occurrences that were found up- and down- regulated,

multiplied by the difference of occurrences in the up- and down-

regulated groups. This mathematical model provides an indication

of the distribution of peptide occurrences from the normal

distribution, where clustering of peptides around the normal

distribution line being interpreted as a lack of specificity in the

protease activity.

Results

Descriptive data
Median and interquartile ranges are shown in Table 1 for age,

duration of symptoms, ACPA, RF, DAS28, HAQ and CRP values

for the training and test sets. The patients all fulfilled the 2010

ACR/EULAR diagnostic criteria for RA [4], and had a median

duration of symptoms of 113 days in the training set and 91 days

in the test set. Most patients had moderate to severe disease

activity in both groups, with a DAS28 of greater than 3.2 [28]. In

the training set, 48% were positive for ACPA compared to 56% in

the test set. A preliminary analysis investigating the correlation

between DAS28, HAQ and CRP revealed a poor correlation

between CRP and DAS28, and CRP and HAQ (coefficient of

determination between DAS28 and HAQ of 0.310 with p-

Table 2. Urinary peptides which were significantly less abundant in patients with RA.

Fold change Sequence Identification

0.018 PpGpPGKNGDDGEAGKPG Collagen alpha-1(I) chain

0.047 SpGERGETGPpGPA Collagen alpha-1(III) chain

0.074 VADEAQVQKVKELEDLEHLQ Carboxypeptidase A1

0.117 * PpGKNGDDGEAGKPGRpGERGppGP Collagen alpha-1(I) chain

0.138 pGLPGKAGASGFPGTKGEMGmmGPPGPpGP Collagen alpha-5(IV) chain

0.138 HAHKLRVDPVNF Hemoglobin subunit alpha

0.151 GEAGKpGEQGVpGDLGApGP Collagen alpha-1(I) chain

0.151 TGLSmDGGGSPKGDVDP Sodium/potassium-transporting ATPase subunit gamma

0.176 VVHTNYDEY Alpha-1-microglobulin

0.183 EAGENQKQPEKNAGPTAR C-X-C motif chemokine 16

0.270 * TTLASHSTK Mucin-1 subunit alpha

0.312 NpGPPGpSGSpGKDGPpGPAG Collagen alpha-1(III) chain

0.383 EDLDTNADKQLSFEEF Protein S100-A9

0.399 * NRGERGSEGSPGHpGQPGPpGPPGApGP Collagen alpha-1(III) chain

0.421 * PpGKNGDDGEAGKPGRpGERGppGPQ Collagen alpha-1(I) chain

0.432 * EGSpGRDGSpGAKGDRG Collagen alpha-1(I) chain

0.439 GSpGSpGPDGKTGPpGPAG Collagen alpha-1(I) chain

0.456 LSSHIANVERVPFDAATLHTSTA Gelsolin

0.460 * DQGPVGRTGEVGAVGpPGFAGEKGPSGEAGTAGPpGTpGP Collagen alpha-2(I) chain

0.460 * GLpGTGGpPGENGKpGEPGPKG Collagen alpha-1(III) chain

0.466 SDGLAHLDNLKG Hemoglobin subunit delta

0.504 DGVPGKDGPRGP Collagen alpha-1(III) chain

0.512 * SpGSPGPDGKTGpP Collagen alpha-1(I) chain

0.514 * DGPpGRDGQpGHKG Collagen alpha-2(I) chain

0.540 ApGPAGSRGApGPQGpRGDKGETGERG Collagen alpha-1(III) chain

0.548 DpGKNGDKG Collagen alpha-2(I) chain

0.579 * pPGADGQPGAKGEpGDAGAKGDAGPpGPAGPAGPPGPIG Collagen alpha-1(I) chain

0.580 * GEHNPFKGAI T calcium channel alpha 1G subunit variant 249

0.617 DDGEAGKpGRpG Collagen alpha-1(I) chain

0.623 * GKNGDDGEAGKPGRpGERGPpGp Collagen alpha-1(I) chain

0.632 * SpGSPGPDGKTGPpGPAG Collagen alpha-1(I) chain

0.667 * PpGPPGPpGPPGPPS Collagen alpha-1(I) chain

0.700 * pPGADGQpGAKGEPGDAGAKGDAGPpGPAGPAGPpGPIG Collagen alpha-1(I) chain

0.733 * pPGEAGKpGEQGVPGDLG Collagen alpha-1(I) chain

*Peptides not included in the RA classifying biomarker model.
doi:10.1371/journal.pone.0104625.t002
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value = 0.001; coefficient of determination between CRP and

DAS28 of 0.053 with p-value = 0.124; coefficient of determination

between CRP and HAQ of 0.126 with p-value = 0.015).

Urinary biomarkers associated with RA
The work flow used for establishing urinary biomarkers

associated with RA is shown in Figure 1. In order to establish

potential urinary biomarkers associated with RA, urines samples

from 33 RA patients and 30 healthy volunteers were run using

CE-MS and analysed for their peptidomic profile.

A total of 292 peptides were significantly differentially regulated

in the RA patients compared to controls, after adjustment for

multiple testing using the Benjamini-Hochberg procedure for false

discovery rate. Of the 292 potential biomarkers, 70 peptides were

identified by MS/MS sequencing.

Of these, 34 were found in lower (Table 2) and 36 in higher

concentrations (Table 3) in RA patients. Peptide fragments found

in significantly lower abundance were identified as protein S100-

A9, gelsolin, alpha-1-microglobulin, C-X-C motif chemokine 16,

mucin-1 subunit alpha, carboxypeptidase A1 and T calcium

channel alpha 1G subunit variant 249. Peptide fragments with

higher abundance in RA urine were myosin light chain 3,

uromodulin, vesicular integral-membrane protein VIP36, com-

plement 3, fibrinogen alpha chain, clusterin and CD99 antigen.

There were also proteins from which peptide fragments were

found in both higher and lower concentrations in patients with RA

Table 3. Urinary peptides which were found in significantly higher concentration in patients with RA.

Fold change Sequence Identification

1.398 * DGQpGAKGEpGDAGAKGDAGPpGP Collagen alpha-1(I) chain

1.452 * EpGSpGENGApGQmGPR Collagen alpha-1(I) chain

1.522 NSGEpGApGSKGDTGAKGEpGpVG Collagen alpha-1(I) chain

1.613 * SGHPGSPGSPGYQGPpGEPGQAGPSGPpGP Collagen alpha-1(III) chain

1.705 ApGGKGDAGApGERGPpG Collagen alpha-1(III) chain

1.732 * NGEpGGKGERGApGEKGEGGPpG Collagen alpha-1(III) chain

1.749 * PAPAPPPEPERPKEVE Myosin light chain 3

1.816 AGERGHPGAPGpSGSpGLPGVPGSMGDMVNYDEIK Collagen alpha-1(XVI) chain

1.857 * KGDRGETGpAGPPGApGAPGAPGPVGP Collagen alpha-1(I) chain

1.960 NGApGEAGRDGNpGNDGPpG Collagen alpha-2(I) chain

1.984 PpGDEGEmAIISQKGTpGEpGP Collagen alpha-4(IV) chain

2.074 * ADGQpGAKGEpGDAGAKGDAGppGP Collagen alpha-1(I) chain

2.142 SGSVIDQSRVLNLGPITRK Uromodulin

2.421 QGKTGpPGPPGVVGpQGPTGETGPMGERGHpGPpGP Collagen alpha-1(V) chain

2.426 NGEpGGKGERGApGEKGEGGppG Collagen alpha-1(III) chain

2.434 * GPpGEAGKpGEQGVP Collagen alpha-1(I) chain

2.607 * GPpGKNGDDGEAGKPG Collagen alpha-1(I) chain

2.942 TPEEKSAVTALWGKVNVDEV Hemoglobin subunit beta

3.084 IDQSRVLNLGPITRK Uromodulin

3.242 * ADGQpGAKGEpGDAGAKGDAGPpGPAGP Collagen alpha-1(I) chain

3.681 * SGEpGApGSKGDTGAKGEpGP Collagen alpha-1(I) chain

3.699 GEVGpAGSpGSNGApGQRGEPGPQGHAGAQGPPGpPG Collagen alpha-1(III) chain

3.910 * GppGPpGPAGKEG Collagen alpha-1(I) chain

3.928 VIDQSRVLNLGPIT Uromodulin

4.016 SGSVIDQSRVL Uromodulin

4.080 NSGEpGApGSKGDTG Collagen alpha-1(I) chain

4.547 * GPpGPTGPGGDKGDTGPpGP Collagen alpha-1(III) chain

5.569 * LSMDGGGSPKGDVDP Sodium/potassium-transporting ATPase subunit gamma

7.564 * GDpGPpGPpGPpG Collagen alpha-1(XV) chain

8.523 pGPQGPLGKPGAPGEPGPQG Collagen alpha-1(VIII) chain

8.928 FGASAGTGDLSDNHDIISMK Vesicular integral-membrane protein VIP36

11.494 EGVQKEDIPPADLSDQVPDTESETRILLQGTPVA Complement C3

15.096 RPGApGPAGARGNDGATGAAGPPGPTGpAGpP Collagen alpha-1(I) chain

16.970 DEAGSEADHEGTHSTKRGHAKS Fibrinogen alpha chain

23.336 FDSDPITVTVPVEV Clusterin

27.407 NPPKPMPNPNPNHPSSSGS CD99 antigen

*Peptides not included in the RA classifying biomarker model.
doi:10.1371/journal.pone.0104625.t003
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and these were fragments of collagen 1A1 and 1A3, sodium/

potassium transporting-ATPase subunit gamma and haemoglobin

subunits.

Model of RA-specific classifier biomarkers
As the RA population and the controls showed systematic

differences in age and gender, their confounding aspect was

checked by correlating each of the 70 biomarkers with age and

gender in a cohort of 500 healthy patients from our database. This

resulted in 31 biomarkers showing a correlation with age, gender

or both (see Table S1). These biomarkers were therefore excluded

from the RA classifier biomarker model. The biomarker model

was established using the remaining 39 sequenced peptides that

were significantly different between controls and cases. Accuracy

of the model in the training set was 100% when tested employing

complete take-one-out crossvalidation.

When tested on the blinded test set of 31 samples (16 cases and

15 controls), the proteomic signal was significantly different

between groups, and the polypeptidic profiles obtained are shown

in Figure 2. Accuracy of the model in the independent test set was

Figure 2. Urinary polypeptide signatures in cases and controls from the validation set based on 39 significantly different
sequenced peptides. Normalized molecular weight (500–15000 Da) in logarithmic scale is plotted against normalized migration time (18–45
minutes). The mean signal intensity of the polypeptide peak is given in 3-dimensional depiction (n = 15 controls and 16 cases).
doi:10.1371/journal.pone.0104625.g002

Figure 3. Graphical representation of the frequency distribution of proteases with modified activity associated with RA. Percentage
frequency of peptide occurrences in the down-regulation group is plotted on the x-axis, whereas the percentage frequency of occurrences in the up-
regulated group is plotted on the y-axis. Circled data points represent the proteases which activity is the most affected in RA compared to that of
healthy controls (see Table 4).
doi:10.1371/journal.pone.0104625.g003

RA Urinary Biomarkers

PLOS ONE | www.plosone.org 6 August 2014 | Volume 9 | Issue 8 | e104625



91%, and an area under the curve (AUC) of 0.93 on ROC

analysis. Median value of the 39 biomarker classifier model was

0.955 (22.563; 2.394) with sensitivity of 88% and specificity of

93% for identification of RA (p,0.0001). Median values (range) of

the classifier model obtained for the case and control groups were

1.542 (0.175; 2.394) and 20.087 (22.563; 1.809) respectively.

Prediction of changes in protease activity based on RA-
associated urinary biomarkers
Predicted changes in protease activity, based on the association

between a protease and its corresponding cleavage site sequence in

the octapeptide form, was carried out on peptides which were

significantly differentially regulated on the entire cohort of cases

(n = 49) and controls (n = 45). Proteasix search and subsequent

analysis resulted in the identification of 131 peptides associated

with 32 proteases, resulting in 1271 protease-peptide pairs. The

Table 4. Predictive analysis of changes in protease activity associated with peptides differentially regulated in RA 1.

Protease
occ(up)
[N(up) = 67]

occ(down)
[N(down) = 64]

% frequency
(up)

% frequency
(down)

% frequency
difference ratio

Frequency
scores

Kallikrein 6 7 1 10.5 1.6 74.0 443.9

Plasminogen 8 2 11.9 3.1 58.5 351.1

Cathepsin B 38 55 56.7 85.9 20.5 2348.2

MMP9 58 78 86.6 121.9 16.9 2338.8

MMP8 33 48 49.3 75.0 20.7 2310.8

MMP13 34 49 50.8 76.6 20.3 2304.2

MMP3 35 50 52.2 78.1 19.9 2297.9

Prolyl endopeptidase 10 4 14.9 6.3 41.0 245.8

ADAMTS4 6 12 9.0 18.8 35.4 2212.1

Kallikrein 4 6 2 9.0 3.1 48.3 193.1

Granzyme A 11 6 16.4 9.4 27.3 136.5

KLK3 0 1 0.0 1.6 100.0 2100.0

MMP20 7 4 10.5 6.3 25.1 75.4

Cathepsin L1 24 18 35.8 28.1 12.0 72.2

Thimet oligopeptidase 2 4 3.0 6.3 35.4 270.7

MMP25 4 2 6.0 3.1 31.3 62.6

Thrombin 4 2 6.0 3.1 31.3 62.6

Signal peptidase complex catalytic subunit 8 11 11.9 17.2 18.0 254.0

MMP14 30 35 44.8 54.7 10.0 249.8

Kallikrein 2 5 3 7.5 4.7 22.8 45.7

MMP12 63 69 94.0 107.8 6.8 241.0

MMP1 26 30 38.8 46.9 9.4 237.7

Cathepsin S 15 12 22.4 18.8 8.8 26.5

Triptidyl-peptidase 1 3 4 4.5 6.3 16.5 216.5

ADAMTS5 18 20 26.9 31.3 7.5 215.1

Kallikrein 5 4 3 6.0 4.7 12.0 12.0

MMP2 28 30 41.8 46.9 5.7 211.5

Cathepsin K 16 14 23.9 21.9 4.4 8.8

MMP7 42 43 62.7 67.2 3.5 23.5

Meprin A 38 36 56.7 56.3 0.4 0.8

Calpain 2 10 10 14.9 15.6 2.3 0.0

Neprilysin 10 10 14.9 15.6 2.3 0.0

1Frequency distribution analysis based on all peptides (n = 131).
Mathematical calculations are based on the following parameter and calculations:
occ(up)= Sum of all occurrences for each individual protease in the up-regulated peptides,
occ(down)= Sum of all occurrences for each individual protease in the down-regulated peptides,
N(up)= Total number of peptides being up-regulated,
N(down)= Total number of peptides being down-regulated,
% frequency(up)= (occ(up)/N(up)) * 100.
% frequency(down)= (occ(down)/N(down)) * 100.
% frequency difference ratio= | ((freq%(up) 2 freq%(down))/(freq%(up)+freq%(down)) * 100 |.
Frequency scores=%freq * (occ(up)-occ(down)).
doi:10.1371/journal.pone.0104625.t004
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frequency distribution analysis presented here (computed as

frequency scores) provides a mathematical modelling of the data

taking into account the frequency of peptide occurrences per

protease weighed by the difference of occurrences. This analysis,

as opposed to a statistical approach based on chi-squared

frequency distribution or test of independency, takes into account

not only the frequency of distribution but also the difference of

occurrences, therefore discarding proteases resulting in a similar

number of peptides found equally up- and down- regulated. As

plotted in Figure 3, proteases found the furthest away from the

normal distribution line (demonstrating an increased specificity in

cleavage activity) and with a greater difference in the number of

occurrences between the up- and down- regulated groups (as

indicated by the higher frequency score in Table 4, with negative

scores emphasising a down-regulation) are potential candidates

involved in the pathophysiology of RA. Amongst the 32 proteases

associated with urinary fragments of RA-related peptides, the

potential predicted activities of kallikrein 6 (KLK6) and plasmin-

ogen (PLG) were up-regulated, whereas the associated activities of

matrix metalloproteinase 3 (MMP3), MMP8, MMP9 and MMP13

and cathepsin B were down-regulated in cases compared to

controls (Table 4).

Discussion

Based on the comparison of 33 newly diagnosed patients with

RA and 30 healthy controls, we were able to identify 292 potential

urinary biomarkers associated with the diagnosis of RA. Of these,

70 were sequenced and identified by MS/MS, and 39 used to

develop a biomarker model for RA after adjusting for age and

gender. This is the first study to show that a urinary biomarker

model has potential to assist with the early diagnosis of RA, with

good sensitivity and specificity (88% and 93% respectively).

Although repeat analysis with better matched controls is required

to evaluate if the model is truly specific for RA, these initial results

compare favourably to ACPA [6]. Furthermore, a panel of

biomarkers like this usually performs better as a diagnostic tool

than single or few biomarkers alone [29].

Urinary peptides and protein fragments are the end products of

upstream proteolytic processes so the differential urinary excretion

of peptides between controls and RA patients may indicate their

role in the pathophysiology of the disease. Some of the protein

fragments identified originated from proteins known to be up/

down regulated in RA, including collagens [30,31], gelsolin [32],

and fibrinogen alpha [7,33]. To identify which proteases might be

responsible for the urinary biomarkers identified, we performed a

Proteasix prediction analysis. This suggested an increased activity

of KLK-6 and PLG and a reduced activity of cathepsin B, MMP3,

MMP8, MMP9 and MMP13.

The kallikrein-kinin system with activation plasma (KLKB1) as

well as tissue kallikrein (KLK1) has been implicated in inflamma-

tion, and raised levels of both have been found in plasma and

synovial fluid of patients with RA [34–38]. Less is known about the

role of KLK6 in the pathogenesis of RA, but KLK6 has been

found in synovial fluid in patients with psoriatic arthritis [39], and

KLK6 promotes survival of murine lymphocytes with actions on

proteinase-activated receptor 1 [40].

PLG has been implicated in early RA and although the

mechanism remains to be fully established, it may cleave

components of the complement system and activate protease-

activated receptors and MMPs [41]. Both MMPs and cathepsin B

contribute to joint destruction in RA [42,43] and elevated levels of

serum MMP1 and MMP3 correlate well with the progression of

erosive disease in early disease [44]. It is therefore unexpected that

the protease prediction analysis consistently suggested down-

regulation of MMPs and cathepsin B in our RA cohort. Future

studies are required to evaluate and explain these findings which

may reflect technical elements of our approach or allude to as yet

unexplained renal biology in RA patients.

Further validation is also needed to confirm the diagnostic value

of urinary biomarkers in early RA. In particular, comparison

should be made between the urinary proteome of patients with RA

and aged and gender matched patients with other chronic

inflammatory conditions and arthritidies. This will establish if

the peptides and peptidases identified are specific to RA or reflect

chronic inflammation and joint degradation in general. It would

also be informative to take into account disease characteristics

such as the 2010 classification score and the presence of erosions.

This was not possible in the current study due to the small sample

size, which also has implications for the power of the study as a

whole. It will therefore be necessary to use a bigger and better

characterised cohort when validating our findings. This will allow

for estimations of sensitivity and specificity of our biomarker

profile for diagnostic purposes and will also allow more powerful

correlations between individual peptides and disease markers and

characteristics. The current study is based on a cross-sectional

design but a longitudinal design would be required to monitor

disease progression, to investigate if the urinary proteome at

baseline is predictive of outcome. A longitudinal design would also

allow monitoring changes in the urinary proteome over time in the

same patients with correlation to clinical assessments and response

to treatment. In cardiovascular disease, for example, it has been

shown that the urinary biomarker pattern becomes healthier in

patients who had received treatment [14].

Supporting Information

Table S1 31 biomarkers showed a correlation with age, gender

or both.
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