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Abstract

Neurons producing serotonin (5-hydroxytryptamine, 5-HT) constitute one of the most widely distributed neuronal networks
in the mammalian central nervous system (CNS) and exhibit a profuse innervation throughout the CNS already at early
stages of development. Serotonergic neuron specification is controlled by a combination of secreted molecules and
transcription factors such as Shh, Fgf4/8, Nkx2.2, Lmx1b and Pet1. In the mouse, Pet1 mRNA expression appears between 10
and 11 days post coitum (dpc) in serotonergic post-mitotic precursors and persists in serotonergic neurons up to adulthood,
where it promotes the expression of genes defining the mature serotonergic phenotype such as tryptophan hydroxylase 2
(Tph2) and serotonin transporter (SERT). Hence, the generation of genetic tools based on Pet1 specific expression represents
a valuable approach to study the development and function of the serotonergic system. Here, we report the generation of a
Pet1210-Cre transgenic mouse line in which the Cre recombinase is expressed under the control of a 210 kb fragment from
the Pet1 genetic locus to ensure a reliable and faithful control of somatic recombination in Pet1 cell lineage. Besides Cre-
mediated recombination accurately occurred in the serotonergic system as expected and according to previous studies,
Pet1210-Cre transgenic mouse line allowed us to identify novel, so far uncharacterized, Pet1 expression domains. Indeed, we
showed that in the raphe Pet1 is expressed also in a non-serotonergic neuronal population intermingled with Tph2-
expressing cells and mostly localized in the B8 and B9 nuclei. Moreover, we detected Cre-mediated recombination also in
the developing pancreas and in the ureteric bud derivatives of the kidney, where it reflected a specific Pet1 expression. Thus,
Pet1210-Cre transgenic mouse line faithfully drives Cre-mediated recombination in all Pet1 expression domains representing
a valuable tool to genetically manipulate serotonergic and non-serotonergic Pet1 cell lineages.
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Introduction

In mammals, neurons producing serotonin (5-hydroxytrypta-

mine, 5-HT) are generated early during embryonic development

in the ventral hindbrain and progressively cluster into B1–B9

raphe nuclei that project to the whole central nervous system

(CNS), from the anterior brain to the spinal cord [1,2,3]. The

extensive and capillary organization of serotonergic terminals

together with the existence of at least 15 different 5-HT receptors

distributed in the CNS accounts for the multitude of physiological

and behavioural functions mediated by brain serotonin, from the

regulation of circadian rhythms [4] and mood [5], to social

interaction [6] and sexuality [7]. Moreover, in addition to its

function in neurotransmission, growing evidences support a role

for serotonin in developmental processes as cellular proliferation,

migration, neuronal differentiation and brain circuitry formation

[8–12]. Consistently, an altered serotonergic signalling has been

associated with neuropsychiatric disorders in humans thought to

have neurodevelopmental basis, such as schizophrenia and autism

[13,14].

During the last years, growing efforts have been made to

generate suitable genetic tools to target serotonergic neurons in

order to study their development and function [15–18]. Advances

in mouse molecular genetics have brought new insights into the

comprehension of the molecular cascade involved in serotonergic

neuron specification [19–24], as well as of the projection network

of raphe nuclei [11,25]. Altogether, these studies have been crucial

to reconsider serotonergic system, rather than a homogenous

ensemble, a complex and heterogeneous population with distinct

morphological, molecular and electrophysiological characteristics

[22,24–29].

The transcriptional pathways of serotonergic neuron differen-

tiation require a combination of secreted molecules and transcrip-

tion factors such as Shh, Fgf4/8, Nkx2.2 and Lmx1b, and
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converge on the activation of the ETS transcription factor Pet1

(plasmacytoma expressed transcription factor 1, official name Fev)

[24,30]. The onset of Pet1 expression in the mouse has been

described to occur approximately as early as 10.5 dpc in post-

mitotic precursors within the mantle layer, in the rostral hindbrain

from rhombomere (r) 1 to r3, (i.e. rostral serotonergic domain),

and one day later in r5-r7 (i.e. caudal cluster) [30–32]. In these

domains Pet1 expression precedes the appearance of markers of

serotonergic terminal differentiation, such as tryptophan hydroxy-
lase 2 (Tph2) and serotonin transporter (SERT), and is maintained

up to adulthood [30].

Thus, thanks to its early and specific expression, Pet1 represents

the ideal candidate gene to be used in Cre recombinase/loxP-

based strategies to specifically target serotonergic neurons. Such an

approach represents a powerful tool to map the genetic lineage of

Pet1 expressing cells and to characterize the molecular identity of

distinct subpopulations of serotonergic neurons through intersec-

tional strategies [33]. Moreover, a Cre recombinase-expressing line

targeting serotonergic neurons could be used in conditional knock

out approaches to investigate the involvement of specific genes in

the development and functioning of serotonergic system, as well as

in studies aimed to map serotonergic structural and functional

connections in the brain.

In this context, the availability of BAC (Bacterial Artificial

Chromosome)-based homologous recombination in E. coli
approach allows the generation of large transgenic constructs,

thus providing the presence of long distance acting regulatory

elements required for the proper temporal- and tissue-specific

expression of the gene of interest as well as reducing positional

effect, that otherwise might drive transgene expression outside

promoter-specific cell populations [34–39].

In the present study we used an E. coli homologous

recombination based-approach to generate a Pet1210-Cre trans-

genic mouse line, in which 210 kb of Pet1 locus drive the

expression of the Cre recombinase. Our analysis showed that in

Pet1210-Cre mice Cre-mediated somatic recombination specifical-

ly occurs in serotonergic neurons of the raphe nuclei. Moreover,

we demonstrated that Pet1 is expressed also in a population of

non-serotonergic neurons within the raphe nuclei and in non-

neuronal districts such as the ureteric bud derivatives of the kidney

and the pancreas, starting from 9.5 dpc and 11.5 dpc, respectively.

The Pet1210-Cre transgenic mouse line thus widens our knowledge

on Pet1 gene expression and represents a valuable tool to promote

Cre-mediated somatic recombination both in serotonergic and

non-serotonergic Pet1 cell progeny.

Materials and Methods

Animals
Mice were housed in standard Plexiglas cages at constant

temperature (2261uC) and maintained on a 12/12 h light/dark

cycle, with food and water ad libitum. Experimental protocols

were conducted in accordance with the Ethic Committee of the

University of Pisa and approved by the Veterinary Department of

the Italian Ministry of Health.

Generation of the Pet1210-Cre transgenic mouse line
To generate the BAC-Cre construct we took advantage of a

recombination-based strategy carried out in bacteria. To this aim

we obtained a Pet1210-Cre targeting vector containing both the

Cre recombinase cDNA and a kana/Neo resistance gene flanked by

two 500 bp long homology arms. Briefly, Pet1210-Cre left arm

(Pet1210LA) has been cloned in frame with Cre recombinase using

an overlapping Polymerase Chain Reaction (PCR)-based strategy

[40]. Briefly, Pet1210LA and Cre recombinase have been separately

amplified by means of PCR using BAC_RP23_165D11 and a

pSG5-Cre plasmid as templates, respectively. Amplification of

Pet1210LA was performed using the following primers: forward 59

ATTATTCTCGAGGGGAGGTAGAAAAAGACGCACGTA

39, reverse 59 TTGGTGTACGGTCAGTAAATTGGACAT-

CGCTGCCGGGGACTGGGC 39. Cre recombinase cDNA was

amplified using the following primers: forward 59 GCCCAG-

TCCCCGGCAGCGATGTCCAATTTACTGACCGTACAC-

CAA 39, reverse 59 ATTATTCTCGAGCAGACAATGATAA-

GATACATTGATGAGTTT 39. Overlapping sequences for

Pet1210LA and Cre recombinase are underlined, and the XhoI

site is shown in bold. The amplified fragments were used

simultaneously in a second round of PCR using the forward

primer of Pet1210LA and the reverse primer of Cre recombinase to

obtain a 1.7 kb fragment in which the second codon of Cre
recombinase is in frame with the first ATG codon of Pet1 gene. A

kana/Neo resistance cassette flanked by two FRT sites for Flp

recombinase-mediated excision obtained from a pSVKeoX1FRT

plasmid was placed 39 to the Pet1210LA_Cre construct. Pet1210-
Cre right arm (Pet1210RA) was generated by means of PCR, using

RP23_165_D11 BAC clone as template and the following primers:

forward 59 ATTATTGTCGACAGGTGGTACCAGGGAC-

CAGCC 39, reverse 59 ATTATTGTCGACTCGCGCTAGCC-

GAGTCTGAGC 39. Upon homologous recombination of the

Pet1210-Cre targeting vector within the RP23_165_D11 BAC, the

Pet1210RA also leads to a deletion of 52 nucleotides downstream

the first ATG codon of Pet1 gene. Pet1210RA was subcloned into

the XhoI restriction site of Pet1210LA_Cre/pSVKeoFRT plasmid,

to generate the Pet1210LA_Cre/pSVKeoFRT/Pet1210RA targeting

vector. Pet1210LA_Cre/pSVKeoFRT/Pet1210RA vector and

RP23_165_D11 BAC were co-electroporated in E. coli DY380
cells to obtain the Pet1210-Cre recombined BAC [39]. After

linearization with PI-SceI restriction enzyme, the Pet1210-Cre
recombined BAC was diluted in injection buffer (0.1 mM EDTA;

100 mM NaCl; 10 mM Tris-HCl, pH 7.5; 1x polyamine mix) and

microinjected into the male pronucleus of fertilized FVB/N mouse

eggs and both presence and copy number of the transgene were

assessed by Southern blot analysis. Pet1210-Cre positive founders

were mated to the ACTB::FLPe deleter [41] to excise the selection

cassette. PCR using primers across the remaining FRT-site

(forward: 59 CGCCTGCTGGAAGATGGCGA 39; reverse: 59

CCTTTGGTCCACCGAACTTGC 39) was performed and

amplicon sequencing confirmed that the Flp-mediated recombi-

nation occurred correctly. In order to evaluate the integrity of the

BAC transgene within the mouse genomic DNA specific primers

for the pBACe3.6 backbone were designed as follows: forward 59

CTAGTAGACTTAATTAAGGATCGAT 39, reverse 59 CC-

GCAAATTTATTAGAGCAATATAG 39 (59-end of the PI-SceI

linearized transgene, expected amplicon size: 142 bp); forward 59

CAGGCCTACCCACTAGTCAATT 39, reverse 59 TGCT-

GCTGTTTAGGGATCTGCA 39 (39-end of the PI-SceI linear-

ized transgene, expected amplicon size: 254 bp). Transgenic

animals were backcrossed to C57BL/6J animals for nine

generations to obtain pure C57BL/6J background. Mice were

routinely genotyped by PCR in standard conditions using the

following primers for Cre recombinase: forward 59 CGCCAC-

GACCAAGTGACAGCA 39, reverse 59 CAGGCTAAG-

TGCCTTCTCTACA 39.

Immunohistochemistry
Pregnant females were sacrificed by cervical dislocation, the

embryos dissected out of the uterus and fixed o/n in 4%

paraformaldeyde (PFA) at 4uC. Adult animals were anaesthetized
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with Avertin and perfused intracardially with 4% PFA. Brains

were dissected out, post-fixed o/n in PFA at 4uC and embedded in

either 2.5% agarose or tissue-tek for sectioning with vibratome or

cryostat, respectively.

For immunostaining specimens were incubated with primary

antibodies o/n at 4uC in PBS containing 5% heat-inactivated

lamb serum and 0.5% Triton X-100. Primary antibody dilutions:

rabbit anti-5-HT (Sigma) 1:500; chicken anti-eGFP/eYFP (Ab-

cam) 1:1000; mouse anti-calbindin-D-28K (Sigma), 1:200. Fluo-

rescent-conjugated secondary antibody were used as follow:

Rhodamine Red-X goat anti-rabbit IgG 1:500; Alexa Fluor 488

goat anti-chicken IgG 1:200; Rhodamine Red-X goat anti-mouse

IgG 1:500 (all by Molecular Probes). Cell nuclei were counter-

stained with DAPI (Sigma), 0.5 mg/ml.

X-gal chromogenic reaction
X-gal staining was performed on 9.5 dpc, 10.5 dpc, 11.5 dpc,

13.5 dpc Pet1210-Cre/ROSA26R whole embryos and on P1 or

P10, P30 and adult Pet1210-Cre/ROSA26R kidney and brains,

respectively. Dissected tissues or whole embryos were fixed in 2%

formaldehyde solution prepared in PBS for 30 minutes, and

subsequently processed for X-gal staining solution containing

5 mM K4Fe(CN)6, 5 mM K3Fe(CN)6, 2 mM MgCl2, 0.2% NP40,

0.1% sodium deoxycholate and 1 mg/ml X-gal (Sigma) in PBS for

4–16 h at 30uC. Samples were post-fixed in 4% PFA at 4uC o/n.

b-galactosidase stained specimens were cut at 50 mm with a

vibratome or clarified in methyl salicylate pure solution to enhance

contrast between X-gal staining and non-stained tissues.

In situ hybridization
In situ hybridization was performed as previously described

[11]. Briefly, animals were sacrificed by cervical dislocation and

fresh brain tissue was dissected out, embedded in Tissue Tek

(Sakura), frozen on dry ice and stored at 280uC until used. 14 mm

cryostat sections were cut and hybridization was performed

according to protocols using either digoxigenin-, fluorescein- or
35S-labelled antisense RNA probes. In digoxigenin-labelled in situ
hybridization experiments, NBT/BCIP (Roche) was used as

substrate for alkaline phosphatase, while in radioactive in situ
hybridization sections were exposed to Biomax MR X-ray films

(Kodak) for two to seven days. For double ISH, sections were

hybridized simultaneously with DIG- and fluorescein-labelled

probes. A two-step chromogenic reaction using NBT/BCIP and

HNPP/Fast Red Fluorescent Detection Set (Roche) was per-

formed to visualize DIG- and fluorescein-labelled riboprobes.

Specimens were counterstained with DAPI.

Image acquisition and data analysis
For brightfield acquisitions, both sections and whole mount

samples were observed and photographed with a light microscope

or with a MacroFluo microscope equipped with DS-SMc digital

cameras (Nikon). Fluorescence images were taken with Eclipse Ti

microscopes (Nikon) or with a SP5 confocal microscope (Leica),

using 10x and 63x objectives.

For cell counting, double ISH experiments were performed on

three distinct C57BL/6J wild-type animals. Tph2- and Pet1-

positive neurons in B9, B8, B7, B5–B6 and B1–B3 raphe nuclei

were counted using ImageJ software. On average three to four

sections depending on the antero-posterior extension of each

nucleus were examined. In order to avoid counting cells twice,

serial sections 70 mm distance one from another were analysed.

For each section two to four 10x images were captured both in

brightfield and in TRITC channel to visualize NBT/BCIP, DIG-

labelled, or Fast Red, fluorescein-labelled, positive neurons,

respectively. Images were converted to 8-bit grayscale and a

threshold function was manually applied to remove sub-threshold

signal using ImageJ software. For each image, only cells showing

labelling clearly above the background level were counted. Pet1+/

Tph2+ and Pet1+/Tph22 neurons were then counted per each

raphe nucleus and the obtained values were expressed as relative

percentages.

Results

Generation of a Pet1210-Cre transgenic mouse line driving
Cre-mediated recombination in the raphe nuclei

In order to minimize positional effect and to guarantee the

presence of all Pet1 regulatory elements, the RP23_165_D11 BAC

clone comprising 170 kb upstream and 40 kb downstream the

Pet1 gene locus has been used to drive the expression of Cre

recombinase in a transgenic-based approach in the mouse. A

homologous recombination strategy in DY380 E. coli strain [39]

was used to generate the Pet1210-Cre transgene (Figure S1). After

pronuclear injection, Southern Blot analysis on genomic DNA

using a probe designed against the Kana/Neo DNA sequence

allowed the identification of four independent Pet1210-Cre
founders, three of which showed germline transmission, namely

founder-female 3 (FF3), founder-female 9 (FF9) and founder-male

3 (FM3). Pet1210-Cre founders were intercrossed to ACTB::FLPe
deleter mice [41] to remove the Kana/Neo resistance cassette to

avoid possible transcriptional interference with the Pet1 promoter.

Genomic DNA was assayed by PCR and sequencing to assess

correct Flp-mediated excision of the FRT-flanked Kana/Neo
cassette (not shown). Eventually, the three Pet1210-Cre founders

were backcrossed to a C57BL/6J background for at least nine

generations. The transgenic mice appeared to be morphologically

normal, had a normal lifespan and were fertile, thus suggesting no

consequences due to the passenger genes (i.e. Cdk5r2, Cryba2,

Ccdc108, Ihh and Nhej1) included in the Pet1210-Cre BAC

construct (Figure S1).

In order to characterize the newly generated transgenic lines,

we first tested the Cre somatic recombination efficiency by

intercrossing Pet1210-Cre transgenic animals obtained from the 3

distinct founders to the ROSA26R conditional reporter line, in

which b-galactosidase is constitutively expressed upon Cre-

mediated recombination [42].

It is reported that in the mouse hindbrain Pet1 expression starts

around 10.5 dpc in the rostral serotonergic domain, and about one

day later in the caudal raphe nuclei [31,32]. X-gal staining

analyses revealed that Cre-mediated recombination had occurred

already in the hindbrain of 11.5 dpc Pet1210-Cre/ROSA26R
mouse embryos showing two longitudinal dark blue stripes lateral

to the floorplate defining the rostral serotonergic domain.

Conversely, b-galactosidase staining in the medullary domain

was barely detectable at this stage, reflecting the rostro-caudal

temporal order in the generation of raphe serotonergic neurons

(Figure 1a). At 12.5 dpc the analysis on sagittal sections and

hindbrain flat-mount preparation from the three distinct founders

showed that the transgene was expressed both in the anterior r1-

r3-derived and in the posterior r5-r7-derived hindbrain regions,

with the exception of the r4-derived territory, thus mirroring the

endogenous expression of the Pet1 gene (Figure 1b and Figure S2

a–c). At P1, b-galactosidase-expressing neurons have migrated

from their original position in the ventral region of the hindbrain

and reached their final location in the brainstem, defining dorsal,

medial and medullary clusters of serotonergic neurons (Figure 1c),

in line with the morphogenetic movements of the developing

serotonergic system occurred at this stage [43]. b-galactosidase
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staining was confirmed in all serotonergic B1–B9 raphe nuclei of

adult Pet1210-Cre/ROSA26R transgenic mice (Figure 1d–g, d’-g’),

but not in ectopic districts as assessed by a detailed analysis on

coronal sections throughout Pet1210-Cre/ROSA26R mouse brains

(Figure 1h–i, h’-i’, h’’-I’’). Finally, we compared b-galactosidase

staining pattern to Pet1 mRNA distribution at both foetal (i.e. 12.5

dpc and 15.5 dpc) and postnatal stages (i.e. P10 and P30). Results

showed that the transgene expression nicely correlates to Pet1
endogenous expression (Figure S3), and to that of the specific

marker of terminally differentiated 5-HT neurons such as Tph2.

Thus, in the Pet1210-Cre transgenic mouse line Cre recombinase
expression likely mirrors Pet1 spatio-temporal localization in the

raphe nuclei during both foetal development and post-natal life. As

the three founders showed similar Cre activity, we selected the

FF9-derived mice, which showed the strongest b-galactosidase

signal, to perform the detailed analysis described below. For this

founder further genomic analysis was performed in order to assess

the integrity of the BAC transgene and the transgene copy number

integrated into the genome. Evidence that the BAC transgene was

intact within the chromosomal DNA of Pet1210-Cre mice was

deduced by the amplification of the 142 bp and 254 bp fragments

corresponding to the 59- and 39-end, respectively, of the PI-SceI

linearized BAC backbone (Figure S1 c). Furthermore, Southern

blot analysis showed that the BAC transgene was integrated as a

single copy into the genome of FF9-derived mice (Figure S1 d).

Identification of a non-serotonergic Pet1+ cell population
in the raphe

We then intercrossed the Pet1210-Cre mice with the RO-
SA26YFP conditional reporter line [44], in which the YFP
reporter gene is constitutively activated upon Cre expression, in

order to assess the Cre-mediated recombination activity at a

cellular level. Combined double immunohistochemistry experi-

ments were performed using specific antibodies against YFP and

5-HT on sections from Pet1210-Cre/ROSA26YFP double trans-

genic mouse brains (Figure 2 a–e).

Results highlighted a discrepancy between YFP and 5-HT

immunoreactivity within the raphe nuclei along the rostro-caudal

extent of the hindbrain. In particular, while virtually all 5-HT-

immunoreactive cells resulted positive for YFP (YFP+/5-HT+),

several YFP-immunoreactive cells resulted to be devoid of

serotonin (YFP+/5-HT2, Figure 2 a’-a’’’, b’-b’’’, c’-c’’’, d’-d’’’,

e’-e’’’). In particular, the fraction of YFP+/5-HT2 vs YFP+/5-HT+

cells displayed a rostral-to-caudal decreasing ratio, being sizable in

the rostral median raphe (MR) B8-B9 nuclei (Figure 2 a-a’’’, b’-

b’’’), while in dorsal raphe (DR) B7 (Figure 2 c-c’’’), B6

(Figure 2 d-d’’’) and caudal B1–B3 nuclei (Figure 2 e-e’’’) only

few YFP+/5-HT2 were present.

Thus, our results raised the question whether the unexpected

presence of YFP+/5-HT2 cells in the adult mouse brain could be

due to an ectopic activity of the Cre recombinase or to a specific,

novel expression domain of Pet1 gene in a non-serotonergic cell

subpopulation. To answer this question, we performed combined

double in situ hybridization experiments on adult wild-type mice

using specific riboprobes for both Pet1 and Tph2, with the latter

being expressed selectively in all terminally differentiated seroto-

nergic neurons within the raphe nuclei (Figure 3 a–e). Consistently

with immunohistochemistry data, few neurons expressing Pet1 but

devoid of Tph2 were detected in dorsal and caudal raphe B6

(Figure 3 d-d’’), B7 (Figure 3 c-c’’) and B1–B3 (Figure 3 e-e’’)

nuclei whereas in B9 (Figure 3 a-a’’) and B8 (Figure 3 b-b’’) raphe
nuclei a substantial number of non-serotonergic neurons resulted

positive for Pet1 expression. In order to quantify this observation,

both Pet1+/Tph2+ and Pet1+/Tph22 neurons were counted in B9,

B8, B7 and B6 rostral raphe nuclei and in the B1–B3 caudal

cluster. Analysis showed that in B1–B3 group, in B6 and in B7

raphe nuclei the percentage of Pet1+/Tph22 neurons was 1.5%,

1.1% and 0.8%, respectively, while in B8 and in B9 nuclei it

reached 17.6% and 25.5%, respectively (Figure 3f). Further, to

address at the cellular level whether in our Pet1210-Cre transgenic

mouse line the Cre recombinase promoted somatic recombination

mirroring the Pet1 expression pattern, we used two distinct

riboprobe combinations (i.e. Pet1 and YFP, or Tph2 and YFP) to

perform double ISH on serial coronal sections of adult Pet1210-
Cre/ROSA26YFP. Analyses of results confirmed that the reporter

YFP is present in all Pet1+ neurons as highlighted by co-expression

of Pet1 and YFP (Figure 4 c-c’’), and demonstrated that the Pet1
promoter is also active in non-serotonergic neurons as shown by

the partially overlapping expression of Tph2 and YFP (Figure 4 b-

b’’), in line with the presence of a Pet1+/Tph22 neuronal

population in the raphe system (Figure 4 a-a’’). Moreover, as

NBT/BCIP deep purple chromogenic precipitate may quench the

fluorescence generated by the HNPP/Fast Red substrate, masking

the Tph2 signal in Pet1 positive neurons, we repeated double ISH

on coronal sections at the level of B8 raphe nucleus swapping the

detection methods for Pet1 (HNPP/Fast Red) and Tph2 (NBT/

BCIP) riboprobes as an additional control. We intentionally let the

staining with NBT/BCIP substrate proceed until saturation was

reached, so that Tph2 expressing neurons showed a very dark blue

signal likely masking any underlying fluorescence. In spite of that,

Pet1-only positive neurons identified by alkaline-phosphatase

activity using HNPP/Fast Red substrate were still clearly visible

(Figure 4 d-d’’). Together, these data indicate that Pet1210-Cre
mouse line promotes Cre recombinase expression in all serotoner-

gic neurons and identifies for the first time a novel, non-

serotonergic raphe neuronal population expressing Pet1.

Pet1 gene is expressed in developing pancreas and
kidney

Analysis of the spatio-temporal domain of the Cre recombinase

activity in the Pet1210-Cre/ROSA26R mouse embryos from all the

three founders at both 11.5 dpc and 13.5 dpc revealed the

presence of b-galactosidase staining in additional potential Pet1
expression domains outside the CNS unprecedentedly described

(Figure 5). At 11.5 dpc Cre-mediated recombination was identified

in the anlage of the pancreas and in the ureteric bud of the

developing kidney, which at this stage forms a small branch at the

level of the hindlimbs at the terminal extremity of tubular

structures on each side of the caudal abdominal region (Figure 5

a–c). At 13.5 dpc, X-gal staining performed on parasagittal

sections of Pet1210-Cre/ROSA26R embryos corroborated the

presence of Cre recombinase activity in the developing pancreas

and in the branching ureteric bud of the kidney (Figure 5 d–i).

Additionally, X-gal staining performed on whole organs or

sections obtained from Pet1210-Cre/ROSA26R pups at birth or

adult animals, showed that while both pancreas and kidneys

confirmed the presence of X-gal staining, no reporter expression

was evident in all the other Pet1210-Cre/ROSA26R organs

analysed (Figure S4).

The presence of b-galactosidase activity in both pancreas and

kidneys of mice derived from all the Pet1210-Cre founders

prompted us to hypothesize that the expression of the conditional

reporter was due to specific, previously unreported Pet1 expres-

sion domains, rather than an ectopic activation of Cre recombi-

nase. To address this hypothesis we performed ISH experiments

on pancreas and kidneys from 15.5 dpc Pet1210-Cre/ROSA26YFP
embryos, using specific riboprobes for Pet1 and YFP. Results

indicated that YFP and Pet1 are expressed in the same pancreatic
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domains, nicely correlating with the pancreatic islet cell marker

Nkx2.2 (Figure S5 a–c). Moreover, despite in the hindbrain the

expression of Pet1 normally preludes to the acquisition of a

serotonergic phenotype, we could not detect either Tph2 or Tph1
expression in the developing pancreas (Figure S5 d–e).

To assess the presence of Pet1 mRNA in the kidney, due to its

low expression level, we performed radioactive ISH on coronal

sections of 10.5 dpc, 11.5 dpc and 12.5 dpc from Pet1210-Cre/
ROSA26YFP embryos, using specific 35S-labeled riboprobes

against YFP and Pet1 (Figure 6 a–f). Analysis of autoradiograms

showed detectable Pet1 expression in the developing kidney,

which correlated with YFP expression in double Pet1210-Cre/

ROSA26YFP transgenic embryos at 10.5 dpc (Figure 6 a–b). At

11.5 dpc radioactive ISH showed that Pet1 is expressed in the

nephric ducts at the level of the hindlimbs, with a similar pattern of

YFP mRNA distribution (Figure 6 c–d). Radioactive ISH

performed as a control on 12.5 dpc wild-type embryos, showed

that no YFP expression was detectable, while Pet1 expression was

still present in the kidney at this stage (Figure 6 e–f).

In order to fate map the Pet1 expressing cells in the developing

kidneys, we performed b-galactosidase staining on whole mount

Pet1210-Cre/ROSA26R specimens at different developmental

stages relevant in kidney development, from 9.5 dpc to P1

(Figure 6 g–j), and in adult (Figure S4). The expression of the

Figure 1. Pet1210-Cre mouse line drives Cre recombinase activity in the serotonergic system. (a) Dorsal view of a cleared X-gal stained
Pet1210-Cre/ROSA26R embryo at 11.5 dpc showing that Cre-mediated somatic recombination has occurred in the rostral raphe (arrow). (b) Sagittal
section of 12.5 dpc Pet1210-Cre/ROSA26R embryo highlighting the presence of the reporter in both the rostral (arrows) and caudal (arrowheads)
clusters of developing serotonergic neurons. (c) In P1 Pet1210-Cre/ROSA26R brains X-gal staining highlights serotonergic neurons migrated towards
their terminal locations within the rhombencephalon. (d–g, d’–g’) Representative coronal sections throughout the antero-posterior extent of the
raphe of an adult (P45) Pet1210-Cre/ROSA26R brain showing Cre-mediated recombination specifically occurred in all serotonergic nuclei, namely B8–B9
(d, d’), B7 (e, e’), B5–B6 (f, f’) and B1–B3 (g, g’). (h-h’’, i-i’’) no b-galactosidase staining is detectable in anterior brain regions such as cortex (h-h’),
hippocampus (h, h’’), substantia nigra (i-i’) and thalamus (i, i’’). Scale bar: 1 mm (a, d–i), 900 mm (c), 600 mm (b), 300 mm (d’-i’, h’’, i’’).
doi:10.1371/journal.pone.0104318.g001
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reporter became detectable as early as 9.5 dpc in scattered cells

along the developing nephric duct (Figure 6 g-g’). At 10.5 dpc X-

gal staining was present in the nephric duct showing an increasing

intensity toward its caudal end (Figure 6 h-h’). At 13.5 dpc b-

galactosidase staining nicely highlighted that ureteric bud under-

went already through different rounds of branching forming a

tree-like structure (Figure 6 i-i’). Finally, in P1 mice X-gal staining

was present in cells belonging to the collecting duct epithelium

(Figure 6 j-j’). Importantly, no X-gal staining was observed within

the metanephric mesenchyme, thus suggesting that in Pet1210-Cre
transgenic mouse line Cre-mediated recombination occurred

specifically within the ureteric bud precursors. No Cre recombi-

nase activity was detected in the adrenal gland of Pet1210-Cre/
ROSA26R mice (Figure S4 c, i-i’) as expected in agreement with

Fyodorov and collaborators (1998) [45].

In order to confirm that Pet1 expression is localized within the

ureteric bud derivatives, we performed immunohistochemistry

experiments on Pet1210-Cre/ROSA26YFP whole mount kidneys

at 13.5 dpc using antibodies against YFP and the specific marker

for ureteric bud calbindin-D28K [46]. Results showed that cells

expressing YFP were also immunoreactive for calbindin-D28K,

which stains both tips and stalks of ureteric bud branches

(Figure 6 k–n, k’-n’). In contrast, not all calbindin-D-28K+ cells

Figure 2. Pet1210-Cre transgenic mouse line promotes somatic recombination in a non-serotonergic cell population within the raphe
nuclei. Representative low (a, b, c, d, e) and high (a’-a’’’, b’-b’’’, c’-c’’’, d’-d’’’, e’-e’’’) magnification confocal images of coronal sections of adult
Pet1210-Cre/ROSA26YFP brains, showing the distribution of YFP (green) and 5-HT (red) immunoreactivity within B8–B9 (a-a’’’), B8 (b-b’’’), B7 (c-c’’’),
B6 (d-d’’’), and B1–B3 (e-e’’’) serotonergic nuclei. Boxes highlight the region of each raphe nucleus shown at higher magnification. Cells
immunoreactive for both YFP and 5-HT (YFP+/5-HT+, arrowheads) or exclusively YFP but not 5-HT (YFP+/5-HT2, arrows) were detected along the
antero-posterior extent of the raphe highlighting variable representativeness among the different nuclei. Scale bar: 200 mm (a–e), 30 mm (a’-a’’’, b’-
b’’’, c’-c’’’, d’-d’’’, e’-e’’’).
doi:10.1371/journal.pone.0104318.g002
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expressed YFP, indicating that Cre-mediated recombination in the

kidney occurred in a subset of calbindin-D28K expressing cells.

Thus, the characterization of the Pet1210-Cre transgenic line

allowed the identification of novel expression domains outside the

CNS where Cre activity faithfully recapitulates Pet1 expression.

Discussion

In the present study we reported the generation and the

comprehensive characterization of the Pet1210-Cre transgenic

mouse line, in which a BAC-derived 210 kb genomic fragment of

Pet1 gene locus was used to drive Cre recombinase expression. To

date, it represents the largest Pet1 genomic region used to drive

Pet1-like transgene expression. We observed that in Pet1210-Cre
transgenic mouse line the 210 kb region driving Cre recombinase
expression was able to recapitulate the timing of the endogenous

Pet1 expression during serotonergic system development, as well

as the spatial distribution within B1–B9 raphe nuclei. This result,

together with the absence of reporter expression in extra-raphe

domains in the brain, indicated a reliable, Pet1-driven, spatial and

temporal control of Cre expression in the Pet1210-Cre mouse line.

These results are in line with the peculiarities of BAC-based

transgenesis, that limits positional effects and guarantees the

presence of long-range acting regulatory elements as well, likely

promoting transgene expression in an endogenous-like manner

independently of the integration site [34,36–38,47]. Furthermore,

despite the expression of Pet1 in serotonergic neurons observed in

our Pet1210-Cre transgenic mice is consistent with data previously

obtained with other Pet1-based transgenic mouse lines

[16,22,48,49], in the present study we demonstrated that Pet1
expression in the raphe is present in a wider domain than

previously described, as assessed by double IHC characterization

of Pet1210-Cre transgenic line and by ISH experiments on wild-

type animals with different combination of Pet1 and Tph2 probe

staining. Interestingly, we observed that within the raphe system

the non-serotonergic Pet1-positive neurons are unevenly rather

than homogeneously distributed along the raphe, with a substan-

Figure 3. Pet1 gene is expressed in a non-serotonergic raphe cell population in adult mice. (a–e’’) Low (a, b, c, d, e) and high (a’-a’’, b’-
b’’, c’-c’’, d’-d’’, e’-e’’) magnification images of double ISH performed on coronal sections obtained from adult wild-type mice at the level of B9 (a-
a’’), B8 (b-b’’), B7 (c-c’’), B6 (d-d’’), and B1–B3 (e-e’’) raphe nuclei. In each picture, Pet1 expression is highlighted by a dark blue staining (a-a’, b-b’,
c-c’, d-d’, e-e’), while Tph2 gene expression is visualized as a red precipitate (a-a’, b-b’, c-c’, d-d’, e-e’), or as a red fluorescence (a’’, b’’, c’’, d’’, e’’).
Boxed areas indicate the regions shown in higher magnification images. In all the raphe nuclei two distinct populations of neurons expressing either
both Pet1 and Tph2 (arrowheads), or only Pet1 (arrows) are present. (f) Ratio of Pet1+/Tph2+ vs Pet1+/Tph22 neuronal population in distinct raphe
nuclei of adult wild-type mice reported as percentage. Histogram shows that Pet1-positive non-serotonergic neurons are significantly represented in
rostral B8 and B9 as compared to more posterior nuclei. Data are presented as mean 6 SEM. Scale bar: 100 mm (a–e), 25 mm (a’-a’’, b’-b’’, c’-c’’, d’-
d’’, e’-e’’).
doi:10.1371/journal.pone.0104318.g003
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tial number in B8 and B9 nuclei, as compared to DR and caudal

cluster B1–B3, where only few Pet1+/Tph22 cells were present.

It has been well established that the majority of neurons

populating the raphe are not serotonergic, even though the term

raphe is often used as a synonym of serotonergic [50–52]. Both

dorsal raphe and median raphe nuclei, which together provide the

main serotonergic innervation to the brain, are also composed by a

heterogeneous population of neurons expressing different trans-

mitter substances, such as glutamate [53], GABA [54], or peptides

(e.g. corticotropin-releasing factor and substance P) [29]. The

composition and the distribution of non-serotonergic neurons, as

well as serotonergic neurons, show distinct pattern in DR and MR

nuclei, often reflecting different target brain regions or subregions

of the same brain structure such as amygdala, hippocampus and

medial septum among the others [28,50,55–57]. Retrograde

tracing studies have demonstrated that a large population of

non-serotonergic neurons of the MR expresses the vesicular

glutamate transporter VGLUT3, while in DR serotonin and

VGLUT3 are often overlapping [57,58]. The evidence that other

transmitter substances may be co-released with serotonin hampers

the study of non-serotonergic populations of the raphe and,

therefore, the possibility to better characterize the Pet1+/Tph22

neuronal population. Although beyond the intent of the present

study, multiple labelling studies would be of great interest in future

research in order to identify the molecular and neurotransmission

characteristics of Pet1+/Tph22 cells. In this regard, intersectional

and subtractive strategies have provided powerful tools to map cell

subtypes with great precision [22,59,60]. Jensen and collaborators

have shown that serotonergic neurons can be genetically defined

on the basis of their rhombomeric origin more than their final

localization in adult serotonergic nuclei. In particular, it has been

reported that while DR (B7, B6, B4) neurons derive uniquely from

r1, median nuclei (B9, B8, B4) derive from r1–r3 precursors [22].

Thus, in line with this study, it can be hypothesized that the Pet1-

Figure 4. Pet1210-Cre transgene specifically identify Pet1-expressing, non-serotonergic raphe neurons. Double ISH performed on serial
coronal sections of adult Pet1210-Cre/ROSA26YFP mouse brains at the level of B8 raphe nucleus using combination of Pet1/Tph2 (a-a’’), YFP/Tph2 (b-
b’’), YFP/Pet1 (c-c’’) and Tph2/Pet1 (d-d’’) riboprobes. In each combination the former probe is highlighted using the NBT/BCIP substrate, while the
latter using the Fast Red chromogen. Boxed areas are shown at higher magnification in brightfield (a’, b’, c’, d’) or fluorescence (a’’, b’’, c’’, d’’).
While all Pet1-positive cells also express YFP (arrowheads in c’-c’’), the presence of a Pet1-positive, non-serotonergic cell population was confirmed
with all the other probe combinations (arrows in a’-a’’, b’-b’’, d’-d’’). Scale bar: 100 mm (a–d), 25 mm (a’-a’’, b’-b’’, c’-c’’d’-d’’).
doi:10.1371/journal.pone.0104318.g004
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positive non-serotonergic neurons present in raphe nuclei likely

arise from a heterogeneous population of precursors deriving from

r1 to r3. The combination of suitable transgenic and conditional

reporter mouse lines in an intersectional approach may represent a

valuable tool to dissect the developmental origin and the nature of

Pet1-positive, non 5-HT neurons. The possibility to shed light on

the molecular identity of Pet1+/Tph22 neurons will potentially

impact on those studies in which the Pet1 regulatory region has

been used to drive Cre recombinase expression, in order to

specifically target serotonergic neurons. Indeed, in light of our

results, the non-serotonergic expression might have contributed to

the observed phenotypes resulting from Pet1-driven Cre-mediated

somatic recombination in conditional knockouts.

The use of Pet1210-Cre transgenic mouse line allowed the

tracing of Pet1 expressing cell progeny in the developing pancreas.

Indeed, our data are consistent with the report by Ohta and

collaborators, who have shown, using the ePet-Cre transgenic

mouse line [61], that Pet1 is expressed in both developing and

adult pancreas, peaking at E14.5 and co-localizing with endocrine-

specific markers such as glucagon and insulin or specific

transcription factors as Nkx2.2. In the same study, the analysis

of Pet1 mutant animals showed a reduction of the expression of

insulin genes, resulting in glucose clearance and insulin secretion

defects. Interestingly, Pet1 does not directly promote Tph2
expression in the pancreas, suggesting that the Pet1-mediated

regulation of either pancreatic b-cell or serotonergic neuron

development proceeds via distinct genetic cascades [61]. More

importantly, to our knowledge the present work provides the first

evidence of Pet1 expression in kidney. Lack of previous reports

showing Pet1 expression in the ureteric bud derivatives may be

Figure 5. Pet1 drives Cre-mediated recombination in the developing pancreas and kidney. X-gal staining performed on Pet1210-Cre/
ROSA26R whole mount 11.5 dpc embryos (a–c), and on sagittal sections at the level of the developing pancreas (d–f) and kidney (g–i) of 13.5 dpc
embryos obtained from FF3 (a, d, g), FF9 (b, e, h) and FM3 (c, f, i) founder mouse lines. At 11.5 dpc a clear expression of the reporter is present at
comparable levels in the three founder lines in both the developing pancreas (arrows) and kidneys (arrowheads), while it is still barely detectable in
the hindbrain (asterisks). At 13.5 dpc X-gal staining highlights cells in the developing pancreas (d–f) and in the branching ureteric bud of the kidney
(g–i) where Cre-mediated somatic recombination has occurred. Scale bar: 600 mm (a–c), 150 mm (g–i), 100 mm (d–f).
doi:10.1371/journal.pone.0104318.g005
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due to a sub-threshold expression level and/or to a transient

expression within this structure. In this regard, an approach based

on Cre/loxP system that induces a sustained reporter expression

upon somatic recombination can reveal both sub-detectable and

transient expression domains, that otherwise would be difficult to

label with canonical immunohistochemistry- or in situ hybridiza-

tion-based methods.

Our findings on the spatio-temporal expression domain of Pet1
go beyond the results obtained using the previously generated

ePet1-Cre transgenic mouse line, in which presence of Pet1 in the

kidney was excluded [62]. This discrepancy might be due to a

number of factors, with the most likely being that the regulatory

elements necessary to drive a Pet1-like expression in the kidney are

likely included in the 210 kb Pet1 entire regulatory region of the

Pet1210-Cre transgene, and not present in the 40 kb region used to

generate the ePet1-Cre transgene [62]. In good agreement with

our observation that Pet1 is expressed in mammalian kidney,

microarray analysis performed on mouse and rat transcriptomes

indicated that Pet1 transcript was enriched in the ureteric bud as

compared to other cell types in the developing kidney such as the

metanephric mesenchyme [63]. Nevertheless, although Pet1
expression has been shown in the adrenal gland by Fyodorov

and collaborators [45], Cre recombinase activity in this district was

not detected either by Scott and collaborators [16], or from our

analysis, using ePet-Cre and ePet-YFP, or Pet1210-Cre transgenic

mouse lines, respectively. The presence of an intact recombined

BAC in Pet1210-Cre mice suggests that the specific enhancer

driving expression of Pet1 in the adrenal gland may be a long-

range acting regulatory element, which is not likely present in the

210 kb genomic region contained in the RP23_165_D11 BAC

clone.

Interestingly, as already observed for pancreas development

[61], also in the kidney Pet1 is co-expressed with other

transcription factors shared with the serotonergic differentiation

pathway. It has been reported that LMX1B mutation causes

nephropathies and, often, renal failure in human patients affected

by Nail-Patella syndrome [64,65]. Mouse Lmx1b is expressed in

podocytes of the kidney, and its genetic ablation results in kidney

defects resembling those observed in Nail-Patella syndrome

patients [66,67]. On the other hand, the functional role of Pet1

Figure 6. Pet1 is expressed in the ureteric bud-derived tissues during kidney development. (a–f) Radioactive ISH performed on coronal
section of 10.5 dpc (a–b), 11.5 dpc (c–d) and 12.5 dpc (e–f) Pet1210-Cre/ROSA26YFP (a–d) and wild-type (e–f) embryos. Results show presence of Pet1
mRNA expression in the nephric duct (arrowheads) already at 10.5 dpc (a), mirroring YFP reporter expression (b). At 11.5 dpc both Pet1 and YFP
expression is highlighted in the two forming ureteric buds (c–d, arrowheads), while Pet1 but not the reporter expression is detectable in 12.5 dpc
wild-type embryos (e–f), confirming the specificity of Pet1 expression in the developing kidney. (g–j’) X-gal staining performed on whole-mount 9.5
dpc (g, g’), 10.5 dpc (h, h’), 13.5 dpc (i, i’) Pet1210-Cre/ROSA26R mouse embryos and on coronal sections of a P1 Pet1210-Cre/ROSA26YFP mouse kidney
(j, j’). Staining performed at different stages of development traces Pet1-expressing cell lineage during ureteric bud formation as highlighted in
boxed regions shown in the higher magnification images (g’, h’, i’). Cre-mediated recombination has already occurred at 9.5 dpc in some scattered
cells in the caudal nephric duct (g’). X-gal stained cells become more numerous at 10.5 dpc (h’) and depict the ureteric bud branching at 13.5 dpc (i’).
At P1, X-gal staining highlights that Cre expressing cells have contributed to the formation of the collecting duct system (j) and ureter (j’). (k–n’)
Brightfield (k, k’) and fluorescence images of whole-mount 13.5 dpc Pet1210-Cre/ROSA26YFP kidneys immunostained for YFP (l, l’) and calbindin-D28K
(m, m’). Merge images (n, n’) show colocalization of Cre recombinase activity and the specific ureteric bud-derivative marker calb-D28K during
kidney development. Scale bar: 1.2 mm (i), 600 mm (h), 500 mm (e, f, k–n), 400 mm (a–d, g, j), 200 mm (h’–i’), 100 mm (j’, k’–n’), 80 mm (g’).
doi:10.1371/journal.pone.0104318.g006
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in the kidney has not been yet characterized. It is known that

chromosomal translocations in which Ewing’s sarcoma (EWS)

gene is fused to a variety of transcription factors, including human

FEV, can lead to the onset of different subsets of Ewing tumours

[68,69], with some of them occasionally occurring in the kidney

[70].

On the whole, the use of Pet1210-Cre transgenic mouse line

allowed the identification of novel Pet1 expression domains both

in the hindbrain and in the developing kidney. As the expression of

the reporter is permanently induced following recombination, this

line will allow long-term analysis of Pet1-expressing cell types,

both in serotonergic neurons as well as in non-serotonergic cell

populations of the raphe. Moreover, this mouse line constitutes a

valuable model for studying molecular mechanisms of renal and

pancreatic development and function by induction or silencing of

specific genes in epithelial ureteric bud-derivatives and islet cells,

respectively. Finally, given the expression of Pet1 in extra-

serotonergic neurons within the raphe system, when using Pet1-

driving Cre transgenic mouse lines in conditional gene targeting

approaches or fate mapping studies aimed to target serotonergic

cells, it should be taken into great consideration that the

phenotype observed might arise from a combined, rather than

serotonergic-specific, somatic recombination.

Supporting Information

Figure S1 Pet1210-Cre allele generation. Diagram showing

the wild-type Pet1 genomic locus contained within the

RP23_165D11 BAC clone (a), the targeting vector for the

homologous recombination in E. coli DY380 cells and the resulting

Pet1210-Cre transgenic allele before and following Flp-mediated

recombination. (b) Southern Blot analysis performed on genomic

DNA obtained from Pet1210-Cre founders after BamHI digestion

and hybridization with a probe against Kana/Neo cassette. Among

the founders analysed, 4 presented the expected band at 2.6 kb.

Founder-male 3 (FM3, lane 1), founder-female 3 (FF3, lane 7) and

founder-female 9 (FF9, lane 10) showed germline transmission. (c) A

142 bp fragment at the 59-end and a 254 bp fragment at the 39-end

of the transgene were amplified from the Pet1210-Cre FF9 founder

genomic DNA and from the pBACe3.6 backbone assessing the

integrity of the BAC transgene within mouse genomic DNA. (d)

Southern Blot analysis performed on genomic DNA obtained from

Pet1210-Cre FF9 founder after NotI digestion and hybridization

with a probe capable to discriminate wt Pet1 locus vs Pet1210-Cre
transgene. A clear lower hybridization intensity of the Pet1210-Cre
transgene (4.2 kb) as compared to the Pet1 wt allele (3.1 kb)

confirms the presence of a single copy of the transgene. L: ladder;

wt: wild-type genomic DNA; tg+: Pet1210-Cre FF9 derived genomic

DNA; BAC: RP23_165D11 BAC clone.

(TIF)

Figure S2 Pet1 drives Cre-mediated recombination in
the serotonergic domains of the three Pet1210-Cre
founders. Flat mount preparations of 12.5 dpc hindbrains

obtained from Pet1210-Cre/ROSA26R double transgenic FF3 (a),

FF9 (b) and FM3 (c) embryos. X-gal staining is present both in the

rostral and caudal raphe and absent in the r4-derived territory

with a comparable pattern among the three distinct founders. r4:

rhombomere 4. Scale bar: 500 mm.

(TIF)

Figure S3 Pet1210-Cre somatic recombination mirrors
Pet1 spatio-temporal expression in the serotonergic
system. Representative sagittal 12.5 dpc, and coronal 15.5 dpc,

P10 and P30 Pet1210-Cre/ROSA26R double transgenic (a, d, g, j)
or wild-type (b–c, e–f, h–i, k–l) brain sections stained with X-gal

chromogenic reaction or hybridized with a Pet1 (b, e, h, k) or a

Tph2 (c, f, i, l) riboprobe, respectively. Note that at all the stages

analysed b-galactosidase activity parallels with both Pet1 and

Tph2 expression. Scale bar: 1 mm (a–c), 200 mm (d–i), 150 mm

(j–l).

(TIF)

Figure S4 Cre-mediated recombination outside the
raphe in Pet1210-Cre mouse line selectively occurs in
pancreas and kidney. X-gal staining performed on whole-

mount tissues from Pet1210-Cre/ROSA26R (a, b, c, d, e, f, g, h,
i, j, k, l) and ROSA26R (a’, b’, c’, d’, e’, f’, g’, h’, i’, j’, k’,
l’) animals at P 0.5 (a–f’) or adult (g–l’), showing the early post-

natal and terminal distribution of Pet1-expressing cell progeny

both in the brain and in peripheral organs. Cre-mediated

recombination occurs specifically in hindbrain (a), pancreas (b)

and kidneys (c) of P 0.5 double transgenic pups, and it is confined

to the mature raphe system (g, g’), pancreatic beta cells (h, h’) and

renal UB-derived collecting ducts and ureter (i, i’) in adults.

Evidence of Cre-mediated recombination was undetectable in

whole-mount specimens and on sections of adrenal glands (arrow

in c, insets in i and i’, respectively). No reporter expression is

present either in heart (d, j), spleen (e, k) or liver (f, l) of Pet1210-
Cre/ROSA26R, or in organs from ROSA26R mice (a’, b’, c’, d’,
e’, f’, g’, h’, i’, j’, k’, l’). Scale bar: 1.7 mm (g-g’, i-i’, j-j’, k-
k’, l-l’), 1.5 mm (a-a’), 1 mm (b-b’, c-c’, f-f’, inset in i-i’),
750 mm (d-d’, e-e’, h-h’).

(TIF)

Figure S5 Pet1 expression in the developing pancreas
correlates with the reporter distribution in Pet1210-Cre/
ROSA26YFP mouse line. Images of serial coronal sections at

the level of pancreas of Pet1210-Cre/ROSA26YFP 15.5 dpc

embryos hybridized with Pet1 (a), YFP (b), Nkx2.2 (c), Tph1 (d)

and Tph2 (e) riboprobes. Pet1 expression correlates with the

expression of both YFP and Nkx2.2, while neither Tph2 nor Tph1
expression is detected in the pancreas at this stage. Scale bar:

300 mm (a–e).

(TIF)
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