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Abstract

The National Institutes of Health (NIH) is the largest source of funding for biomedical research in the world. This funding is
largely effected through a competitive grants process. Each year the Center for Scientific Review (CSR) at NIH manages the
evaluation, by peer review, of more than 55,000 grant applications. A relevant management question is how this scientific
evaluation system, supported by finite resources, could be continuously evaluated and improved for maximal benefit to the
scientific community and the taxpaying public. Towards this purpose, we have created the first system-level description of
peer review at CSR by applying text analysis, bibliometric, and graph visualization techniques to administrative records. We
identify otherwise latent relationships across scientific clusters, which in turn suggest opportunities for structural
reorganization of the system based on expert evaluation. Such studies support the creation of monitoring tools and provide
transparency and knowledge to stakeholders.
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Introduction

The National Institutes of Health (NIH) is the premier

biomedical research agency in the United States. NIH supports

both basic and applied biomedical research largely through

awards of grants to extramural applicants. The principal basis

for award is scientific merit as determined by peer review.

In 1946, the first study section was assembled at NIH to conduct

peer review of applications for support of research on syphilis [1].

Also known as a Scientific Review Group (SRG), a study section is

a panel of expert scientists assembled to evaluate a set of grant

applications. SRGs are of two principal types: chartered SRGs and

Special Emphasis Panels (SEPs). Chartered SRGs have defined

scientific interests, meet three times a year, and have relatively

stable membership while SEPs are typically assembled for a single

meeting.

Peer review at NIH has evolved significantly since its first study

section meeting. Within NIH, the Center for Scientific Review

(CSR) manages the peer review process for the large majority of

grant applications received. In 2014, sixty-eight years after the first

study section meeting, more than 170 chartered SRGs exist at

CSR, each centered on a scientific theme, e.g., the Nuclear and

Cytoplasmic Structure/Function and Dynamics (NCSD) study

section. SRGs at CSR are clustered into 25 Integrated Review

Groups (IRGs), each again centered on a scientific theme of

broader scope than an SRG (see Appendix S1 and S2). The

scientific interests of the IRGs at CSR are organized, somewhat

heterogeneously, along sub-disciplines, organ systems, basic versus

applied research, and disease-specific interests, e.g., Cell Biology

(CB), Oncology 1-Basic and Translational (OBT), and Digestive,

Kidney, and Urological Systems (DKUS). The IRGs are further

aggregated into five Review Divisions, which vary in focus from

basic to applied research.

Implicit in the design of this organizational structure are

organizational objectives: that the system, as a whole, should stay

abreast of scientific trends and provide adequate coverage, enable

fair competition, accommodate workloads and their temporal

fluctuations, exhibit transparency, and enjoy public confidence

while being austere in consuming resources.

The scale and scientific impact of these operations is very large;

in fiscal year 2012, reviews for 56,000 grant applications were

managed by CSR, resulting in new grant awards of roughly $3

billion (rounded to the nearest 1000 applications and $100

million). Thus, it is critically important that the system of peer

review performs competently.

A major goal of this study was to provide a comprehensive

characterization of the current structure of CSR’s peer review

system from a scientific perspective as a first step towards
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identifying avenues for improvement. Technological advances

have enabled us to apply textual analysis and bibliometric

techniques to administrative records, text from grant applications,

and large-scale bibliographic data to generate analytic visualiza-

tions that provide a novel system-level description of the scientific

structure of CSR’s study section network that can be used as a

model in evaluation studies.

A variety of techniques have been used over the years to identify

and visualize the implicit structure of various domains from

information associated with those domains. Common to all of

these techniques is a generic process flow [2] in which units of

analysis are chosen, similarity between those units is calculated,

and the resulting similarity matrix is used to generate a view of the

domain, often by visualizing it in the form of a network.

A majority of the work done in this area has been to visualize

the structure of science or of particular scientific domains by

applying the above process to bibliographic data from the Web of

Science, Scopus, PubMed, or other literature databases. Typical

units of analysis include articles [3], authors [4], keywords,

journals [5,6], and subject categories [7]. Grants [8], patents, and

patent categories [9,10] have also been mapped. Similarity

between objects (or units) is typically calculated using co-

occurrence in the feature space associated with the objects; co-

citation [11] and co-word [12] are prominent examples of

techniques based on co-occurrence. More complex ways of

calculating similarity, such as the well-known vector space model

(e.g., Salton’s cosine) [13], are also often used to calculate pairwise

similarities from a matrix of co-occurrence values.

Once similarity values between objects are calculated, a variety

of methods can be used to generate a layout (or visual map) of

those objects. One class of algorithms, known as graph layout

algorithms [14,15], considers each similarity to be a weighted edge

between objects, and uses these edges to create a graph-based

visualization of the relationships between the objects. Other

techniques, such as multidimensional scaling, attempt to create an

optimum layout of objects using distances (or dissimilarities)

between them rather than operating on the network of similarity-

weighted edges.

To achieve the goal of visualizing and characterizing the peer

review network, chartered SRGs are designated as our unit of

analysis in this study. We restricted our analysis to SRGs from 24

of 25 IRGs (Fig. 1), excluding one IRG that was not considered

representative on account of containing only one SRG that was

atypical. Similarity values between SRGs were calculated using a

number of different data types and features associated with the

study sections. Finally, the relationships between the SRGs were

visualized as networks using calculated similarity values.

Results and Discussion

Figure 1 shows the high level administrative structure of the

CSR peer review system. As a first step towards evaluating

whether this system satisfies the organizational objectives de-

scribed in the Introduction, we need to understand how the

scientific structure of the system, as defined by similarities between

the topics embodied by each IRG and SRG, differs from the

management perspective. Large differences might warrant an

evaluation by expert scientists to consider changes to the

organizational structure.

The organizational structure of CSR lends itself to representa-

tion as a graph network where each SRG is a node and edges can

be drawn to other nodes on the basis of scientific relatedness. We

analyzed administrative records corresponding to 72,526 applica-

tions, 42,564 applicants, and 11,896 unique reviewers from the

fiscal years of 2011 and 2012 (see Materials and Methods). We

calculated and visualized several different versions of the SRG

network as a part of this study. Six different representations of the

full SRG network were created using different measures of

relatedness between study sections. A consensus network that takes

all of the different networks into account was also created.

The process for depicting the structure of each SRG network

consisted of two major steps. First, the relatedness of pairs of study

sections was determined. Relatedness was defined in six different

ways within three main groups of feature characteristics, as

follows:

N NIH classification

# Research, Condition, and Disease Categorization-RCDC

(http://report.nih.gov/rcdc/) profiles

N Data associated with reviewers (publication years 1996–2011)

# Publications authored by reviewers (REV-P)

# Titles and abstracts of publications authored by reviewers

(REV-T)

# Cross-citation patterns between reviewers (REV-C)

N Data associated with applications and applicants

# Text (title, abstract, specific aims) of grant applications

(APP-T)

# Applicant publications (APP-P)

Details on the calculation of each of these six types of

relatedness are given below in the Methods and Materials: SRG

Relatedness section. Each relatedness matrix can be represented as

a directed graph where the study sections are vertices (or nodes)

and the relatedness values are weighted edges that connect these

vertices. Once the similarity matrices are calculated, a graph

layout algorithm is used to create a visual picture of each graph.

Using the feature data mentioned above, we found that there

were very few pairs of study sections with a zero-valued similarity;

a weighted edge exists between nearly all pairs of study sections.

Sparse networks are far easier to interpret than non-sparse

networks. Accordingly, we desired to create diagrams based on the

dominant network rather than on the full network. Initial studies

showed that restricting edges to the top-3 similarity values per

study section sufficed to generate a connected graph that exhibited

the dominant characteristics of the network. In addition, previous

work has shown that layouts based on only the strongest few edges

per object form more accurate clusters of objects than layouts

based on large numbers of edges [16]. Thus, the layout was based

on the top-3 similarity values per study section rather than on the

full set of similarities. Each layout was created with Pajek [17],

using the Kamada-Kawai layout algorithm [15] since it produces

very readable graphs for networks of modest size (,200 nodes).

When creating the visualizations, each IRG was designated using a

different color (defined in Figure 1), and links between study

sections within the same IRG were shown with that color. Links

between SRGs that are not in the same IRG are in black. In

addition, the directions of the edges are shown using arrows.

Arrows point from the choosing study section to the chosen study

section. Links with arrows at both ends denote that each SRG in

the pair was in the top 3 list of its corresponding SRG. Figure 2

shows the six visualized networks along with the IRG color

scheme. To facilitate comparison, all six networks have been
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rotated to have a similar orientation (BCMB [red] at the upper left

and MDCN [dark green] at the upper right).

These six different networks reveal several features. First, each

network comprises a single component, i.e., no node is discon-

nected. Second, there are many areas of color concentration in all

six networks, which suggests that all six measures, while they are

based on different features, reconstruct the existing IRG structure

to a relatively high degree. This point was further investigated by

calculating the percentage of edges in each network that are within

an IRG. Nearly half of all edges were within IRGs, as shown in

Table 1. In contrast, the fraction of within-IRG edges in a random

network was only 4%, showing that all six networks were far from

random. Table 1 also shows the number of bidirectional edges,

which is greater than half in most cases, and very small in the

random case. Bidirectional edges indicate that both members of a

pair of SRGs consider the other to be within its top-3 and large

numbers of bidirectional edges are consistent with the concept of a

robust network. In addition, color groups (e.g., blues, greens,

oranges) denoting IRGs that are a part of the same Review

Division are largely in local subsections of the maps. For example,

the browns and grays (AIDS, Behavioral & Population Science

Division) are found together and at the right side of five of the six

maps in Figure 2. This suggests that the grouping of IRGs into

Review Divisions, although organized under a different and more

coarsely granular principle than the networks shown here, is

roughly consistent with the science-based groupings of Figure 2.

The six different networks also show substantial connections

between IRGs. This is not surprising given that specialties in the

life sciences are known to be highly interlinked [18], but this

observation also identifies areas that may merit study towards the

organizational interests described in the Introduction.

The six networks of Figure 2 are each based on a different set of

criteria in determining relatedness between SRGs. There is no a
priori way to say which of them is the most valid – they are simply

different representations. Rather than choosing one of these

criteria to use as the basis for representing the SRG network, we

propose that a consensus map of the study section network would

likely be a more accurate representation of the actual network.

A consensus map is not an ‘average’ map, but rather one in

which the links between nodes are highly rated using a set of rules

that consider all of the inputs [19]. The six different measurements

detailed above were created using three different sets of criteria:

one was created using the RCDC fingerprints for each study

section, three were created using various representations of

reviewer expertise, and two were created using different repre-

sentations of application content. All of these measurements were

considered as input to the consensus map.

To generate a consensus map, we first had to identify those links

between SRGs that were highly ranked by multiple criteria

(consensus links). The following protocol was used to identify

consensus links (Table 2), and then to generate a consensus study

section network. It is difficult to combine relatedness measures

based on different approaches that have different range values.

Thus, this calculation uses rank orders rather than relatedness

values. The six input metrics mentioned above represent three sets

of criteria. We decided that each of these three criteria (i.e.,

RCDC, reviewers, applications/applicants) should contribute

equally to the consensus ranking for each study section pair, i.e.,

SRG1 and SRG2 and used the following protocol.

N A single rank value was calculated for each SRG pair based on

reviewer data as the highest rank value (best = 1) for that pair

among the three different reviewer-based relatedness metrics

(REV-P, REV-T, REV-C), i.e., from left to right in the

Reviewer column of Table 2. The highest rank value among

the three is denoted in the parentheses.

N A single rank value was calculated for each SRG pair based on

application/applicant data as the highest rank value (best = 1)

for that pair between the two relatedness metrics (APP-T,

APP-P), i.e., from left to right in the Application/Applicant

column. The highest rank value among the two is denoted in

the parentheses.

N The rank value for each SRG pair from the RCDC similarity

metrics was used without comparing it to any other metric, i.e.,

RCDC column.

N Using these three rank values, the worst rank value for each

SRG pair was selected as the consensus rank value for that

pair, resulting in the Consensus column. A set of example

rankings and the resulting consensus rank are shown in

Table 2. Note that the initial steps used the highest rank for

Figure 1. Listing of IRGs at CSR by Review Division. Each IRG has been assigned a color to be used in subsequent figures. Divisions
are grouped by color. SRG to IRG assignments, acronyms and full names are provided in Appendix S1 and S2.
doi:10.1371/journal.pone.0104244.g001
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Figure 2. Study section networks generated using six different features associated with SRGs. Edges between SRGs within the same IRG
are colored with the IRG color. Edges between study sections in different IRGs are colored black. Arrows point from the choosing study section to the
chosen study section. Links with arrows on both ends denote that each study section is in the top 3 list of the paired study section.
doi:10.1371/journal.pone.0104244.g002

Table 1. Comparison of within-IRG links for each study section network.

Method # SRG # Links % Links within IRG # Bidirectional

Random* 174 522 4.1% (0.6%) 8.6 (3.2)

RCDC 174 522 50.8% 244

REV-P 180 540 46.7% 304

REV-T 180 540 47.6% 318

REV-C 180 540 41.9% 238

APP-T 180 540 45.4% 314

APP-P 180 540 47.0% 310

Consensus 174 290 57.9%

* Averages (standard deviations) from 20 trials.
doi:10.1371/journal.pone.0104244.t001
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each SRG pair for each of the three major criteria, while this

consensus-finding step used the lowest ranking among the

three sets of criteria. The use of the highest ranking within a

criteria set is based on the logic that each set should give an

SRG pair its best chance of being included in the final

consensus set. This is balanced by the use of the lower ranking

in the consensus-finding step.

N Given that we now had the full list of study section pairs with

their consensus rank values, we needed to decide which of

those pairs (edges) to use to create the consensus network. A

consensus network should include all SRGs while using a

minimum number of edges. In addition, only the best edges

(those with the highest consensus rank values) should be used.

Table 3 shows the numbers of edges and SRG coverage as a

function of consensus rank values. If all edges with rank #3 are

kept, most of the study sections (166/174) are included. At

rank #4, only three more study sections are included, while 88

edges are added, increasing the complexity of the network.

N Since simple networks are far easier to understand than more

complex networks, we decided to use the network based on

rank #3, and augment it with the highest ranked link for the

eight SRGs that were missing. This has the effect of adding

these SRGs into the network while only adding 16 links.

N We then visualized the resulting network. To create a layout,

rank values were converted to similarities as Sim = 5 - Rank,

with a minimum Sim value of 1.0. The resulting similarity file

was used as input to the Kamada-Kawai layout algorithm in

Pajek. This layout was further modified by hand to reduce

edge crossings and to create additional space between study

sections for greater legibility.

We also measured the contributions of the six networks (Fig. 2)

to the consensus network. Of 209 consensus edges, 202 (97%) were

found in the RCDC network, 184 (88%) in APP-T, 177 (85%) in

APP-P, 171 (82%) in REV-P, and 146 (70%) in both the REV-T

and REV-C networks.

A visual map of the consensus SRG network is shown in

Figure 3. (This consensus network is also provided with higher-

order labeling as Figure 4.) The network consists of one large

component with 162 SRGs, and three small components

containing 12 SRGs. The three small components are at the

top, upper right, and lower right of the map, and have been linked

to the large component using dashed lines based on their strongest

links to SRGs in the large component. As with the input maps

shown in Figure 2 (note that the maps of Figure 2 are oriented to

roughly match that of the map in Figure 3), study sections in the

same IRG are often connected and proximal to each other in the

map. For example, most of the SRGs in the BCMB IRG are

adjacent to one another (red, upper left).

The map also provides a context in which to consider different

ways to group study sections into IRGs, and to group IRGs into

Review Divisions. For example, the AARR IRG is split, with five

of its SRGs (tan) at the upper middle of the map, and three study

sections at the middle right of the map, and one connected with

another component. While our analysis suggests an opportunity

for rearrangement, the existing clusters can be explained by an

administrative requirement for clustering and expedited review of

AIDS applications [20]. This example illustrates the interplay

between administrative and scientific objectives that contribute to

the structure of the peer review network at CSR. Another case is

the small component at the upper right, which consists of two

SRGs from BDCN (light green) and two study sections from CB

(purple). Not only are these SRGs from different IRGs, but they

are also from IRGs that are in different Review Divisions. All four

SRGs are organized along different themes but evaluate applica-

tions concerned with biology of the visual system.

Most of the SRGs from three IRGs in the Division of

Physiological and Pathological Sciences (DKUS, IDM, IMM)

are connected to each other at the upper left of the map, while the

fourth IRG (EMNR) is at the bottom of the map is widely

separated from the other IRGs. This IRG, EMNR, seems to be

more closely situated with IRGs that are colored orange, most of

which are at the bottom and bottom left of the map. Greens are

typically found in the upper right portion of the map, while the

brown/black hues are at the far right. IRGs with purple hues are

perhaps the least coherent set on the map; these can be found at

the right (GGG), top (CB), upper left (BCMB) and lower left

(OBT, BST). All five are concerned with basic research and

technology development. We speculate that the distributed nature

of the nodes from the basic science areas may reflect diffusion of

knowledge and technology transfer into more applied fields as well

as inspiration in the reverse direction. Elucidating these possibil-

ities are topics for future study. In general, however, the groupings

of IRGs on the consensus map (Figure 3) reflect the groupings of

IRGs in the management structure (Figure 1) to a remarkable

degree, particularly in light of the fact that the current structure

has evolved in response to a combination of scientific, adminis-

trative, and societal inputs.

It is also instructive to compare the consensus SRG structure

with existing maps of science. Figure 4 (right side) compares the

consensus SRG map coded using the high-level disciplinary

Table 2. Examples of consensus rank calculations.

SRG1 SRG2 RCDC Reviewer Application Consensus

ACE BSCH (2) 3 4 3 (3) 1 1 (1) 3

ACE CRFS (4) 10 2 4 (2) 7 8 (7) 7

ADDT AMCB (2) 4 6 3 (3) 1 1 (1) 3

ADDT AIP (4) 2 1 1 (1) 2 2 (2) 4

AED DPVS (1) 1 2 1 (1) 1 2 (1) 1

AED BDPE (5) 3 3 3 (3) 3 4 (3) 5

AICS VCMB (2) 1 1 1 (1) 3 3 (3) 3

AICS CICS (4) 7 5 5 (5) 7 4 (4) 5

Separate ranking values for each approach are shown in the appropriate columns. Reviewer (REV-P, REV-T, REV-C), Application (APP-T, APP-P). Single rank values for
each set of criteria are shown in parentheses.
doi:10.1371/journal.pone.0104244.t002
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structure used in the Klavans/Boyack (K/B) consensus map of

science [19] with the biomedical portions of that map. The

majority of the strong links in the K/B consensus map are

preserved in the consensus SRG map, suggesting that the

consensus SRG map based on few links is consistent with an

accepted high-level structure of science, while recognizing that

resolution is lost with higher-level descriptions.

In evaluating the contributions of the six individual networks

(Fig. 2) we note that the RCDC network alone contains

information to reproduce 97% of the edges in the consensus

network. Thus, the RCDC network alone may be adequate to

construct the network but with some loss of resolution due to the

inclusion of a similar number of non-consensus edges. In our

study, we observe that the networks based on features of

applications and applicants are more closely related to the

consensus than are the networks based on features of the

reviewers.

Overall, this study identifies a network of SRGs related by

scientific interests that are partially coincident with the current

administrative structure, an evolutionary product of a peer review

system subject to both scientific and management constraints. Our

representation of the network is a model that supports evaluation

of the existing system enabling the design of improvements against

defined optimality criteria based on organizational objectives

(described in the Introduction). Given the complexity and nature

of constraints on the system, refinement of the network for greater

utility to its stakeholders must simultaneously consider clustering

(grouping of SRGs into IRGs), classification (assignment of

applications and reviewers to SRGs), and balance (workloads)

while being considerate of the preferences of applicants. In

addition, administrative constraints such as the number of SRGs

that could be supported given available resources should be

applied to synergize with scientific objectives. Although mathe-

matical techniques can be brought to bear on these questions,

answers ultimately require human intervention, particularly given

that several optimal solutions could be identified. Requiring that

any SRG should have application numbers within a specified

range would satisfy the organizational interest in fair competition.

Designing each SRG for optimal breadth and depth of science to

enable such competition, and designing the system to provide

coverage for the spectrum of scientific disciplines represented by

the input set of applications each year are questions that will be the

subject of further studies.

Materials and Methods

Data
Datasets of grant applications, applicants, and reviewer

information for SRGs that met in the fiscal years of 2011 and

2012, were assembled by querying IMPAC II, the NIH database

of grants information. The application dataset contained 72,526

records, and included application titles, abstracts and specific aims

as well as the study sections that the applications were reviewed in.

These applications represented submissions from 42,564 appli-

cants, many of whom submitted multiple applications. The

reviewer dataset was retrieved from the NIH Query/Review/

Report (QVR) system, a reporting tool for NIH staff, and

contained 11,896 unique reviewers.

Bibliographic data for the study were obtained from Scopus

data (1996–2011, over 25 million records) that were received from

Elsevier in summer 2012. Data were parsed from the original

XML format into tables holding information about documents,

authors, abstracts, etc. from which data needed for this study could

be easily retrieved in bulk.

Identifying Scopus Author-ids for Reviewers
For this study we used Scopus author-ids directly rather than

attempting to do our own author disambiguation. Author

disambiguation is a current area of research [21] in several fields

including scientometrics and machine learning. Author ambiguity

occurs in two main ways: multiple authors may have the same

name (polysemy), and the same author may have multiple name

variations (synonymy, or namesakes). In addition to being an area

of research, author disambiguation has attracted commercial

interest due to the fact that data vendors have a desire to

accurately tag articles to the appropriate authors. Nevertheless,

one can assume that Scopus uses information such as co-

authorships, title and abstract words, and citation characteristics

to make these author-to-profile assignments.

Our experience working with Scopus author-ids enables us to

make the following observations [22]. Prolific authors may have

more than one author-id (the synonymy problem). However, when

this occurs the majority of the author’s publications (and

particularly the older ones) are assigned to a single profile.

Combining multiple profiles for a single author typically has only a

minor effect on total citation counts, and rarely has any effect on

the h-index of that author. Even though combining profiles rarely

has a large impact on results, we nonetheless identify multiple

author-ids for those authors with multiple profiles. There are cases

where multiple authors are obviously listed under the same author-

id (the polysemy problem). This is the most serious problem with

using author profiles because combining publications for multiple

authors overstates the expertise and impact of all authors whose

profiles are conflated. Cases of polysemy in the Scopus author-ids

are typically confined to common author names.

Despite the problems mentioned above, our experience is that

use of the Scopus author-ids, after spot-checking and filtering for

polysemy, is highly beneficial because the author profiles are much

more accurate than if we were to simply search for works of an

author using author name and affiliation alone. This is because the

Scopus assignment process combines an author’s publications

when that author moves from one institution to another or

Table 3. Numbers of study section pairs by consensus rank.

Rank # Links # SRGs Links/SRG

= 1 79 104 0.76

#2 169 149 1.13

#3 274 166 1.65

#4 362 169 2.14

#5 466 172 2.71

doi:10.1371/journal.pone.0104244.t003
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publishes under multiple affiliations, both of which are rather

common occurrences for the types of researchers represented in

the applicant and reviewer populations.

To characterize SRGs from a reviewer standpoint, Scopus

author-ids were identified using the names and affiliations of all

reviewers for all meetings held during 2011 and 2012. The total

number of unique reviewers in the set was 11,896. Scopus author-

ids were determined for 11,779 of these reviewers using a

combination of electronic matching and manual review. The

process was as follows:

N A list was made of all unique institution names, and shortened

strings for each institution were identified (e.g., ‘‘Hopkins’’ for

Johns Hopkins University, ‘‘Michigan’’ for University of

Figure 3. Consensus study section network. Study section names for each acronym are available in Appendix S2. Edge width corresponds to
rank – the thickest edges represent rank = 1, etc. Edges between study sections in the same IRG are colored with the IRG color. Edges between study
sections in different IRGs are colored black. Dashed lines indicate where the smaller components connect to the main component, but with lower
ranked links.
doi:10.1371/journal.pone.0104244.g003
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Michigan, etc.) This step was implemented to allow institu-

tional searches to work to a high degree despite institutional

name variations in publication data.

N Reviewer names and the shortened institution string were

loaded into a database table. The first four characters of the

reviewer string were placed in an additional field.

N The entire Scopus author-affiliation data from 2007–2011 was

preprocessed and comprised over 45.7 million author-

affiliation pairs from 10.56 million unique bibliographic

records. The first four characters of the author string were

placed in an additional field to be used as a gross lookup

feature to match to the four-character reviewer string from the

previous step. Institution names, both cleaned (where avail-

able, based on previous work), and raw institutional strings

were included in this table. This table also included the Scopus

author-id and author full name fields.

N The list of reviewer names and the preprocessed Scopus

author-affiliation data were joined on the four character name

strings to produce a list of possible article matches for each

reviewer. This list was further filtered by searching for the

shortened institution string (for the reviewer) in the institution

name fields (for the Scopus data). These data were then

grouped by reviewer name, institution, and Scopus author-id,

resulting in counts per name, institution, and author-id triplet.

N Using a pre-computed table containing various data for each

Scopus author-id, we added the numbers of Scopus records

from 2007–2011 for each author-id. Comparison of this

number to the counts from the previous step gives us a good

indication as to whether the search strategy identified the

majority of the articles associated with each author-id. If the

numbers are similar, this indicates that we have likely

identified the correct author-id for the reviewer. If the

numbers are very dissimilar (ratio,0.1), it indicates that we

should look more closely at that match. There are several

reasons that a low ratio could still be a positive match. These

include use of name variations by the author that differ from

the NIH version of the name (e.g., first vs. middle names),

movement of the author from one institution to another, and

Unicode character interference.

N Duplicate reviewer name to author-id matches were merged.

Duplicates were possible because of the multiple institution

fields that were searched for matches to the shortened

institution string from the reviewer data.

N From the resulting data file, the list of potential matches was

manually inspected. Potential matches were removed if they

Figure 4. Left: Consensus study section network with higher order labels, which were created manually based on names of the SRGs and IRGs in
different regions. This network is identical to Figure 3. Dashed ovals do not denote fixed scientific boundaries, but are intended to approximate them.
Right: Comparison of the high-level structure inferred by the consensus study section network with the biomedical portion of the K/B consensus map
of science. Discipline names are noted.
doi:10.1371/journal.pone.0104244.g004
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could not definitively be said to be the same person. Clues that

led to removal of a potential match include mismatches on first

and middle names or initials, large publication counts (from

step 5) that suggested that multiple authors were included in

the author-id, low match counts coupled with the reviewer

appearing to be at an institution different from the queried

institution. Informed judgment was used in all cases.

A total of 10,531 reviewers (88.5%) were matched using this

process. Two additional automated runs were made to try to

match the remaining reviewers. In the first of these, articles were

identified using author plus institution searches against PubMed

data rather than using Scopus data. The resulting article list by

reviewer was then inserted into the above process repeating the

final three steps, leading to an additional 137 positive matches. In

the second of these, the remaining reviewers were run through the

full process again but with the institution match removed. This

allowed more possible matches for the remaining authors, many of

whom were associated with smaller institutions, many of whom for

which CSR did not have an institution listed, or for whom the

NIH institution listing was wrong. This step led to an additional

612 positive matches. Thus, to this point, 11,280 of our 11,896

reviewers (94.8%) had been matched.

A strictly manual process was used to locate the Scopus author-

id for the balance of the reviewer names. The name and institution

were input into the online version of Scopus, and the author-ids for

obvious matches were manually added to our data. This manual

step located author-ids for an additional 499 reviewers. In the

course of this combined electronic and manual process of

matching reviewers to Scopus author-ids, we identified 91

reviewer names (0.8%) that seemed to be associated with multiple

authors of the same name. These reviewer names were excluded

from any additional analysis. In addition, no Scopus author-id

could be identified using any method for 26 of the reviewers.

These were also excluded from additional analysis.

Regarding the issues of polysemy and synonymy in the Scopus

author-ids, our data give us some estimates of the rates of

occurrence of these phenomena. As mentioned above, 0.8% of the

reviewer names seemed to be associated with multiple authors of

the same name. The polysemy cases we identified were rather

obvious upon inspection. Given that, it is likely that the actual

polysemy rate, including less extreme cases, is somewhat higher

than this – perhaps double. Thus, we estimate the polysemy rate

within this reviewer pool at 1.5%, with half of those being extreme

cases that must be avoided for analysis.

Regarding synonymy, we identified a second Scopus author-id

for 870 reviewers (7.3%). All second author-ids identified were

associated with at least two articles. The second author-ids for

these reviewers accounted for only 7% of their indexed articles and

only 3.8% of their total citations. Even though synonymy is a

larger issue than polysemy, its effect on our measurements appears

to be quite small.

There is one remaining issue regarding author profiles in

Scopus. It is possible that some articles not written by the author

are incorrectly assigned to the author. Estimation of this quantity

would require consultation with authors, and is obviously beyond

the scope of this study. However, we assumed that the fraction is

relatively low given our experience working with profiles from

authors in our own field whose work we know.

Identifying Scopus Author-ids for Grant Applicants
The process that we used to identify Scopus author-ids for

reviewers combined electronic and manual efforts. Given the

number of grant applicants for which we needed to identify Scopus

author-ids (35,957), we did not use the manual portion of the

process that we had used previously. Rather, we designed a scoring

system that was intended to mimic the processes that were used to

manually inspect potential matches, and used that scoring system

to select a single (hopefully best) match for each applicant. The

first six steps of the process above were used, and the seventh was

replaced by the following:

N Matches based on single articles were discarded. Matches with

obvious mismatches in first name or middle initials were also

discarded. Names were not discarded in this step if the full first

name was not available in one data source or the other (the

NIH names or the Scopus names). For example, ‘‘J Doe’’ and

‘‘John Doe’’ were not considered mismatches in this step.

N Given that we had a table representing all Scopus author

profiles (over 15 million of them), we calculated the number of

authors that could have potentially matched a particular name

string from the NIH grant data. If this number is low (one, for

example), then the chances of the potential match being a true

match are high.

N We also calculated the number of Scopus author-ids identified

as potential matches for each applicant. If there are many

potential matches, the chance that any of them is a true match

decreases.

N Each potential match was scored using the following formula.

N The number of papers matching the author and institution

strings was squared, and was divided by the total number of

papers published by that author profile during the time period

matching the search (2007–2011). This is the most dominant

feature in our scoring system, and rewards high numbers of

matching papers and high recall values for a particular author.

The score was augmented by 0.5 if there was an exact match

in the first names in the NIH and Scopus data. The score was

augmented by 0.25 if only a first initial was used in one data

source or the other and that first initial matched the first initial

of the full name in the other data source.

N The score was augmented by 0.5/npot, where npot is the

number of potential matches from step 2. The score was also

augmented by 0.5/nmatch, where nmatch is the number of

matches from step 3.

N The matches were ranked by score for each applicant, and the

top scoring match was kept as the Scopus author-id for the

applicant.

Positive matches for identified for 29,800 of the 35,957

applicants for whom we did not already have a Scopus author-

id. (There were 6,607 applicants whose author-ids had already

been identified because they were also reviewers.) These were

subjected to a quick visual screen, and 57 obvious cases of

polysemy (several hundreds of papers in the Scopus author profile

with very few author name/institution matches) were removed

from the match list. The match rate for this automated process was

82.7%, which was slightly less than the match rate obtained for

reviewers. However, when applicants who were also reviewers are

included in the numbers, Scopus author-ids were identified for

36,350 (85.4%) of the 42,564 applicants. This is still lower than the

match rate for reviewers. However, we expect a higher match rate

for reviewers because they typically have stronger publishing track

records, while some grant applicants may not have a publishing

track record that could be matched using our methods.
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Detailed Basemap of Science and Technology
A highly detailed article-based model and map of science have

been created using co-citation techniques. Nearly 20 million

articles from Scopus (1996–2011) and 2 million U.S. patents

comprise this model. A clustering of articles and patents comprises

the detailed classification system, and allows portfolios of articles to

be compared and visualized. Although patents are a part of this

model and map, they are not used in the current study.

The model is formed by taking annual slices of the scientific

literature (from Scopus) and U.S. patents (from USPTO data

sources), partitioning these literatures into a large number of very

small topics, and then linking the resulting annual sets of topics

together into time-series based structures. In essence, this model

gives a history of science and technology at the level of research

problems. One feature of this model is its combination of stable

(long-term) and unstable (short-lived) topics, which accurately

reflects the actual ebb and flow of work in science and technology

at the topic level. This model can be used to analyze existing and

hypothetical portfolios in terms of strengths and weaknesses,

opportunities and threats, potential collaboration opportunities,

topic ages, etc.

The basic, high-level process used to create this model and map

of science and technology is as follows:

N Annual models of science are created from annual slices of

Scopus data using co-citation analysis. Creation of each model

consists of the following steps.

# Reference papers are clustered into co-citation clusters using

a k50 [23] similarity measure based on the co-citing of these

reference papers. Details of this process are available in

[24,25].

# Once these clusters have been created, current year papers

are fractionally assigned to the clusters of cited references

using a new process that is based on bibliographic coupling

[24]. Each cluster thus consists of a set of reference papers

and the current papers that build upon them.

N Annual models are then linked into a longitudinal model of

science by linking clusters of documents from adjacent years

together using overlaps in the cited references belonging to

each cluster [24]. Clusters from adjacent years are linked if the

cosine overlap between clusters is above a threshold value,

which varies between 0.22 and 0.26 depending on year. These

linked clusters are referred to as threads. Roughly 40% of the

annual clusters are what we call isolates. These are clusters that

link neither forward nor backward within the overall model

(above a specific threshold), and can thus be thought of as one-

year threads. These are research problems that do not have

enough momentum to continue into a second year. Isolates are

typically among the smallest clusters, while the longest threads

are comprised of larger clusters on average. 46% of annual

clusters are in threads that last 3 years or longer. The model

contains 190,151 article threads of two years or longer.

N The same process is repeated with U.S. patent records.

Clusters of documents are created using co-citation analysis,

and those clusters are linked into threads. The model contains

29,246 patent threads of two years or longer.

N A visual map was created of all threads aged two years or older

from both models (articles from Scopus, patents from the U.S.

patent database). BM25 similarity values (equation given below

in the Study Section Relatedness section) between pairs of

clusters were computed for all pairs of clusters using the titles

and abstracts of document in the clusters, and the top-n

similarity values for each cluster were used to determine the

map layout. Scientific articles and patents are known to use

different language; patent abstracts are enriched in legal

language and are not always as informative as articles. Because

of this we kept up to the top-5 links from patent clusters to

paper clusters even if their similarity values were lower than

patent-patent cluster similarities. This modification allowed the

patent clusters to be interspersed with paper clusters to a

greater degree than if the modification were not used.

N A system with a smaller number of categories was desirable for

the comparison of study section portfolios since a classification

system of over 200,000 clusters is perhaps too granular for

many types of analysis. Thus, we overlaid the basemap with an

85685 grid that subdivides the map into a smaller number of

categories. Given that the mapping process (step 4) places

clusters with similar content close together, each grid-based

category can be thought of as a science or technology-based

specialty. This process results in a set of 4,662 categories that

contain scientific articles.

SRG Relatedness
Choosing the best data to use to determine the relatedness

between two different objects is not always straightforward. Co-

occurrence in the feature space associated with the objects (e.g.,

co-term, co-citation) is the most commonly used basis for

relatedness [3,26]. As mentioned above, for study sections, we

find that we can break the feature space into three main groups,

with data types as below. There undoubtedly are other data types

that could be used, but these are data on which we focused. To

create different network representations, relatedness between

SRGs was calculated using each of the six different data types

mentioned above. Each method resulted in a 1806180 matrix of

relatedness values between pairs of study sections. Details of the six

different methods follow.

N NIH classification

# RCDC (Research, Condition, and Disease Categorization)

profiles. This measurement is based on the assumption that

the relatedness of a pair of study sections scales with overlap

(or co-occurrence) in the concepts and terms from the

Research, Condition and Disease Categorization (RCDC) in

the applications reviewed in each pair. We developed a

‘fingerprint’ for each study section based on the frequency of

occurrence of terms from the RCDC thesaurus in the title,

abstract and specific aims of applications reviewed by these

study section during the fiscal years of 2011 and 2012.

Fingerprints were compared to each other by computing

match scores. The scores generated by this process were

converted to simple ranks. Thus each study section was

compared to each other study section and rank ordered by

similarity as defined by the occurrence of terms from the

RCDC thesaurus.

N Data associated with reviewers

# Publications authored by reviewers (REV-P). This metric is

based on three assumptions. The topic mix associated with a

study section can be represented by the expertise of the

reviewers for that study section, the expertise of an author

(in this case, a reviewer) can be represented by that author’s

publications, and a detailed classification system comprised

of publications can be used to determine co-occurrence
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between two sets of publications. Relatedness between pairs

of study sections was calculated after this logic using the

following steps. Scopus author-ids were identified for 11,779

of the 11,896 unique reviewers who served in study section

meetings during 2011 and 2012. Articles authored by those

reviewers were identified and were assigned to the

appropriate SRGs, thus giving lists of articles by study

section. Each article was weighted by the number of SRGs

attended (from one to six) by its author. A total of 642,321

unique study section/article pairs were identified in this step.

Using the detailed classification system and basemap of

science mentioned above, the number of weighted articles

was summed by category for each study section. This step

resulted in a matrix of study sections by categories.

Relatedness between pairs of SRGs was then calculated as

the cosine (or dot product) between the vectors associated

Figure 5. Visual comparison of the locations of reviewer publications for four study sections on the base map of science. Cosine
values between pairs of study sections are indicated at the interior of the figure.
doi:10.1371/journal.pone.0104244.g005
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with the study sections. A visual representation of related-

ness between study sections based on this method is shown

in Figure 5. Locations of reviewer publications are shown on

the map for each of four study sections from the AARR and

BST IRGs. The size of each dot on the map represents the

number of publications in that sector of the map. It is very

difficult to discern any visual difference between the BSCH

and BSPH profiles. Correspondingly, the cosine similarity

value for these two SRGs is very high at 0.941. Comparing

the bottom two SRGs of Figure 5, similarities and

differences can both be seen for the BMBI and NANO

study sections, and the corresponding cosine is 0.557. Visual

comparison of BSCH and BMBI reveals that there is almost

no overlap between the profiles; the resulting cosine is very

low at 0.008.

# Titles and abstracts of publications authored by reviewers

(REV-T). This measurement relies on the assumption that

two objects are related if the text used to describe them is

similar. Textual profiles for each study section were

generated from the words in the titles and abstracts of the

642,321 articles mentioned above. Relatedness between

pairs of study sections was calculated using the BM25

ranking function. For two documents q and d, BM25 is

calculated as:

s q,dð Þ~
Xt

i~1
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where ni is the frequency of term i in document d. The sum

is over all t terms. Values of 2.0 and 0.75 were used for

constants k1 and b, respectively. In this formulation the text

for each study section was treated as if it were a single

document. Document length |D| was estimated by

summing term frequencies ni per document. Average

document length Dj j is computed over the entire document

set. The IDF value for a particular term i was computed as:

IDFi~ln
N{niz0:5

niz0:5

where N is the total number of documents in the dataset and

ni is the number of documents containing term i. Each

individual term in the summation in the first formula is

independent of document q.

# Cross-citation patterns between reviewers (REV-C). This

measurement assumes that two groups of documents are

related if documents from one group cite documents in the

other group. Using the 642,321 documents authored by

reviewers and assigned to SRGs, we calculated the numbers

of times papers from each study section cited papers in other

SRGs. Self-citations by SRGs were not considered. The

remaining count data were used to calculate the fraction of

citations that each study section gave to each other study

section where the basis for normalization was the sum of

citations from the citing study sections.

N Data associated with applications and applicants

# Text (title, abstract, specific aims) of grant applications

(APP-T). This measurement was calculated using the same

procedure mentioned above for the REV-T metric. A

textual profile was generated for each study section using the

titles, abstracts and specific aims sections of the grant

applications assigned to it for review. Text from 72,526

grant applications was used for this calculation. BM25

coefficients between all pairs of SRGs were calculated using

the textual profiles.

# Applicant publications (APP-P). This measurement is based

on the assumption that grant applicants will write proposals

that are similar to their previously published work. The

procedure used here was the same as that used for the REV-

P metric. The difference was that articles authored by grant

applicants were used instead of articles authored by

reviewers. Scopus author-ids were identified for 36,306 of

the 42,564 unique applicants. The fraction of grant

applicants for whom ids were identified is lower than the

fraction of reviewers that were positively identified because

1) all matching was done electronically, and 2) we expect

that some grant applicants are young scientists with low

publication profiles. Each article was weighted by the

number of individual applications submitted by the

applicant to the study section, and the calculation of study

section relatedness was done using vector cosines as was

done for the REV-P metric.

For each of the relatedness methods listed above, similarity

values were rank ordered (largest similarity first) for each study

section. Visualizations of the study section networks were created

for each of the six relatedness methods using the following process:

N 174 SRGs were in operation throughout the 2011–2012 fiscal

year that framed this study. Another 6 SRGs were in operation

during a portion of this time, hence a total of 180 SRGs. Each

of these is related to nearly every other SRG to some degree.

We limited the network visualizations to the strongest

relatedness values, and filtered the list of values to keep only

the top 3 values per study section.

N A study section network map based on these top 3 similarity

values per study section was created using the Kamada-Kawai

layout algorithm in Pajek [17].
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