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Abstract

The National Institutes of Health (NIH) is the largest source of funding for biomedical research in the world. This funding is
largely effected through a competitive grants process. Each year the Center for Scientific Review (CSR) at NIH manages the
evaluation, by peer review, of more than 55,000 grant applications. A relevant management question is how this scientific
evaluation system, supported by finite resources, could be continuously evaluated and improved for maximal benefit to the
scientific community and the taxpaying public. Towards this purpose, we have created the first system-level description of
peer review at CSR by applying text analysis, bibliometric, and graph visualization techniques to administrative records. We
identify otherwise latent relationships across scientific clusters, which in turn suggest opportunities for structural
reorganization of the system based on expert evaluation. Such studies support the creation of monitoring tools and provide
transparency and knowledge to stakeholders.
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Introduction

The National Institutes of Health (NIH) is the premier
biomedical research agency in the United States. NIH supports
both basic and applied biomedical research largely through
awards of grants to extramural applicants. The principal basis
for award is scientific merit as determined by peer review.

In 1946, the first study section was assembled at NIH to conduct
peer review of applications for support of research on syphilis [1].
Also known as a Scientific Review Group (SRG), a study section is
a panel of expert scientists assembled to evaluate a set of grant
applications. SRGs are of two principal types: chartered SRGs and
Special Emphasis Panels (SEPs). Chartered SRGs have defined
scientific interests, meet three times a year, and have relatively
stable membership while SEPs are typically assembled for a single
meeting.

Peer review at NIH has evolved significantly since its first study
section meeting. Within NIH, the Center for Scientific Review
(GSR) manages the peer review process for the large majority of
grant applications received. In 2014, sixty-eight years after the first
study section meeting, more than 170 chartered SRGs exist at
CSR, each centered on a scientific theme, e.g., the Nuclear and
Cytoplasmic Structure/Function and Dynamics (NCSD) study
section. SRGs at CSR are clustered into 25 Integrated Review
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Groups (IRGs), each again centered on a scientific theme of
broader scope than an SRG (see Appendix S1 and S2). The
scientific interests of the IRGs at CSR are organized, somewhat
heterogeneously, along sub-disciplines, organ systems, basic versus
applied research, and disease-specific interests, e.g., Cell Biology
(CB), Oncology 1-Basic and Translational (OBT), and Digestive,
Kidney, and Urological Systems (DKUS). The IRGs are further
aggregated into five Review Divisions, which vary in focus from
basic to applied research.

Implicit in the design of this organizational structure are
organizational objectives: that the system, as a whole, should stay
abreast of scientific trends and provide adequate coverage, enable
fair competition, accommodate workloads and their temporal
fluctuations, exhibit transparency, and enjoy public confidence
while being austere in consuming resources.

The scale and scientific impact of these operations is very large;
in fiscal year 2012, reviews for 56,000 grant applications were
managed by CSR, resulting in new grant awards of roughly $3
billion (rounded to the nearest 1000 applications and $100
million). Thus, it is critically important that the system of peer
review performs competently.

A major goal of this study was to provide a comprehensive
characterization of the current structure of CGSR’s peer review
system from a scientific perspective as a first step towards
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identifying avenues for improvement. Technological advances
have enabled us to apply textual analysis and bibliometric
techniques to administrative records, text from grant applications,
and large-scale bibliographic data to generate analytic visualiza-
tions that provide a novel system-level description of the scientific
structure of CSR’s study section network that can be used as a
model in evaluation studies.

A variety of techniques have been used over the years to identify
and visualize the implicit structure of various domains from
information associated with those domains. Common to all of
these techniques is a generic process flow [2] in which units of
analysis are chosen, similarity between those units is calculated,
and the resulting similarity matrix is used to generate a view of the
domain, often by visualizing it in the form of a network.

A majority of the work done in this area has been to visualize
the structure of science or of particular scientific domains by
applying the above process to bibliographic data from the Web of
Science, Scopus, PubMed, or other literature databases. Typical
units of analysis include articles [3], authors [4], keywords,
journals [5,6], and subject categories [7]. Grants [8], patents, and
patent categories [9,10] have also been mapped. Similarity
between objects (or units) is typically calculated using co-
occurrence in the feature space associated with the objects; co-
citation [11] and co-word [12] are prominent examples of
techniques based on co-occurrence. More complex ways of
calculating similarity, such as the well-known vector space model
(e.g., Salton’s cosine) [13], are also often used to calculate pairwise
similarities from a matrix of co-occurrence values.

Once similarity values between objects are calculated, a variety
of methods can be used to generate a layout (or visual map) of
those objects. One class of algorithms, known as graph layout
algorithms [14,15], considers each similarity to be a weighted edge
between objects, and uses these edges to create a graph-based
visualization of the relationships between the objects. Other
techniques, such as multidimensional scaling, attempt to create an
optimum layout of objects using distances (or dissimilarities)
between them rather than operating on the network of similarity-
weighted edges.

To achieve the goal of visualizing and characterizing the peer
review network, chartered SRGs are designated as our unit of
analysis in this study. We restricted our analysis to SRGs from 24
of 25 IRGs (Fig. 1), excluding one IRG that was not considered
representative on account of containing only one SRG that was
atypical. Similarity values between SRGs were calculated using a
number of different data types and features associated with the
study sections. Finally, the relationships between the SRGs were
visualized as networks using calculated similarity values.

Results and Discussion

Figure 1 shows the high level administrative structure of the
CSR peer review system. As a first step towards evaluating
whether this system satisfies the organizational objectives de-
scribed in the Introduction, we need to understand how the
scientific structure of the system, as defined by similarities between
the topics embodied by each IRG and SRG, differs from the
management perspective. Large differences might warrant an
evaluation by expert scientists to consider changes to the
organizational structure.

The organizational structure of CSR lends itself to representa-
tion as a graph network where each SRG is a node and edges can
be drawn to other nodes on the basis of scientific relatedness. We
analyzed administrative records corresponding to 72,526 applica-
tions, 42,564 applicants, and 11,896 unique reviewers from the
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fiscal years of 2011 and 2012 (see Materials and Methods). We
calculated and visualized several different versions of the SRG
network as a part of this study. Six different representations of the
full SRG network were created using different measures of
relatedness between study sections. A consensus network that takes
all of the different networks into account was also created.

The process for depicting the structure of each SRG network
consisted of two major steps. First, the relatedness of pairs of study
sections was determined. Relatedness was defined in six different
ways within three main groups of feature characteristics, as
follows:

® NIH classification

o Research, Condition, and Disease Categorization-RCDC
(http:/ /report.nih.gov/redce/) profiles

® Data associated with reviewers (publication years 1996-2011)

o Publications authored by reviewers (REV-P)

o Titdes and abstracts of publications authored by reviewers
(REV-T)

o Cross-citation patterns between reviewers (REV-C)

® Data associated with applications and applicants

o Text (title, abstract, specific aims) of grant applications
(APP-T)
o Applicant publications (APP-P)

Details on the calculation of each of these six types of
relatedness are given below in the Methods and Materials: SRG
Relatedness section. Each relatedness matrix can be represented as
a directed graph where the study sections are vertices (or nodes)
and the relatedness values are weighted edges that connect these
vertices. Once the similarity matrices are calculated, a graph
layout algorithm is used to create a visual picture of each graph.

Using the feature data mentioned above, we found that there
were very few pairs of study sections with a zero-valued similarity;
a weighted edge exists between nearly all pairs of study sections.
Sparse networks are far easier to interpret than non-sparse
networks. Accordingly, we desired to create diagrams based on the
dominant network rather than on the full network. Initial studies
showed that restricting edges to the top-3 similarity values per
study section sufficed to generate a connected graph that exhibited
the dominant characteristics of the network. In addition, previous
work has shown that layouts based on only the strongest few edges
per object form more accurate clusters of objects than layouts
based on large numbers of edges [16]. Thus, the layout was based
on the top-3 similarity values per study section rather than on the
full set of similarities. Each layout was created with Pajek [17],
using the Kamada-Kawai layout algorithm [15] since it produces
very readable graphs for networks of modest size (~200 nodes).
When creating the visualizations, each IRG was designated using a
different color (defined in Figure 1), and links between study
sections within the same IRG were shown with that color. Links
between SRGs that are not in the same IRG are in black. In
addition, the directions of the edges are shown using arrows.
Arrows point from the choosing study section to the chosen study
section. Links with arrows at both ends denote that each SRG in
the pair was in the top 3 list of its corresponding SRG. Figure 2
shows the six visualized networks along with the IRG color
scheme. To facilitate comparison, all six networks have been
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Figure 1. Listing of IRGs at CSR by Review Division. Each IRG has been assigned a color to be used in subsequent figures. Divisions
are grouped by color. SRG to IRG assignments, acronyms and full names are provided in Appendix S1 and S2.

doi:10.1371/journal.pone.0104244.g001

rotated to have a similar orientation (BCMB [red] at the upper left
and MDCN [dark green] at the upper right).

These six different networks reveal several features. First, each
network comprises a single component, i.e., no node is discon-
nected. Second, there are many areas of color concentration in all
six networks, which suggests that all six measures, while they are
based on different features, reconstruct the existing IRG structure
to a relatively high degree. This point was further investigated by
calculating the percentage of edges in each network that are within
an IRG. Nearly half of all edges were within IRGs, as shown in
Table 1. In contrast, the fraction of within-IRG edges in a random
network was only 4%, showing that all six networks were far from
random. Table 1 also shows the number of bidirectional edges,
which is greater than half in most cases, and very small in the
random case. Bidirectional edges indicate that both members of a
pair of SRGs consider the other to be within its top-3 and large
numbers of bidirectional edges are consistent with the concept of a
robust network. In addition, color groups (e.g., blues, greens,
oranges) denoting IRGs that are a part of the same Review
Division are largely in local subsections of the maps. For example,
the browns and grays (AIDS, Behavioral & Population Science
Division) are found together and at the right side of five of the six
maps in Figure 2. This suggests that the grouping of IRGs into
Review Divisions, although organized under a different and more
coarsely granular principle than the networks shown here, is
roughly consistent with the science-based groupings of Figure 2.
The six different networks also show substantial connections
between IRGs. This is not surprising given that specialties in the
life sciences are known to be highly interlinked [18], but this
observation also identifies areas that may merit study towards the
organizational interests described in the Introduction.

The six networks of Figure 2 are each based on a different set of
criteria in determining relatedness between SRGs. There is no a
priori way to say which of them is the most valid — they are simply
different representations. Rather than choosing one of these
criteria to use as the basis for representing the SRG network, we
propose that a consensus map of the study section network would
likely be a more accurate representation of the actual network.

A consensus map is not an ‘average’ map, but rather one in
which the links between nodes are highly rated using a set of rules
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that consider all of the inputs [19]. The six different measurements
detailed above were created using three different sets of criteria:
one was created using the RCDC fingerprints for ecach study
section, three were created using various representations of
reviewer expertise, and two were created using different repre-
sentations of application content. All of these measurements were
considered as input to the consensus map.

To generate a consensus map, we first had to identify those links
between SRGs that were highly ranked by multiple criteria
(consensus links). The following protocol was used to identify
consensus links (Table 2), and then to generate a consensus study
section network. It is difficult to combine relatedness measures
based on different approaches that have different range values.
Thus, this calculation uses rank orders rather than relatedness
values. The six input metrics mentioned above represent three sets
of criteria. We decided that each of these three criteria (ie.,
RCDC, reviewers, applications/applicants) should contribute
equally to the consensus ranking for each study section pair, i.e.,
SRG1 and SRG2 and used the following protocol.

® A single rank value was calculated for each SRG pair based on
reviewer data as the highest rank value (best = 1) for that pair
among the three different reviewer-based relatedness metrics
(REV-P, REV-T, REV-Q), ie., from left to right in the
Reviewer column of Table 2. The highest rank value among
the three is denoted in the parentheses.

® A single rank value was calculated for each SRG pair based on
application/applicant data as the highest rank value (best=1)
for that pair between the two relatedness metrics (APP-T,
APP-P), i.c., from left to right in the Application/Applicant
column. The highest rank value among the two is denoted in
the parentheses.

® The rank value for each SRG pair from the RCDC similarity
metrics was used without comparing it to any other metric, i.e.,
RCDC column.

® Using these three rank values, the worst rank value for each
SRG pair was selected as the consensus rank value for that
pair, resulting in the Consensus column. A set of example
rankings and the resulting consensus rank are shown in
Table 2. Note that the initial steps used the highest rank for
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Figure 2. Study section networks generated using six different features associated with SRGs. Edges between SRGs within the same IRG
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Table 1. Comparison of within-IRG links for each study section network.

Method # SRG # Links % Links within IRG # Bidirectional
Random* 174 522 4.1% (0.6%) 8.6 (3.2)
RCDC 174 522 50.8% 244
REV-P 180 540 46.7% 304
REV-T 180 540 47.6% 318
REV-C 180 540 41.9% 238
APP-T 180 540 45.4% 314
APP-P 180 540 47.0% 310
Consensus 174 290 57.9%

* Averages (standard deviations) from 20 trials.

doi:10.1371/journal.pone.0104244.t001
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each SRG pair for each of the three major criteria, while this
consensus-finding step used the lowest ranking among the
three sets of criteria. The use of the highest ranking within a
criteria set is based on the logic that each set should give an
SRG pair its best chance of being included in the final
consensus set. This is balanced by the use of the lower ranking
in the consensus-finding step.

® Given that we now had the full list of study section pairs with
their consensus rank values, we needed to decide which of
those pairs (edges) to use to create the consensus network. A
consensus network should include all SRGs while using a
minimum number of edges. In addition, only the best edges
(those with the highest consensus rank values) should be used.
Table 3 shows the numbers of edges and SRG coverage as a
function of consensus rank values. If all edges with rank =3 are
kept, most of the study sections (166/174) are included. At
rank =4, only three more study sections are included, while 88
edges are added, increasing the complexity of the network.

® Since simple networks are far easier to understand than more
complex networks, we decided to use the network based on
rank =3, and augment it with the highest ranked link for the
cight SRGs that were missing. This has the effect of adding
these SRGs into the network while only adding 16 links.

® We then visualized the resulting network. To create a layout,
rank values were converted to similarities as Sim =5 - Rank,
with a minimum Sim value of 1.0. The resulting similarity file
was used as input to the Kamada-Kawai layout algorithm in
Pajek. This layout was further modified by hand to reduce
edge crossings and to create additional space between study
sections for greater legibility.

We also measured the contributions of the six networks (Fig. 2)
to the consensus network. Of 209 consensus edges, 202 (97%) were
found in the RCDC network, 184 (88%) in APP-T, 177 (85%) in
APP-P, 171 (82%) in REV-P, and 146 (70%) in both the REV-T
and REV-C networks.

A visual map of the consensus SRG network is shown in
Figure 3. (This consensus network is also provided with higher-
order labeling as Figure 4.) The network consists of one large
component with 162 SRGs, and three small components
containing 12 SRGs. The three small components are at the
top, upper right, and lower right of the map, and have been linked
to the large component using dashed lines based on their strongest
links to SRGs in the large component. As with the input maps
shown in Figure 2 (note that the maps of Figure 2 are oriented to

Table 2. Examples of consensus rank calculations.

CSR Peer Review System

roughly match that of the map in Figure 3), study sections in the
same IRG are often connected and proximal to each other in the
map. For example, most of the SRGs in the BCMB IRG are
adjacent to one another (red, upper left).

The map also provides a context in which to consider different
ways to group study sections into IRGs, and to group IRGs into
Review Divisions. For example, the AARR IRG is split, with five
of its SRGs (tan) at the upper middle of the map, and three study
sections at the middle right of the map, and one connected with
another component. While our analysis suggests an opportunity
for rearrangement, the existing clusters can be explained by an
administrative requirement for clustering and expedited review of
AIDS applications [20]. This example illustrates the interplay
between administrative and scientific objectives that contribute to
the structure of the peer review network at CSR. Another case is
the small component at the upper right, which consists of two
SRGs from BDCN (light green) and two study sections from CB
(purple). Not only are these SRGs from different IRGs, but they
are also from IRGs that are in different Review Divisions. All four
SRGs are organized along different themes but evaluate applica-
tions concerned with biology of the visual system.

Most of the SRGs from three IRGs in the Division of
Physiological and Pathological Sciences (DKUS, IDM, IMM)
are connected to each other at the upper left of the map, while the
fourth IRG (EMNR) is at the bottom of the map is widely
separated from the other IRGs. This IRG, EMNR, seems to be
more closely situated with IRGs that are colored orange, most of
which are at the bottom and bottom left of the map. Greens are
typically found in the upper right portion of the map, while the
brown/black hues are at the far right. IRGs with purple hues are
perhaps the least coherent set on the map; these can be found at
the right (GGG), top (CB), upper left (BCMB) and lower left
(OBT, BST). All five are concerned with basic research and
technology development. We speculate that the distributed nature
of the nodes from the basic science areas may reflect diffusion of
knowledge and technology transfer into more applied fields as well
as inspiration in the reverse direction. Elucidating these possibil-
ities are topics for future study. In general, however, the groupings
of IRGs on the consensus map (Figure 3) reflect the groupings of
IRGs in the management structure (Figure 1) to a remarkable
degree, particularly in light of the fact that the current structure
has evolved in response to a combination of scientific, adminis-
trative, and societal inputs.

It is also instructive to compare the consensus SRG structure
with existing maps of science. Figure 4 (right side) compares the
consensus SRG map coded using the high-level disciplinary

SRG1 SRG2 RCDC Reviewer Application Consensus
ACE BSCH (2) 343 (3) 11(1) 3
ACE CRFS (4) 1024 (2) 78(7) 7
ADDT AMCB (2) 463(3) 11(1) 3
ADDT AIP (4) 211 () 22(2) 4
AED DPVS (1) 121(1) 12(1) 1
AED BDPE (5) 333(3) 34(3) 5
AICS VCMB (2) 111() 33(3) 3
AICS CIcs (4) 755(5) 744 5

each set of criteria are shown in parentheses.
doi:10.1371/journal.pone.0104244.t002
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Separate ranking values for each approach are shown in the appropriate columns. Reviewer (REV-P, REV-T, REV-C), Application (APP-T, APP-P). Single rank values for
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Table 3. Numbers of study section pairs by consensus rank.
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Rank # Links # SRGs Links/SRG
=1 79 104 0.76
=2 169 149 113
=3 274 166 1.65
=4 362 169 214
=5 466 172 271

doi:10.1371/journal.pone.0104244.t003

structure used in the Klavans/Boyack (K/B) consensus map of
science [19] with the biomedical portions of that map. The
majority of the strong links in the K/B consensus map are
preserved in the consensus SRG map, suggesting that the
consensus SRG map based on few links is consistent with an
accepted high-level structure of science, while recognizing that
resolution is lost with higher-level descriptions.

In evaluating the contributions of the six individual networks
(Fig. 2) we note that the RCDC network alone contains
information to reproduce 97% of the edges in the consensus
network. Thus, the RCDC network alone may be adequate to
construct the network but with some loss of resolution due to the
inclusion of a similar number of non-consensus edges. In our
study, we observe that the networks based on features of
applications and applicants are more closely related to the
consensus than are the networks based on features of the
reviewers.

Overall, this study identifies a network of SRGs related by
scientific interests that are partially coincident with the current
administrative structure, an evolutionary product of a peer review
system subject to both scientific and management constraints. Our
representation of the network is a model that supports evaluation
of the existing system enabling the design of improvements against
defined optimality criteria based on organizational objectives
(described in the Introduction). Given the complexity and nature
of constraints on the system, refinement of the network for greater
utility to its stakeholders must simultaneously consider clustering
(grouping of SRGs into IRGs), classification (assignment of
applications and reviewers to SRGs), and balance (workloads)
while being considerate of the preferences of applicants. In
addition, administrative constraints such as the number of SRGs
that could be supported given available resources should be
applied to synergize with scientific objectives. Although mathe-
matical techniques can be brought to bear on these questions,
answers ultimately require human intervention, particularly given
that several optimal solutions could be identified. Requiring that
any SRG should have application numbers within a specified
range would satisty the organizational interest in fair competition.
Designing each SRG for optimal breadth and depth of science to
enable such competition, and designing the system to provide
coverage for the spectrum of scientific disciplines represented by
the input set of applications each year are questions that will be the
subject of further studies.

Materials and Methods

Data

Datasets of grant applications, applicants, and reviewer
information for SRGs that met in the fiscal years of 2011 and
2012, were assembled by querying IMPAC II, the NIH database
of grants information. The application dataset contained 72,526
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records, and included application titles, abstracts and specific aims
as well as the study sections that the applications were reviewed in.
These applications represented submissions from 42,564 appli-
cants, many of whom submitted multiple applications. The
reviewer dataset was retrieved from the NIH Query/Review/
Report (QVR) system, a reporting tool for NIH staff, and
contained 11,896 unique reviewers.

Bibliographic data for the study were obtained from Scopus
data (1996-2011, over 25 million records) that were received from
Elsevier in summer 2012. Data were parsed from the original
XML format into tables holding information about documents,
authors, abstracts, etc. from which data needed for this study could
be easily retrieved in bulk.

Identifying Scopus Author-ids for Reviewers

For this study we used Scopus author-ids directly rather than
attempting to do our own author disambiguation. Author
disambiguation is a current area of research [21] in several fields
including scientometrics and machine learning. Author ambiguity
occurs In two main ways: multiple authors may have the same
name (polysemy), and the same author may have multiple name
variations (synonymy, or namesakes). In addition to being an area
of research, author disambiguation has attracted commercial
interest due to the fact that data vendors have a desire to
accurately tag articles to the appropriate authors. Nevertheless,
one can assume that Scopus uses information such as co-
authorships, title and abstract words, and citation characteristics
to make these author-to-profile assignments.

Our experience working with Scopus author-ids enables us to
make the following observations [22]. Prolific authors may have
more than one author-id (the synonymy problem). However, when
this occurs the majority of the author’s publications (and
particularly the older ones) are assigned to a single profile.
Combining multiple profiles for a single author typically has only a
minor effect on total citation counts, and rarely has any effect on
the h-index of that author. Even though combining profiles rarely
has a large impact on results, we nonetheless identify multiple
author-ids for those authors with multiple profiles. There are cases
where multiple authors are obviously listed under the same author-
id (the polysemy problem). This is the most serious problem with
using author profiles because combining publications for multiple
authors overstates the expertise and impact of all authors whose
profiles are conflated. Cases of polysemy in the Scopus author-ids
are typically confined to common author names.

Despite the problems mentioned above, our experience is that
use of the Scopus author-ids, after spot-checking and filtering for
polysemy, is highly beneficial because the author profiles are much
more accurate than if we were to simply search for works of an
author using author name and affiliation alone. This is because the
Scopus assignment process combines an author’s publications
when that author moves from one institution to another or
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Figure 3. Consensus study section network. Study section names for each acronym are available in Appendix S2. Edge width corresponds to
rank - the thickest edges represent rank =1, etc. Edges between study sections in the same IRG are colored with the IRG color. Edges between study
sections in different IRGs are colored black. Dashed lines indicate where the smaller components connect to the main component, but with lower

ranked links.
doi:10.1371/journal.pone.0104244.9003

publishes under multiple affiliations, both of which are rather
common occurrences for the types of researchers represented in
the applicant and reviewer populations.

To characterize SRGs from a reviewer standpoint, Scopus
author-ids were identified using the names and affiliations of all
reviewers for all meetings held during 2011 and 2012. The total
number of unique reviewers in the set was 11,896. Scopus author-
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ids were determined for 11,779 of these reviewers using a
combination of electronic matching and manual review. The
process was as follows:

® A list was made of all unique institution names, and shortened
strings for each institution were identified (e.g., “Hopkins™ for
Johns Hopkins University, “Michigan” for University of
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Michigan, etc.) This step was implemented to allow institu-
tional searches to work to a high degree despite institutional
name variations in publication data.

Reviewer names and the shortened institution string were
loaded into a database table. The first four characters of the
reviewer string were placed in an additional field.

The entire Scopus author-affiliation data from 2007-2011 was
preprocessed and comprised over 45.7 million author-
affiliation pairs from 10.56 million unique bibliographic
records. The first four characters of the author string were
placed in an additional field to be used as a gross lookup
feature to match to the four-character reviewer string from the
previous step. Institution names, both cleaned (where avail-
able, based on previous work), and raw institutional strings
were included in this table. This table also included the Scopus
author-id and author full name fields.

The list of reviewer names and the preprocessed Scopus
author-affiliation data were joined on the four character name
strings to produce a list of possible article matches for each
reviewer. This list was further filtered by searching for the
shortened institution string (for the reviewer) in the institution
name fields (for the Scopus data). These data were then
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grouped by reviewer name, institution, and Scopus author-id,
resulting in counts per name, institution, and author-id triplet.

Using a pre-computed table containing various data for each
Scopus author-id, we added the numbers of Scopus records
from 2007-2011 for each author-id. Comparison of this
number to the counts from the previous step gives us a good
indication as to whether the search strategy identified the
majority of the articles associated with each author-id. If the
numbers are similar, this indicates that we have likely
identified the correct author-id for the reviewer. If the
numbers are very dissimilar (ratio<0.1), it indicates that we
should look more closely at that match. There are several
reasons that a low ratio could still be a positive match. These
include use of name variations by the author that differ from
the NIH version of the name (e.g., first vs. middle names),
movement of the author from one institution to another, and
Unicode character interference.

Duplicate reviewer name to author-id matches were merged.
Duplicates were possible because of the multiple institution
fields that were searched for matches to the shortened
institution string from the reviewer data.

From the resulting data file, the list of potential matches was
manually inspected. Potential matches were removed if they
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could not definitively be said to be the same person. Clues that
led to removal of a potential match include mismatches on first
and middle names or initials, large publication counts (from
step 5) that suggested that multiple authors were included in
the author-id, low match counts coupled with the reviewer
appearing to be at an institution different from the queried
institution. Informed judgment was used in all cases.

A total of 10,531 reviewers (88.5%) were matched using this
process. Two additional automated runs were made to try to
match the remaining reviewers. In the first of these, articles were
identified using author plus institution searches against PubMed
data rather than using Scopus data. The resulting article list by
reviewer was then inserted into the above process repeating the
final three steps, leading to an additional 137 positive matches. In
the second of these, the remaining reviewers were run through the
full process again but with the institution match removed. This
allowed more possible matches for the remaining authors, many of
whom were associated with smaller institutions, many of whom for
which CSR did not have an institution listed, or for whom the
NIH institution listing was wrong. This step led to an additional
612 positive matches. Thus, to this point, 11,280 of our 11,896
reviewers (94.8%) had been matched.

A strictly manual process was used to locate the Scopus author-
id for the balance of the reviewer names. The name and institution
were input into the online version of Scopus, and the author-ids for
obvious matches were manually added to our data. This manual
step located author-ids for an additional 499 reviewers. In the
course of this combined electronic and manual process of
matching reviewers to Scopus author-ids, we identified 91
reviewer names (0.8%) that seemed to be associated with multiple
authors of the same name. These reviewer names were excluded
from any additional analysis. In addition, no Scopus author-id
could be identified using any method for 26 of the reviewers.
These were also excluded from additional analysis.

Regarding the issues of polysemy and synonymy in the Scopus
author-ids, our data give us some estimates of the rates of
occurrence of these phenomena. As mentioned above, 0.8% of the
reviewer names seemed to be associated with multiple authors of
the same name. The polysemy cases we identified were rather
obvious upon inspection. Given that, it is likely that the actual
polysemy rate, including less extreme cases, is somewhat higher
than this — perhaps double. Thus, we estimate the polysemy rate
within this reviewer pool at 1.5%, with half of those being extreme
cases that must be avoided for analysis.

Regarding synonymy, we identified a second Scopus author-id
for 870 reviewers (7.3%). All second author-ids identified were
associated with at least two articles. The second author-ids for
these reviewers accounted for only 7% of their indexed articles and
only 3.8% of their total citations. Even though synonymy is a
larger issue than polysemy, its effect on our measurements appears
to be quite small.

There is one remaining issue regarding author profiles in
Scopus. It is possible that some articles not written by the author
are incorrectly assigned to the author. Estimation of this quantity
would require consultation with authors, and is obviously beyond
the scope of this study. However, we assumed that the fraction is
relatively low given our experience working with profiles from
authors in our own field whose work we know.

Identifying Scopus Author-ids for Grant Applicants

The process that we used to identify Scopus author-ids for
reviewers combined electronic and manual efforts. Given the
number of grant applicants for which we needed to identify Scopus
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author-ids (35,957), we did not use the manual portion of the
process that we had used previously. Rather, we designed a scoring
system that was intended to mimic the processes that were used to
manually inspect potential matches, and used that scoring system
to select a single (hopefully best) match for each applicant. The
first six steps of the process above were used, and the seventh was
replaced by the following:

® Matches based on single articles were discarded. Matches with
obvious mismatches in first name or middle initials were also
discarded. Names were not discarded in this step if the full first
name was not available in one data source or the other (the
NIH names or the Scopus names). For example, ] Doe” and
“John Doe” were not considered mismatches in this step.

® Given that we had a table representing all Scopus author
profiles (over 15 million of them), we calculated the number of
authors that could have potentially matched a particular name
string from the NIH grant data. If this number is low (one, for
example), then the chances of the potential match being a true
match are high.

® We also calculated the number of Scopus author-ids identified
as potential matches for each applicant. If there are many
potential matches, the chance that any of them is a true match
decreases.

Each potential match was scored using the following formula.

The number of papers matching the author and institution
strings was squared, and was divided by the total number of
papers published by that author profile during the time period
matching the search (2007-2011). This is the most dominant
feature in our scoring system, and rewards high numbers of
matching papers and high recall values for a particular author.
The score was augmented by 0.5 if there was an exact match
in the first names in the NIH and Scopus data. The score was
augmented by 0.25 if only a first initial was used in one data
source or the other and that first initial matched the first initial
of the full name in the other data source.

® The score was augmented by 0.5/npotl, where npot is the
number of potential matches from step 2. The score was also
augmented by 0.5/nmatch, where nmatch is the number of
matches from step 3.

® 'The matches were ranked by score for each applicant, and the
top scoring match was kept as the Scopus author-id for the
applicant.

Positive matches for identified for 29,800 of the 35,957
applicants for whom we did not already have a Scopus author-
id. (There were 6,607 applicants whose author-ids had already
been identified because they were also reviewers.) These were
subjected to a quick visual screen, and 57 obvious cases of
polysemy (several hundreds of papers in the Scopus author profile
with very few author name/institution matches) were removed
from the match list. The match rate for this automated process was
82.7%, which was slightly less than the match rate obtained for
reviewers. However, when applicants who were also reviewers are
included in the numbers, Scopus author-ids were identified for
36,350 (85.4%) of the 42,564 applicants. This is still lower than the
match rate for reviewers. However, we expect a higher match rate
for reviewers because they typically have stronger publishing track
records, while some grant applicants may not have a publishing
track record that could be matched using our methods.
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Detailed Basemap of Science and Technology

A highly detailed article-based model and map of science have
been created using co-citation techniques. Nearly 20 million
articles from Scopus (1996-2011) and 2 million U.S. patents
comprise this model. A clustering of articles and patents comprises
the detailed classification system, and allows portfolios of articles to
be compared and visualized. Although patents are a part of this
model and map, they are not used in the current study.

The model is formed by taking annual slices of the scientific
literature (from Scopus) and U.S. patents (from USPTO data
sources), partitioning these literatures into a large number of very
small topics, and then linking the resulting annual sets of topics
together into time-series based structures. In essence, this model
gives a history of science and technology at the level of research
problems. One feature of this model is its combination of stable
(long-term) and unstable (short-lived) topics, which accurately
reflects the actual ebb and flow of work in science and technology
at the topic level. This model can be used to analyze existing and
hypothetical portfolios in terms of strengths and weaknesses,
opportunities and threats, potential collaboration opportunities,
topic ages, etc.

The basic, high-level process used to create this model and map
of science and technology is as follows:

® Annual models of science are created from annual slices of
Scopus data using co-citation analysis. Creation of each model
consists of the following steps.

o Reference papers are clustered into co-citation clusters using
a kb0 [23] similarity measure based on the co-citing of these
reference papers. Details of this process are available in
[24,25].

o Once these clusters have been created, current year papers
are fractionally assigned to the clusters of cited references
using a new process that is based on bibliographic coupling
[24]. Each cluster thus consists of a set of reference papers
and the current papers that build upon them.

® Annual models are then linked into a longitudinal model of
science by linking clusters of documents from adjacent years
together using overlaps in the cited references belonging to
each cluster [24]. Clusters from adjacent years are linked if the
cosine overlap between clusters is above a threshold value,
which varies between 0.22 and 0.26 depending on year. These
linked clusters are referred to as threads. Roughly 40% of the
annual clusters are what we call isolates. These are clusters that
link neither forward nor backward within the overall model
(above a specific threshold), and can thus be thought of as one-
year threads. These are research problems that do not have
enough momentum to continue into a second year. Isolates are
typically among the smallest clusters, while the longest threads
are comprised of larger clusters on average. 46% of annual
clusters are in threads that last 3 years or longer. The model
contains 190,151 article threads of two years or longer.

® The same process is repeated with U.S. patent records.
Clusters of documents are created using co-citation analysis,
and those clusters are linked into threads. The model contains
29,246 patent threads of two years or longer.

® A visual map was created of all threads aged two years or older
from both models (articles from Scopus, patents from the U.S.
patent database). BM25 similarity values (equation given below
in the Study Section Relatedness section) between pairs of
clusters were computed for all pairs of clusters using the titles
and abstracts of document in the clusters, and the top-n
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similarity values for each cluster were used to determine the
map layout. Scientific articles and patents are known to use
different language; patent abstracts are enriched in legal
language and are not always as informative as articles. Because
of this we kept up to the top-5 links from patent clusters to
paper clusters even if their similarity values were lower than
patent-patent cluster similarities. This modification allowed the
patent clusters to be interspersed with paper clusters to a
greater degree than if the modification were not used.

® A system with a smaller number of categories was desirable for
the comparison of study section portfolios since a classification
system of over 200,000 clusters is perhaps too granular for
many types of analysis. Thus, we overlaid the basemap with an
85x85 grid that subdivides the map into a smaller number of
categories. Given that the mapping process (step 4) places
clusters with similar content close together, each grid-based
category can be thought of as a science or technology-based
specialty. This process results in a set of 4,662 categories that
contain scientific articles.

SRG Relatedness

Choosing the best data to use to determine the relatedness
between two different objects is not always straightforward. Co-
occurrence in the feature space associated with the objects (e.g.,
co-term, co-citation) is the most commonly used basis for
relatedness [3,26]. As mentioned above, for study sections, we
find that we can break the feature space into three main groups,
with data types as below. There undoubtedly are other data types
that could be used, but these are data on which we focused. To
create different network representations, relatedness between
SRGs was calculated using each of the six different data types
mentioned above. Each method resulted in a 180x180 matrix of
relatedness values between pairs of study sections. Details of the six
different methods follow.

o NIH classification

o RCDC (Research, Condition, and Disease Categorization)
profiles. This measurement is based on the assumption that
the relatedness of a pair of study sections scales with overlap
(or co-occurrence) in the concepts and terms from the
Research, Condition and Disease Categorization (RCDC) in
the applications reviewed in each pair. We developed a
‘fingerprint’ for each study section based on the frequency of
occurrence of terms from the RCDC thesaurus in the title,
abstract and specific aims of applications reviewed by these
study section during the fiscal years of 2011 and 2012.
Fingerprints were compared to each other by computing
match scores. The scores generated by this process were
converted to simple ranks. Thus each study section was
compared to each other study section and rank ordered by
similarity as defined by the occurrence of terms from the
RCDC thesaurus.

® Data associated with reviewers

o Publications authored by reviewers (REV-P). This metric is
based on three assumptions. The topic mix associated with a
study section can be represented by the expertise of the
reviewers for that study section, the expertise of an author
(in this case, a reviewer) can be represented by that author’s
publications, and a detailed classification system comprised
of publications can be used to determine co-occurrence
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between two sets of publications. Relatedness between pairs
of study sections was calculated after this logic using the
following steps. Scopus author-ids were identified for 11,779
of the 11,896 unique reviewers who served in study section
meetings during 2011 and 2012. Articles authored by those
reviewers were identified and were assigned to the
appropriate SRGs, thus giving lists of articles by study
section. Fach article was weighted by the number of SRGs

CSR Peer Review System

attended (from one to six) by its author. A total of 642,321
unique study section/article pairs were identified in this step.
Using the detailed classification system and basemap of
science mentioned above, the number of weighted articles
was summed by category for each study section. This step
resulted in a matrix of study sections by categories.
Relatedness between pairs of SRGs was then calculated as
the cosine (or dot product) between the vectors associated
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Figure 5. Visual comparison of the locations of reviewer publications for four study sections on the base map of science. Cosine
values between pairs of study sections are indicated at the interior of the figure.
doi:10.1371/journal.pone.0104244.9005
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with the study sections. A visual representation of related-
ness between study sections based on this method is shown
in Figure 5. Locations of reviewer publications are shown on
the map for each of four study sections from the AARR and
BST IRGs. The size of each dot on the map represents the
number of publications in that sector of the map. It is very
difficult to discern any visual difference between the BSCH
and BSPH profiles. Correspondingly, the cosine similarity
value for these two SRGs is very high at 0.941. Comparing
the bottom two SRGs of Figure 5, similarities and
differences can both be seen for the BMBI and NANO
study sections, and the corresponding cosine is 0.557. Visual
comparison of BSCH and BMBI reveals that there is almost
no overlap between the profiles; the resulting cosine is very
low at 0.008.

o Titles and abstracts of publications authored by reviewers
(REV-T). This measurement relies on the assumption that
two objects are related if the text used to describe them is
similar. Textual profiles for each study section were
generated from the words in the titles and abstracts of the
642,321 articles mentioned above. Relatedness between
pairs of study sections was calculated using the BM25
ranking function. For two documents ¢ and d, BM25 is
calculated as:

t
sigd)=>" [ 1DF; niki+1)
ni+ly (1=b+51P)/p)

i=1

where n; is the frequency of term 7 in document d. The sum
is over all ¢ terms. Values of 2.0 and 0.75 were used for
constants k; and b, respectively. In this formulation the text
for each study section was treated as if it were a single
document. Document length |D| was estimated by
summing term frequencies n; per document. Average
document length D] is computed over the entire document
set. The IDF value for a particular term ¢ was computed as:

N—I’li+0.5

IDF, =1
" 05

where N is the total number of documents in the dataset and
n; is the number of documents containing term :. Each
individual term in the summation in the first formula is
independent of document g.

o Cross-citation patterns between reviewers (REV-C). This
measurement assumes that two groups of documents are
related if documents from one group cite documents in the
other group. Using the 642,321 documents authored by
reviewers and assigned to SRGs, we calculated the numbers
of times papers from each study section cited papers in other
SRGs. Self-citations by SRGs were not considered. The
remaining count data were used to calculate the fraction of
citations that each study section gave to each other study
section where the basis for normalization was the sum of
citations from the citing study sections.

® Data associated with applications and applicants

o Text (title, abstract, specific aims) of grant applications
(APP-T). This measurement was calculated using the same
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procedure mentioned above for the REV-T metric. A
textual profile was generated for each study section using the
titles, abstracts and specific aims sections of the grant
applications assigned to it for review. Text from 72,526
grant applications was used for this calculation. BM25
coeflicients between all pairs of SRGs were calculated using
the textual profiles.

o Applicant publications (APP-P). This measurement is based
on the assumption that grant applicants will write proposals
that are similar to their previously published work. The
procedure used here was the same as that used for the REV-
P metric. The difference was that articles authored by grant
applicants were used instead of articles authored by
reviewers. Scopus author-ids were identified for 36,306 of
the 42,564 unique applicants. The fraction of grant
applicants for whom ids were identified is lower than the
fraction of reviewers that were positively identified because
1) all matching was done electronically, and 2) we expect
that some grant applicants are young scientists with low
publication profiles. Each article was weighted by the
number of individual applications submitted by the
applicant to the study section, and the calculation of study
section relatedness was done using vector cosines as was
done for the REV-P metric.

For each of the relatedness methods listed above, similarity
values were rank ordered (largest similarity first) for each study
section. Visualizations of the study section networks were created
for each of the six relatedness methods using the following process:

® 174 SRGs were in operation throughout the 2011-2012 fiscal
year that framed this study. Another 6 SRGs were in operation
during a portion of this time, hence a total of 180 SRGs. Each
of these is related to nearly every other SRG to some degree.
We limited the network visualizations to the strongest
relatedness values, and filtered the list of values to keep only
the top 3 values per study section.

® A study section network map based on these top 3 similarity
values per study section was created using the Kamada-Kawai
layout algorithm in Pajek [17].

Supporting Information

Appendix S1 List of Integrated Review Groups (IRGs) in
the order given in Figure 1.
DOCX)

Appendix S2 List of Scientific Review Groups (SRGs) in
alphabetical order.
DOCX)
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