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Abstract

In adaptive immune responses, T-cell receptor (TCR) signaling impacts multiple cellular processes and results in T-cell
differentiation, proliferation, and cytokine production. Although individual protein–protein interactions and phosphory-
lation events have been studied extensively, we lack a systems-level understanding of how these components cooperate to
control signaling dynamics, especially during the crucial first seconds of stimulation. Here, we used quantitative proteomics
to characterize reshaping of the T-cell phosphoproteome in response to TCR/CD28 co-stimulation, and found that diverse
dynamic patterns emerge within seconds. We detected phosphorylation dynamics as early as 5 s and observed widespread
regulation of key TCR signaling proteins by 30 s. Development of a computational model pointed to the presence of novel
regulatory mechanisms controlling phosphorylation of sites with central roles in TCR signaling. The model was used to
generate predictions suggesting unexpected roles for the phosphatase PTPN6 (SHP-1) and shortcut recruitment of the actin
regulator WAS. Predictions were validated experimentally. This integration of proteomics and modeling illustrates a novel,
generalizable framework for solidifying quantitative understanding of a signaling network and for elucidating missing links.
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Introduction

Protein phosphorylation is a fundamental part of cellular

information processing, with a role in controlling numerous

physiological functions, including immune defenses [1]. Links

between dysfunctional regulation of phosphorylation and disease

underscore the need to elucidate underlying regulatory mecha-

nisms [2]. To this end, phosphorylation-dependent signaling

networks have been investigated extensively, largely in studies

targeting individual proteins and interactions. However, cell

signaling is marked by features, such as feedback and feedforward

loops [3,4], parallel pathways [5], and crosstalk [6], which may

only be apparent when a network is studied as a whole. For this

reason, multiplexed measurements of phosphorylation dynamics

are needed, paired with reasoning aids for interpretation of these

data.

A useful reasoning aid is a mechanistic model, meaning a model

in which information about molecular interactions is cast in a form

that enables simulations consistent with physicochemical princi-

ples. Simulation of such a model reveals the logical consequences

of the collected knowledge upon which the model is based.

Comparisons of model simulations to experimental measurements

can drive discovery through generation of hypotheses and

identification of knowledge gaps [7].

Successful integration of modeling and experimentation de-

pends on both approaches having compatible and relevant levels

of resolution. Phosphorylation dynamics can be elucidated using

several high-throughput techniques, including reverse-phase pro-

tein arrays [8], micro-western arrays [9], and mass spectrometry

(MS) [10]. MS-based techniques can yield quantitative informa-

tion about the abundance of proteins phosphorylated at specific

amino acid residues without reliance on availability of phospho-
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site-specific antibodies [11], and measurements can be made with

fine time resolution [12], which is needed to decipher the order of

phosphorylation events. Thus, MS-based proteomics has the

potential to make unique contributions to systems biology

modeling [13].

However, modeling and proteomics have not yet become tightly

integrated, in part because of the technical challenges of

constructing and parameterizing a model with sufficient detail

and scope to be used for analysis of proteomic data. Proteomic

measurements give information about phosphorylation levels at

specific amino acid residues (sites); thus, a compatible model

requires similar site-specific resolution. For this task, traditional

modeling approaches (e.g., ordinary differential equations) can be

difficult or impossible to apply [14], which has catalyzed

development of the specialized techniques of rule-based modeling

[15]. Rule-based models make it possible to simulate site-specific

biomolecular interactions in a manner consistent with physico-

chemical principles.

Rule-based modeling has been used to study several immunor-

eceptor signaling systems [16,17,18,19,20], although in each case,

the scope of the model has been restricted to a handful of signaling

readouts. Development of models with sufficient scope to connect

to proteomic data has faced additional challenges; large models

can be costly to simulate and the complexity of the model can

hinder communication of the model’s content. To overcome these

obstacles, simulation techniques for large models [21] and

methods for model annotation and visualization [22] have recently

been developed. Although these modeling capabilities have been

demonstrated to a limited extent, use of large models to decode

high-content data, generate hypotheses, and drive the discovery of

biological insights has thus far remained uncharted territory.

We have developed a new approach for characterizing signal

initiation using a rule-based model to interpret temporal

phosphoproteomic data. We have applied this approach to study

initiation of T-cell receptor (TCR) signaling, which is an essential

process in the adaptive immune response [23]. The TCR and

related antigen recognition receptors transmit signals that are

dependent on site-specific details. These receptors are character-

ized by immunoreceptor tyrosine-based activation motifs (ITAMs),

which each contain two tyrosine residues that can be phosphor-

ylated. It has been found that the specific phosphoform of an

ITAM can determine whether activating or inhibitory signals are

transmitted [24]. Additionally, TCR signal initiation relies on the

kinase LCK, which can be phosphorylated at a minimum of three

sites: phosphorylation of two of these sites (Y394 and Y505) have

opposing influences in regulating kinase activity [25], and

phosphorylation of the third site (Y192) regulates the affinity of

the SH2 domain [26]. These examples underscore the need to

investigate the site-specific dynamics of immunoreceptor signaling

[27].

Our results 1) characterize early TCR signaling with finer time

resolution than previous proteomic studies of this system, 2) reveal

mechanisms primarily operative on short timescales immediately

after stimulation, and 3) demonstrate how mechanistic modeling

and high-content measurements can be combined to develop a

predictive understanding of cellular information processing.

Results

Immediate and extensive reshaping of the T-cell
phosphoproteome

To characterize the first minute of TCR signaling, we

performed time-resolved quantitative phosphoproteomic experi-

ments, which allowed direct and accurate measurements of the

changes in the levels of phosphorylation at individual tyrosine

residues in response to TCR stimulation with anti-CD3, anti-

CD28, and secondary antibodies (Fig. 1, A to C; see Materials and

Methods). Three independent experiments were performed,

resulting in the identification of over 700 unique pTyr sites, of

which over 500 were detected in multiple experiments, with

significant correlation across experiments (Fig. 1, D and E; Table

S1 in File S1). Possible sources of variability in quantification and

detection are mentioned in the Materials and Methods section.

The level of phosphorylation for each site was quantified at 5, 15,

30 and 60 s of TCR/CD28 stimulation, relative to the

corresponding level in unstimulated cells. These experiments

targeted a period of signaling that has thus far been largely

uncharacterized using MS-based proteomics or traditional bio-

chemical assays, which have mostly been used at later timepoints.

Our measurements map in unprecedented detail the earliest

intracellular events and reveal that even within the first minute of

TCR/CD28 co-stimulation, dramatic and diverse biochemical

changes occur within the cell, preparing the ground for later

events. To analyze these data, we took a knowledge-based/model-

guided approach, which is summarized in Fig. S1A in File S2.

Regulated changes in phosphorylation ($2-fold increases or

decreases) occurred as early as 5 s after stimulation, with the

number of regulated sites increasing to 138 after 60 s of

stimulation (Fig. 1F). Time courses of phosphorylation fall into

four distinct clusters, which reveal that the abundance of some

phosphopeptides increase, others decrease, and some changes

occur earlier than others (Fig. 1G). These results clearly demon-

strate that even within the first 60 s of TCR stimulation there are

diverse patterns of phosphorylation dynamics. Regulated sites map

to proteins with various cellular functions, including pivotal

signaling factors such as receptors, adapter proteins, phospholi-

pases, phosphatases and kinases from multiple distinct kinase

families. In the group of sites showing rapid dynamics we find well-

established TCR signaling proteins such as LCK, LAT, PLCG1

among many others (Fig. 1H; Figs. S2 and S3 in File S2; Table S1

in File S1). These results attest to rapid, multi-functional signaling

downstream of the TCR, consistent with the known diversity of

pathways that emanate from the receptor [23].

Indeed, subsequent enrichment analysis (Fig. S2 in File S2)

revealed that among the proteins with detected phosphorylation

changes, the most frequent pathway association was with the TCR

pathway. At the same time, other pathways, such as those

influencing metabolism and protein synthesis, were also detected.

These results suggest that TCR signaling may influence these

general cellular functions quickly, consistent with evidence that T

cells make committed decisions within 60 s of antigen contact

[28].

Dynamical modeling drives identification of knowledge
gaps

To investigate regulation of pTyr sites with well-characterized

roles in TCR signaling, we developed a computational model

based on principles of chemical kinetics and known protein-

protein interactions (Fig. 2, Supplementary Text S1 in File S3,

Fig. S4 in File S2, Table S2 in File S1, and Files A and B in File

S1). The model, formulated in terms of local rules for interactions

[15], accounts for 10 proteins containing 16 pTyr sites detected

experimentally (Table S3 in File S2) and seven additional proteins

linked to their regulation. The pTyr sites included in the model

belong to three classes (Fig. S5 in File S2): 1) sites phosphorylated

without dependence on prior receptor phosphorylation, 2) sites

phosphorylated after receptor phosphorylation, and 3) sites that

are dephosphorylated. Model-guided analysis of these pTyr site
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dynamics suggested that the phosphatase PTPN6 plays a positive

role in TCR signaling (Fig. S1B in File S2) and that WAS is

initially activated via a previously unappreciated pathway (Fig.

S1C in File S2).

Dephosphorylation of inhibitory pTyr sites
Involvement of a phosphatase in initiating TCR signaling was

suggested by rapid dephosphorylation of six potentially inhibitory

pTyr sites (Fig. 2 and Fig. S6 in File S2): 1) pY192 in the LCK

SH2 domain, which reduces SH2-pTyr affinity [26]; 2) pY299 in

DOK2, which binds RASA1 (p120 RasGAP), a negative regulator

of RAS [29]; pY449 in DOK1, which binds CSK, which

phosphorylates LCK and other SRC-family kinases (SFKs) at a

C-terminal tyrosine residue to facilitate autoinhibition [30]; and 4)

pY163, pY181, and pY417 in PAG1, which interact with SFKs to

bring them into proximity of PAG1-bound CSK [31]. We also

detected increased phosphorylation of Y566 in PTPN6, which is a

substrate of LCK and is associated with positive regulation of

phosphatase activity [32]. PTPN6 Y566 is phosphorylated as

rapidly as ZAP70 Y493 (Fig. 2; cf. Fig. S6, G and K in File S2)

and PTPN6 is the only protein tyrosine phosphatase that we

observed to undergo regulated phosphorylation (Fig. 1H and

Table S1 in File S1), suggesting a role in signal initiation.

Incorporating PTPN6-mediated dephosphorylation of the sites

listed above into the model enabled the model to reproduce

measured time courses for these sites (Fig. 2 and Fig. S6 in File S2).

Figure 1. Phosphoproteomic analysis of TCR signal initiation. (A) T cells grown in SILAC media were stimulated with antibodies that crosslink
CD3 and CD28. Lysates from differentially labeled cells were processed as indicated and relative abundances of phosphopeptides were quantified. (B)
Flow system used to stimulate cells. (C) For each detected phosphopeptide, peak intensities in MS spectra were quantified to determine
phosphorylation levels at 5, 15, 30 and 60 s after stimulation relative to the phosphorylation level in unstimulated cells. Results from paired spectra
(top) were combined (bottom right). Peptides were identified by tandem MS (bottom left). (D) Measurement reproducibility. For each point, the y-axis
indicates the relative phosphopeptide abundance measured in one of three replicate experiments; the x-axis indicates the corresponding average. R
is Pearson’s correlation coefficient. (E) Venn diagram indicating the numbers of phosphopeptides detected in individual and different combinations
of replicate experiments. (F) Number of regulated pTyr sites (.2-fold change) at each indicated time point. (G) Results from clustering of time
courses. (H) Diverse proteins undergo regulated phosphorylation. Boxes represent proteins; each oval and residue number next to a box identifies a
regulated pTyr site and its cluster membership.
doi:10.1371/journal.pone.0104240.g001
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Prediction and tests of a positive role for PTPN6 in early
signaling

We simulated the effect of lowered PTPN6 abundance. The

model predicted dampening of stimulatory phosphorylation and

enhancement of inhibitory phosphorylation, including increased

phosphorylation of LCK Y192 (Fig. 3B), sustained phosphoryla-

tion of the C-terminal tyrosine (Y505) of LCK (Fig. 3C), decreased

phosphorylation of Y493 in the activation loop of ZAP70

(Fig. 3D), and decreased LAT phosphorylation (Fig. 3E). Accord-

ing to the model, these simulation results arise from disruption of

PTPN6-mediated positive feedback loops (Fig. 3K and Fig. S1, D

and E in File S2).

To test the prediction that PTPN6 positively regulates TCR

signaling, we used RNAi to knockdown PTPN6 (Fig. 3F, bottom).

Expression of PTPN11 (SHP-2), a phosphatase that is closely

related to PTPN6, was unaffected by PTPN6 knockdown, attesting

to the specificity of the knockdown (Fig. S7 in File S2). We then

used phosphosite-specific antibodies to monitor phosphorylation of

LCK, ZAP70, and LAT in normal and PTPN6 KD cells after

TCR/CD28 co-stimulation (Fig. 3, G and H). Sustained phos-

phorylation of LCK Y192 and Y505 (Fig. 3, G and H, bottom)

and decreased phosphorylation of ZAP70 Y493 and LAT Y191

(Fig. 3, I and J, bottom) were observed, in qualitative agreement

with model predictions (Fig. 3, B to E and G to J, top). At 60 s

after stimulation, ZAP70 phosphorylation is similar in normal and

PTPN6 KD cells (Fig. 3I, bottom), indicating that the positive

early effect of PTPN6 on ZAP70 phosphorylation is transient. In

contrast, the effect on LAT phosphorylation is evidently more

sustained, as LAT phosphorylation in PTPN6 KD cells at 60 s is

less than in normal cells.

To further test our model, we performed an in vitro
phosphatase assay in which LCK was immunoprecipitated from

PTPN6 KD cells and then incubated with purified recombinant

PTPN6. We found that both Y192 and Y505 sites on LCK

became dramatically less phosphorylated when incubated with

PTPN6 compared to the mock treated sample (Fig. S8 in File S2).

This finding is consistent with our model, in which pTyr sites

observed to undergo net loss of phosphorylation, such as LCK

Y192, are assumed to be substrates of PTPN6.

A shortcut pathway connects the TCR to WAS activation
A second novel mechanism of TCR signal initiation was

suggested by fast phosphorylation of WAS Y291 (cf. Fig. S6, G and

L in File S2). WAS can be recruited to the plasma membrane by

the adaptor protein NCK1 through a pathway dependent on LAT

and LCP2 (SLP-76) [33], which are substrates of ZAP70 [23]

(Fig. 4A). However, we observed that WAS is phosphorylated

before ZAP70 (Fig. 4C): the fold-change in WAS pY291 at 5 s is

significantly greater than the fold change in ZAP70 pY493

(p = 0.019, one-tailed t-test). Thus, we reasoned that NCK1 may

be present at the plasma membrane prior to ZAP70 activation,

presumably through binding of its N-terminal SH3 domain to a

proline-rich sequence (PRS) in CD3E, which takes place in the

absence of TCR phosphorylation [34]. Adding this interaction to

the model created a shortcut pathway to WAS activation (Fig. 4B)

Figure 2. Model for TCR signaling. Proteins considered in a rule-based model for TCR signaling are represented by rounded boxes. Separate
boxes indicate the phosphosites considered in the model. Sites detected in phosphoproteomic experiments are each associated with a pair of
heatmaps, in which the upper heatmap reflects averaged experimental measurements of relative pTyr abundance and the lower heatmap reflects
simulated phosphorylation levels at matching time points. The color scale of each heatmap is unique: black represents the lowest and green
represents the highest level of phosphorylation for that site. Interactions are represented by arrows according to the conventions illustrated at
bottom. The number in the lower right corner of a protein box represents the number of components of the protein (domains, motifs, and/or pTyr
sites) considered in the model.
doi:10.1371/journal.pone.0104240.g002
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and enabled simulated phosphorylation of WAS to precede

phosphorylation of ZAP70 (Fig. 2).

To confirm shortcut activation of WAS, we used RNAi to

knockdown LCP2 (Fig. 4D), which mediates WAS activation as

part of the well-characterized pathway of Fig. 4A. We found that

the early association of NCK1 with pTyr sites is unaffected by

LCP2 KD (Fig. 4E). Moreover, WAS phosphorylation is not

substantially reduced in LCP2 KD cells (Fig. 4F), consistent with

LCP2-independent phosphorylation of WAS. In contrast, phos-

phorylation of Y783 in PLCG1, which is dependent on LCP2

[23], is ablated in LCP2 KD cells (Fig. 4G).

WAS phosphorylation is dependent on LCP2 at times beyond

the first minute of signaling [35], so we assume that the shortcut

pathway to WAS activation is transient, which is consistent with

the unusual signaling role of the CD3E PRS. Because this PRS

overlaps Y188 in the CD3E immunoreceptor tyrosine-based

activation motif (ITAM), phosphorylation of Y188 inhibits SH3-

PRS binding and enables SH2-pTyr binding [36]. Model

simulations indicate that the shortcut pathway to WAS activation

is deactivated by ITAM phosphorylation (Fig. S9A in File S2) as

the LCP2-dependent pathway is coordinately engaged (Fig. S9B in

File S2). Engagement of LCP2-dependent pathways for WAS and

PLCG1 activation is supported by immunoblot measurements of

LCP2 phosphorylation (Fig. S9, C and D in File S2).

Discussion

This study of pTyr site dynamics has revealed processes that

have been systematically overlooked in the past because of the

speed with which they occur. We have monitored the phosphosite

dynamics of early TCR signaling with finer temporal resolution

than in previous proteomic studies of TCR signaling (see Table S4

in File S2 and references cited therein) and with greater breadth

than earlier studies of early TCR signaling events employing

relatively low-throughput assays [37,38], and we developed a

mechanistic model for TCR signaling that reproduces measured

time courses of phosphorylation for a greater number of specific

sites than previously developed models for immunoreceptor

signaling (see Table S5 in File S2 and references cited therein).

We detected over 100 pTyr sites that undergo greater than two-

fold changes in abundance during the first minute of TCR

signaling. Even on these short timescales, time courses show

Figure 3. PTPN6 mediates positive feedbacks. (A to E) Model-predicted cumulative phosphorylation of the indicated pTyr sites in normal (WT)
and PTPN6 KD cells. The cumulative phosphorylation of a site was calculated as the area under the corresponding time course of phosphorylation (0
to 60 s). Area is normalized to WT cells. (F to J) Simulation results (top) and immunoblots (bottom) showing the predicted and measured effects of
PTPN6 KD on pTyr site dynamics. PTPN6 KD was modeled by setting the copy number of PTPN6 to 0. Simulated time courses are visualized as series
of dots whose areas are proportional to relative phosphorylation levels. For each pTyr site, phosphorylation levels are normalized by the level of
phosphorylation in unstimulated WT cells. Note that WT time courses present results shown previously in Fig. 2. IB, immunoblot; Quant.,
quantification; WCL, whole-cell lysate; Sim., simulation. (K) Hypothesized positive feedback loops involving PTPN6 incorporated in the model for TCR
signaling. In these loops, LCK phosphorylates and activates PTPN6, and PTPN6 dephosphorylates sites that contribute to negative regulation of LCK.
Thus, PTPN6 has a positive effect on phosphorylation events downstream of LCK, including LCK-mediated phosphorylation of ZAP70 and ZAP70-
mediated phosphorylation of LAT. Blots are representative of the results from multiple (at least two) experiments. Each repeated immunoblot
measurement is characterized by a coefficient of variation (CV) below 0.25, where CV is estimated as the ratio of the sample standard deviation to the
sample mean.
doi:10.1371/journal.pone.0104240.g003
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distinct patterns: the abundances of some pTyr sites increase,

others decrease, and some changes occur sooner than others. The

proteins containing these sites map to diverse cellular functions

and include kinases, phospholipases, actin regulators, and tran-

scription factors, many of which are known players in T-cell

activation. The significance of these results is that by 60 s, which in

many studies is taken as an early time point for measurement,

significant changes have already occurred within the cell.

We found that multiple putatively negative regulatory sites

(including sites in PAG1 and LCK) were rapidly dephosphorylated

as the PTPN6 phosphatase was phosphorylated at an activating

site. Inclusion of a mechanism causally linking these events allowed

our model to reproduce measured time course data and to

generate testable predictions. These predictions were validated

experimentally, giving credence to the hypothesized link between

PTPN6 activation and dephosphorylation of putatively inhibitory

pTyr sites. Our model predicted that loss of PTPN6 would result

in sustained phosphorylation of these pTyr sites, and reduction of

phosphorylation at other, activating sites (including sites in ZAP70

and LAT). These predictions were confirmed through RNAi-

mediated knockdown of PTPN6 expression and immunoblot

measurements with phosphosite-specific antibodies. These results

provide strong motivation for future studies of the possible early

positive role of PTPN6, ideally in primary cells. We note that a

positive role for PTPN6 has been suggested by the results of earlier

studies. For example, in vitro, PTPN6 has previously been found

to be capable of dephosphorylating the inhibitory C-terminal

tyrosine of LCK when the SH2 domain is deleted [39].

The view of PTPN6 as an overall negative regulator of TCR

signaling [40] has been based mostly on studies of the motheaten
mouse, which is deficient in Ptpn6 and suffers from severe

autoimmunity [41]. Recent work has hinted at a more nuanced

role. Studies of mice with a T-cell specific Ptpn6 deletion indicate

that loss of Ptpn6 in T cells does not lead to overt autoimmunity

[42], nor does it affect the number of memory precursor cells [43].

It has also been found that mechanisms controlling PTPN6
expression are distinct from those controlling other negative

regulators of TCR signaling [44]: levels of PTPN6 mRNA and

protein are not affected by the miR-181a microRNA, which

negatively regulates expression of multiple phosphatases linked to

suppression of TCR signaling. Thus, PTPN6 appears to be

somewhat enigmatic. Contributing to uncertainty about the

function of PTPN6 is an incomplete catalog of its substrates,

which is incomplete partly because known substrates do not match

an obvious consensus sequence [45]. Our findings, together with

those mentioned above, point to a need to identify signaling

proteins whose phosphorylation states are regulated by PTPN6,

and to characterize the function of this phosphatase in TCR

signaling under precisely controlled conditions.

Figure 4. WAS activation. (A) Long pathway for WAS recruitment to the plasma membrane. Phosphorylated CD247 recruits ZAP70, which
phosphorylates LAT. Phosphorylated LAT binds the GRAP2 SH2 domain. The GRAP2 SH3 domain binds LCP2. Phosphorylated LCP2, a substrate of
ZAP70, binds the SH2 domain of NCK1/2. The C-terminal SH3 domain in NCK1/2 binds a proline-rich sequence (PRS) in WAS. (B) Short pathway for
WAS recruitment. The N-terminal SH3 domain in NCK1/2 binds a PRS in CD3E, and the NCK1/2 C-terminal SH3 domain binds WAS. (C) Comparison of
measured time courses of phosphorylation for WAS Y291 and ZAP70 Y493. Data is scaled such that the phosphorylation level of each site is 1 at 60 s.
Error bars indicate standard deviations. (D) Efficiency of LCP2 KD. (E) Inducible association of NCK1 with pTyr-containing proteins in normal (WT) and
LCP2 KD cells. (F and G) Simulations (top) and immunoblots (bottom) showing the predicted and measured effects of LCP2 KD on phosphorylation of
WAS Y291 and PLCG1 Y783 upon TCR/CD28 co-stimulation for the indicated times. Simulation results are plotted as in Fig. 3, F to J. WT time courses
present results shown previously in Fig. 2. Abbreviations are as in Fig. 3. Blots are representative of the results from multiple (at least two)
experiments. As for Fig. 3, the estimated CV is less than 0.25 for each repeated immunoblot measurement.
doi:10.1371/journal.pone.0104240.g004
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The results presented here suggest that, in Jurkat T cells,

PTPN6 (the human ortholog of Ptpn6) has an early positive effect

that accelerates signaling, before its negative effects become

dominant. The negative effects of PTPN6, such as dephosphor-

ylation of the LCK activation loop [25], may serve to prevent

deleterious overshoots that would otherwise be caused by its

positive effects, in addition to setting the baseline level of TCR

signaling. As a participant in positive feedback loops, which can

act as amplifiers, PTPN6 may also contribute to regulation of T-

cell sensitivity. Such a role has been suggested in earlier studies of

PTPN6 [32].

Several caveats are worth noting. Firstly, although we have

demonstrated that PTPN6 acts directly on LCK Y192 and Y505

in vitro, we have not conclusively determined if PTPN6 directly

acts on the sites that are observed to undergo dephosphorylation in

our proteomics experiments, or if instead PTPN6 influences some

or all of these sites in an indirect manner. Nonetheless, our

knockdown results indicate that PTPN6 positively influences

specific events in early signaling, and evidence for a more indirect

mechanism would not alter this finding. Secondly, the dephos-

phorylated sites may have roles that are multifaceted, rather than

strictly inhibitory. For example, phosphorylation of Y192 in LCK

may enhance kinase activity by limiting SH2 association with the

C-terminal phosphotyrosine that mediates autoinhibition, which is

a regulatory mechanism that may be operative in the case of Src

[46]. However, phosphorylation of LCK Y192 has been found to

have an overall negative effect on important readouts of TCR

signaling [26], indicating that impairing LCK’s ability to associate

with its binding partners outweighs potential enhancement of

kinase activity through relief of autoinhibition. Thus, it is apparent

that categorization of a protein or site as ‘‘positive’’ or ‘‘negative’’

is dependent on context and such categorization must be made

with caution. Finally, the results presented here are based on the

Jurkat T cell line, which has been a source of much of our current

knowledge of TCR signaling mechanisms and is amenable to MS

measurements. Use of a cell line was required to obtain the

quantities of proteins required for MS-based assays of protein

phosphorylation and to obtain the fine time resolution desired.

However, Jurkat T cells do not perfectly recapitulate the behavior

of T cells in vivo. Characterization of very early signaling

mechanisms in primary T cells poses significant technical

challenges and is beyond the intended scope of the present study.

The breadth and fine time resolution of our proteomic data

allowed us to determine the order in which events occur. One of

the fastest events observed was phosphorylation of the actin

regulator WAS, which surprisingly preceded activating phosphor-

ylation of the kinase ZAP70. It has previously been reported that

WAS is recruited to the plasma membrane via a pathway

involving LAT and LCP2 (SLP-76) [33], which are activated

through ZAP70-dependent phosphorylation [23]. This mechanism

of WAS activation did not allow our model to reproduce the

observed WAS phosphorylation dynamics. In contrast, a previ-

ously unappreciated shortcut pathway, which is apparently active

only transiently, allowed the model to reproduce the data.

Experimentally, knockdown of LCP2 expression did not attenuate

the early WAS phosphorylation, consistent with model predictions

and the presence of an alternative pathway. These results indicate

that the flow of information through different pathways may shift

as signaling progresses. Furthermore, the shortcut pathway may

explain how the PRS in CD3E contributes to the ability of the

TCR to respond to a range of agonist molecules. The PRS in

CD3E and its interaction with NCK1 are known to be more

consequential for responses to weak agonists [47] than strong

agonists [48]. This difference may arise because weak agonists

tend to induce only partial TCR phosphorylation [49], allowing

longer-lasting NCK1-CD3E association. Although the interactions

forming the shortcut pathway have been characterized individu-

ally, their combined role in facilitating rapid WAS activation has

not hitherto been investigated. Thus, the results presented here

complement past work by suggesting a potential mechanism by

which the PRS of CD3E enables responses to weak agonists.

Our findings suggest that TCR signaling is initiated by proteins

that transition from positive to negative roles. This strategy

resembles bang-bang control [50], in which a controller assumes

extreme values. PTPN6 appears to switch TCR signaling ‘‘on’’

upon signal detection and ‘‘off’’ after a period of signal

transmission. Another apparent mediator of bang-bang control is

CD3E, which is initially ‘‘on’’ and provides a shortcut pathway to

WAS activation by recruiting NCK1 prior to receptor phosphor-

ylation, but later is turned ‘‘off’’ as the CD3E ITAM is

phosphorylated. The advantage of bang-bang control, or mode

switching (a transition from positive to negative signaling by a

protein with both on and off functions), can be appreciated by

considering that a superior brake system decided the winner of the

1921 French Grand Prix by enabling fast approaches to turns [51].

The apparent on/off functions of PTPN6 and CD3E may allow a

T cell to initiate signaling events with maximal acceleration and

then avoid deleterious overshoots through application of a

molecular brake.

Physiologically, we speculate that bang-bang control of TCR

signal initiation may allow a T cell to launch rapid but controlled

responses to infection. T cells scan antigen-presenting cells quickly

and have been shown to decide if foreign antigen is present in

under 1 min [28]. Thus, the effect of a fairly short delay in

phosphorylation of LAT or WAS, for example, could potentially

have a major impact on the number of antigen-specific T cells

responding to an infection. Bang-bang control is operative in gene

circuits with negative autoregulation [52] and in stem cell

population dynamics [53] and may represent a widely used design

principle of cellular regulatory systems.

Materials and Methods

Cell culture
Jurkat T cells, clone E6-1 (ATCC TIB-152), were grown in

RPMI (Invitrogen) supplemented with penicillin/streptomycin

(100 U/ml, 100 mg/ml), 10% dialyzed fetal calf serum (Invitro-

gen), and one of three SILAC labels (Sigma-Aldrich, Denmark):

L-arginine and L-lysine (Arg0/Lys0); L-arginine-13C6-14N4 and

L-lysine-2H4 (Arg6/Lys4); or L-arginine-13C6-15N4 and L-lysine-13

C6-15N2 (Arg10/Lys8) (Fig. 1A). Before stimulation of TCR

signaling, cells were serum starved for 16 h. Starved cells were

diluted with medium (RPMI supplemented with 10 mM HEPES)

to a density of 0.9–1.06108 cells/ml and stimulated with a 1:1

mixture of pre-crosslinked anti-CD3 antibody (clone HIT3a,

Santa Cruz) and anti-CD28 antibody (clone CD28.2, Santa Cruz)

(4 mg/ml in RPMI supplemented with 10 mM HEPES). The anti-

CD3 and anti-CD28 antibodies were crosslinked by incubation

with anti-mouse IgG (Dako) at 4uC overnight. Differentially

labeled cells (Fig. 1A) were stimulated for 0 s (Lys0/Arg0), 5 s

(Lys4/Arg6), and 30 s (Lys6/Arg10) using a qPACE setup

(Fig. 1B) as described earlier [12]. A second set of differentially

labeled cells were stimulated for 0 s (Arg0/Lys0), 15 s (Arg6/

Lys4), and 60 s (Arg10/Lys6) (2.7–3.06108 cells per condition).

Because of the large number of cells required to obtain sufficient

protein for LC-MS/MS analysis, we performed the three replicate

temporal phosphoproteomic experiments of Fig. 1 serially over a
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time frame of months, which likely contributed to the measure-

ment variability illustrated in Fig. 1D.

Proteomics sample preparation
Cells were lysed in 8 M urea with 25 mM Tris, pH 8.0. Lysates

from differentially labeled and stimulated cells (three conditions, as

indicated in Fig. 1A) were mixed in a 1:1:1 ratio, centrifuged, and

reduced with 1 mM DTT for 40 min at 25uC, followed by

alkylation with 5.5 mM iodoacetamide for 40 min. Cell lysates

were subjected to Lys-C (Wako) digestion at a 1:100 enzyme/

protein ratio for 5 h at room temperature. The lysates were diluted

(4X) using 25 mM Tris, pH 8.0, and then digested with trypsin

(Promega) overnight at room temperature. Digested cell lysates

were acidified with TFA and desalted using Sep-Pak (Waters) in

accordance with the manufacturer’s instructions, followed by

lyophilization of the tryptic peptides.

Immunoprecipitation and purification of
phosphopeptides

The lyophilized peptides were subjected to immunoprecipita-

tion using a PhosphoScan Kit (P-Tyr-100, catalog number 7900,

Cell Signaling Technology) and anti-phosphotyrosine antibody

(clone 4G10, catalog number 16-101, Millipore). Briefly, peptides

were dissolved in 2 ml of IAP buffer per experiment (50 mM

MOPS, pH 7.2; 10 mM sodium phosphate; and 50 mM NaCl),

refrigerated, centrifuged to remove undissolved peptides in the

pellet, and immunoprecipitated with 80–100 ml of the anti-

phosphotyrosine antibody resin for 3–4 h at 4uC. Beads were

washed three times with the IAP buffer and two times with a salt

solution (50 mM NaCl), and phosphopeptides were eluted using

0.15% TFA solution. Three sequential elutions were performed;

each time, the volume of the 0.15% TFA solution used was equal

to that of the bead volume. Eluted phosphopeptides were further

purified by using TiO2 spheres as described earlier [10]. We note

that it was not possible to use antibodies having the same lot

numbers for each of the replicate temporal phosphoproteomic

experiments of Fig. 1, which likely contributed to the measure-

ment variability illustrated in Fig. 1D.

LC-MS/MS analysis
Peptides were analyzed using LC-MS/MS as previously

described [54]. Eluted samples were dried almost to completeness

in a SpeedVac and analyzed using an LTQ-Orbitrap XL

instrument (Thermo Scientific), which was interfaced with an

Agilent 1100 nanoflow system (Agilent Technologies) and

equipped with a nano-electrospray ion source (Proxeon Biosys-

tems). Phosphopeptides were injected into a fused silica column

packed in-house with 3 mm C18 beads (Reprosil, Dr. Maisch

HPLC) applying a 120 min gradient from 8 to 64% acetonitrile in

0.5% acetic acid at a flow rate of 250 nl/min. We operated the

Orbitrap XL in the data-dependent mode. The five most intense

ions after full scan survey (MS spectra for m/z from 350 to 1,600)

were subjected to MS/MS fragmentation using the CID activation

technique with the following settings: R = 60,000 (MS resolution),

a normalized collision energy of 35%, and an isolation window of

2.0 Th. In MS/MS acquisition, we used q = 0.25 (collision

endothermicity) and an activation time of 30 ms. Slightly different

settings were used for the third biological replicate: the range of m/
z was 300–2000 and multistage activation (MSA) was used. For all

MS runs, ions selected for fragmentation were dynamically

excluded for 45 s and lock mass ions were used for internal mass

calibration [55] to obtain constant mass accuracy during analysis.

We note that sampling of ions for MS/MS analysis is stochastic in

nature, which is likely to explain the variability in detection of

peptides summarized in Fig. 1E. Detection of non-overlapping sets

of peptides from experiment to experiment is expected unless

coverage of the phosphoproteome is complete, which is difficult to

achieve.

Data analysis
Raw data files from three biological replicates were processed

using MaxQuant (version 1.0.13.13) as described earlier [56].

Briefly, peak lists were generated by the MaxQuant program using

the following search parameters: triple SILAC with heavy labels

Arg6/Lys4 and Arg10/Lys8; a maximum of two missed trypsin

cleavages; use of the six most intense peaks per 100 Da interval for

generation of MS/MS peak lists; and a mass tolerance of 7 ppm

on precursors and 0.5 Da (CID) for fragment ions. A fixed

modification was carbamidomethylation of cysteine (Cys, +
57.021464 Da) and variable modifications were oxidation of

methionine (+15.994915 Da), N-terminal protein acetylation (N-

terminal, +42.010565 Da), and phosphorylation of serine, threo-

nine and tyrosine (Ser/Thr/Tyr, +79.966331 Da). We used the

Mascot engine (v.2.3) (http://www.matrixscience.com) to search

the generated peak-lists files (*.msm) against the IPI database

(version 3.69) [57], which contains a list of frequently observed

contaminants, concatenated with reverse copies of all entries. The

acquired Mascot DAT files (*.dat) together with the raw files were

processed and quantified by MaxQuant using the following

parameters: the false discovery rate (FDR) for peptides, proteins

and sites of modifications was required to be below 1% as assessed

by the number of positive hits searched in the reverse database;

and minimum peptide length was set at 6. MaxQuant automat-

ically calculated the localization probabilities of all tyrosine

phosphorylation sites as described earlier [10] and quantified

intensity/peptide abundance ratios for each individual phospho-

site. All tyrosine phosphorylated peptides (MS scan spectra) were

manually inspected for arginine-proline conversion and each

peptide abundance ratio was normalized in accordance with the

number of proline residues in the corresponding peptide sequence.

The peptide containing Y394 in LCK was matched to a

miscleaved peptide that is unique to this protein.

Bioinformatics analysis
For bioinformatics analysis, the peptide abundance ratios

obtained from the three biological replicates were averaged. For

cases where a pTyr site was detected in multiple peptides, we

considered the least modified peptide when evaluating pTyr site

dynamics. Clustering of pTyr sites showing $2-fold dynamics at a

minimum of one time-point was performed using the fuzzy

c-means algorithm as implemented in GProX with default

parameters [58]. Enrichment analysis was also performed using

GProX by retrieving Gene Ontology (GO) [59] and Pfam [60]

annotations from the UniProt database [61] and testing for over-

representation of terms in each cluster, which was assessed using

Fisher’s exact test. Only terms occurring at least two times in a

cluster and attaining a p-value less than 0.05 after correction for

multiple testing using the Benjamini and Hochberg algorithm

were regarded as significant. For identification of enriched

pathways, UniProt accession keys were uploaded to DAVID

[62] and analyzed with default parameters. Sequences of kinase

domains were aligned using Clustal W2 [63] and the resulting tree

file was visualized using the iTOL tool [64]. The ‘‘princomp’’

function of MATLAB was used for principal component analysis.

Phosphorylation Site Dynamics of Early TCR Signaling

PLOS ONE | www.plosone.org 8 August 2014 | Volume 9 | Issue 8 | e104240

http://www.matrixscience.com


Modeling and simulation
A chemical-kinetics model for TCR signaling in a single cell was

formulated using a rule-based approach, which enabled concise

representation of biomolecular interactions and efficient simula-

tion of multi-site phosphorylation [15]. The goal of model building

was to leverage available mechanistic knowledge to construct a

model that includes as many observed pTyr sites as possible. The

knowledge base of the model was developed through a data-

guided literature search. Phosphorylation sites and the proteins

containing these sites were selected for inclusion in the model if

they were detected in the phosphoproteomic experiments, were

known to be involved in TCR signaling based on information in

the primary literature, and if they had a known kinase,

phosphatase, and/or binding partner. A second set of proteins

and sites were included if, based on published findings, they were

necessary for regulation of the sites detected in experiments.

Residue numbers were assigned for naming purposes in accor-

dance with standard UniProt numbering. The proteins and

interactions included in the model are identified and discussed

in the Supplementary Text S1 in File S3. The initial model that we

constructed on the basis of available mechanistic knowledge was

deemed deficient because it was unable to reproduce the observed

dephosphorylation dynamics of four putatively inhibitory pTyr

sites (Fig. S6I, M–O in File S2) and also because it was unable to

reproduce the observed fast phosphorylation dynamics of WAS

(Fig. S6L in File S2). To address these shortcomings, we extended

the model to include the hypothetical mechanisms of Fig. 3K (Fig.

S1B, D, E in File S2) and Fig. 4B (Fig. S1C in File S2). Unlike

other aspects of the model, these mechanisms cannot be supported

by literature citations, which is why experimental tests of model

predictions focused on probing these aspects of the model. The

mechanism of Fig. 3K was initially suggested by detection of

activating phosphorylation of PTPN6 (Fig. 1H; Fig. S6K in File

S2). The mechanism of Fig. 4B was initially suggested by reports

in the literature about the interactions that comprise the shortcut

pathway to WAS activation, especially the interaction between

CD3E and NCK1 [34]. Rules for noncovalent interactions and

post-translational modifications (i.e., tyrosine phosphorylation and

dephosphorylation) were specified using BNGL, a domain-specific

language for formulating models of biochemical reaction kinetics

[65]. BioNetGen [65] was used to process File A in File S1 (a.bngl

file) to generate an XML encoding of the model, which served as

input for NFsim [21], together with File B in File S1 (a.rnf file). File

B in File S1 specifies simulation protocols, including an

equilibration procedure that served to find the unstimulated

steady state. NFsim implements a particle-based kinetic Monte

Carlo algorithm [66]. Thus, NFsim produces results that reflect

the stochastic nature of chemical reactions; it uses rules to generate

reaction events, which are selected to occur randomly. For this

reason and also because our model is formulated for a single cell,

whereas our experimental measurements correspond to averages

over a large population of cells, we performed multiple simulation

runs and the results were averaged to obtain smooth curves for

comparisons with the proteomic, population-averaged data.

NFsim simulation results were validated using a different

simulation tool, RuleMonkey [67]. Model parameters were

estimated in three ways, as indicated in Table S2 in File S1 (see

the footnotes). Some parameters were assigned values reported in

the literature, which were determined in one of two ways: in an

experimental study or in an earlier modeling study. Other

parameters were determined through simplifying assumptions or

physicochemical constraints. These parameters were assigned

values related to and determined by other parameter values; the

relationships between the independent and dependent parameters

are given in Table S2 in File S1. Finally, some parameters were

determined through fitting. These parameters were constrained

during fitting in one of two ways. Some were simply constrained to

have positive values. Others were constrained to have values

between specified lower and upper bounds, which were set on the

basis of various empirical considerations, which are noted in Table

S2 in File S1. Fitting was performed initially using a brute force

approach (coarse grid search), followed by targeted parameter

refinement using the variable metric method [68]. PTPN6 and

LCP2 knockdowns were modeled by setting the copy numbers of

PTPN6 and LCP2 to zero. The model visualization in Fig. S4 in

File S2 is drawn in accordance with established conventions [22].

Simulation results were visualized using MATLAB, version 7.10.0

(R2010a) (MathWorks, Natick, MA).

DNA constructs for RNAi silencing and generation of
stable cell lines

A lentiviral vector pSicoR (Addgene plasmid 11579) [69] and

plasmids of the 3rd generation packaging system for producing

viral particles [70] were used: pMD2.G (Addgene plasmid 12259),

pMDLg/pRRE (Addgene plasmid 12251) and pRSV-Rev (Ad-

dgene plasmid 12253), which were obtained via Addgene’s

Material Transfer Agreement. These DNA plasmids were kindly

deposited in Addgene by Drs. Tyler Jacks and Didier Trono.

An EGFP cassette in the vector pSicoR was exchanged with a

puromycin resistance gene cassette, resulting in a modified

pSicoR-puro vector allowing puromycin resistance-based selection

of shRNA expressing cells. RNAi sequences potentially targeting

the PTPN6 and LCP2 transcripts were generated using available

Web resources (http://www.dharmacon.com) according to pub-

lished recommendations for siRNA/shRNA design [71,72].

shRNA DNA constructs were designed using recommended

guidelines [69] and available Web resources. Briefly, the shRNA

sequences were synthesized (DNA Technology, Denmark) as two

complementary DNA oligonucleotides:

59-T(N19)TTCAAGAGA(rN19)TTTTTTC-39 and

59-TCGAGAAAAAA(N19)TCTCTTGAA(rN19)A-39

where N19 is the sense strand of the target sequence and rN19 is

the antisense strand. The oligonucleotides were annealed as

described earlier [72] and directly cloned into the vector pSicoR-

puro. Clones were selected for verification by DNA sequencing.

We used the following targeting sequences for RNAi: 59-

GAGCATGACACAACCGAAT-39 for PTPN6 and 59-GGAC-

CAGACAGAAGAGAGA-39 for LCP2. Verified DNA constructs

were used to produce lentiviral particles as described earlier [69]

with modifications. Briefly, 10 mg of lentiviral vector and 5 mg of

each packaging plasmid were co-transfected in one 15 cm dish of

HEK-293T cells using the transfection reagent METAFECTENE

(Biontex Laboratories) according to the manufacturer’s instruc-

tions. Supernatants were harvested 48 and 72 h after infection and

viral particles were concentrated by ultracentrifugation at 115,000

RCF for 2 h at 4uC. Viral stocks were diluted in cell culture media

and used for infection of Jurkat T cells to generate stable cell lines

expressing the described RNAi constructs. Cells stably expressing

shRNA sequences were grown in RPMI medium with 4 mg/ml of

puromycin for 5 days and used for qPACE-based co-stimulation of

TCR/CD28 signaling for immunoblot experiments. Depletion of

PTPN6 and LCP2 was confirmed by immunoblotting.
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Immunoblotting
Equal amounts of normal Jurkat T cells (WT) and Jurkat T cells

with stable knockdown of PTPN6 (PTPN6 KD) or LCP2 (LCP2

KD) were stimulated for either 0, 30, and 60 s or 0, 10, and 60 s

using our qPACE setup (Fig. 1B). Harvested cells were lysed using

ice-cold lysis buffer [modified RIPA buffer: 150 mM NaCl;

50 mM Tris, pH 7.5; 1% v/v NP-40; 1 mM EDTA; proteases

inhibitors (cOmplete Tablets, Roche); 1 mM sodium orthovana-

date; 2 mM NaF; and 2 mM b-glycerophosphate]. The cell lysates

were centrifuged, mixed with 66Laemmli buffers and resolved on

Novex 4–12% Bis-Tris gradient gels (Invitrogen) using MES

running buffer followed by protein transfer to nitrocellulose

membrane, blocking with 5% BSA and incubation with primary

and HRP-conjugated secondary antibodies. To quantify western

blots, we used the Analyze Gels function in the ImageJ software

tool (http://imagej.nih.gov/ij/docs/guide/user-guide.pdf).

Chemiluminescence was measured, and we considered different

exposure times to ensure that images were analyzed well before

saturation. Values for bands corresponding to site-specific

antibody staining were normalized using values for corresponding

total protein loading controls. The following antibodies were used

for western blots: Phospho-Lck (Tyr 505), Phospho-Zap-70 (Tyr

493), Phospho-LAT (Tyr 191), Zap-70, WASP, NCK1 (Cell

Signaling); LAT (Santa Cruz Biotechnology, Inc.); Phospho-

WASp (Tyr 290) (Sigma-Aldrich); Phospho-Lck (Tyr 192)

(Abcam); and Shp-1, Shp-2, and Slp-76 mouse mAb (BD

Biosciences). Secondary anti-mouse and anti-rabbit antibodies

were obtained from GE Healthcare, UK.

In vitro dephosphorylation assay
Jurkat T cells with stable knockdown of PTPN6 were starved

for 16 hours and harvested by centrifugation. The cells were lysed

using ice-cold lysis buffer [modified RIPA buffer: 150 mM NaCl;

50 mM Tris, pH 7.5; 1% v/v NP-40; 1 mM EDTA; proteases

inhibitors (Complete tablets, Roche); 1 mM sodium orthovana-

date; 2 mM NaF; and 2 mM b-glycerophosphate]. The cell lysate

was centrifuged; a supernatant was supplemented with the SDS up

to 0.5% and incubated for 30 minutes on ice. The cell lysate was

diluted with the lysis buffer up to 0.1% SDS. Mouse anti-LCK

antibody (6 mg) bound to Protein G beads was used for

immunoprecipitation of LCK for 5 hours at 4uC. The beads were

washed three times with the lysis buffer and five times with ice-cold

in vitro assay buffer (50 mM HEPES, pH 7.4, 2 mM DTT,

100 mM NaCl, 2 mM EDTA). Washed beads were divided into

two equal parts with 50 ml in vitro assay buffer. The first sample

was supplemented with 1 mg of an active human recombinant

protein PTPN6 (Millipore, cat. No. 14-591) and second sample

was vehicle treated. Both samples were incubated at 37uC for

30 minutes with gentle shaking. Thereafter, the samples were

mixed with 66 Laemmli buffers and resolved on Novex 4–12%

Bis-Tris gradient gels (Invitrogen) using MOPS running buffer

followed by protein transfer to nitrocellulose membrane, blocking

with 5% BSA and incubation with primary and HRP-conjugated

secondary antibodies.

For immunoprecipitation, an anti-LCK antibody (Mouse, clone

MOL 171, BD Pharmingen) was used. For immunoblotting,

antibodies specific for phosphorylated Y192 in LCK (Abcam) and

LCK (Rabbit, Cell Signaling) were used.

Supporting Information
The Supporting Information consists of 17 items: Tables S1 and

S2 and Files A and B in File S1; and Figures S1–S9 and Tables

S3–S5 in File S2; and File S3 (Supplementary Text S1). Table S4

in File S2 includes citations of References [73,74,75,76,77,78,79].

Table S5 in File S2 includes citations of References [80,81,82,

83,84,85]. The Supplementary Text S1 (File S3) includes citations

of References [86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,

101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,

116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,

131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,

146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,

161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,

176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,

191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,

206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,

221,222].

Supporting Information

File S1 This Zip file combines Tables S1 and S2 (Excel
spreadsheets) and Files A and B (plain-text files). Table
S1 in File S1. Proteomic data. This Excel spreadsheet provides a

listing time courses and residue numbers of phosphopeptides

detected in each of three LC-MS/MS experiments. Table S2 in
File S1. Parameter estimates. This Excel spreadsheet provides a

listing parameter estimates used in the model for TCR signaling.

File A in File S1. Executable model specification. This plain-text

file provides an executable model specification, which can be

processed by BioNetGen. The filename extension should be

changed to ‘‘.bngl’’ for processing by BioNetGen. File B in File
S1. Simulation protocol. This plain-text file provides a definition

of a simulation protocol, which can be processed by NFsim. The

filename extension should be changed to ‘‘.rnf’’ for processing by

NFsim.

(ZIP)

File S2 This PDF file combines Figures S1–S9 and
Tables S3–S5. Figure S1 in File S2. Overview of methodology

and summary of main results. (A) An integrated experimental and

model-based approach was used to characterize initial phosphor-

ylation events in TCR signaling, generate non-trivial predictions,

and test these predictions. A model based solely on previously

elucidated mechanisms of TCR signaling did not reproduce the

phosphorylation dynamics observed for the following five sites:

LCK Y192, DOK1 Y449, DOK2 Y299, PAG1 Y417, and WAS

Y291. Incorporation of novel mechanisms enabled the dynamics

of these sites to be reproduced and led to generation of predictions

that were tested experimentally. (B) Proposed roles of PTPN6 in

early and late signaling. In early signaling (bold lines), PTPN6

plays a positive role by dephosphorylating negative regulatory

sites, including LCK Y192, PAG1 Y163, DOK1 Y449, and

DOK2 Y299. Later in signaling (thin lines), the negative

regulatory capabilities of PTPN6 become dominant. (C) Proposed

dual pathways for activation of WAS. In early signaling (bold

lines), WAS is recruited to the plasma membrane through

interaction with NCK1/2 in association with CD3E. As signaling

progresses over time, the longer pathway for WAS recruitment

(thin lines), which is dependent on LCP2, becomes dominant. (D)

A PTPN6-mediated positive feedback loop in which PTPN6

dephosphorylates LCK Y192, thereby enhancing the ability of the

LCK SH2 domain to interact with pTyr sites. LCK activates

PTPN6 through phosphorylation and direct interaction. (E) In a

second PTPN6-mediated positive feedback loop, LCK phosphor-

ylates and activates PTPN6. PTPN6 dephosphorylates PAG1,

which reduces the ability of PAG1 to co-localize LCK and CSK,

which reduces phosphorylation of LCK at its inhibitory C-

terminal tyrosine and relieves autoinhibition. Figure S2 in File
S2. Enrichment analysis. For proteins containing regulated pTyr

sites, we tested for enrichment of associated GO terms compared
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to proteins containing detected but unregulated pTyr sites (i.e.,

pTyr sites for which phosphorylation changed less than two-fold).

(A) Cluster-specific enrichment analysis based on ‘‘biological

process’’ terms. (B) Cluster-specific enrichment analysis based on

‘‘molecular function’’ terms. (C) Cluster-specific enrichment

analysis based on ‘‘cellular compartment’’ terms. (D) We also

tested for enrichment of associated Pfam domain names. In A

through D, color is used to indicate the negative logarithm (base

10) of the z-transformed p-value associated with each term. The

lighest shade of green corresponds to the highest level of

enrichment. Black corresponds to no enrichment. (E) Information

about detected pTyr sites was uploaded to the DAVID resource

and processed using default parameters to identify pathways

enriched for regulated pTyr sites. The y-axis reports the negative

logarithm (base 10) of the p-value for each of the indicated

pathways. Pathway enrichment scores are reported on the y-axis.

The most enriched pathway is the ‘‘T cell receptor signaling

pathway.’’ Figure S3 in File S2. Phylogenetic relationships of

protein kinases with detected pTyr sites. The tree shown was built

based on kinase domain sequences. Protein kinases that contain

regulated pTyr sites are indicated with red lettering; these kinases

are also represented in Fig. 1h. Kinase families are indicated by

background colors. The following abbreviations are used for

protein kinase family names: TK, tyrosine kinases; TKL, tyrosine

kinase-like; CMGC, the CDK/MAPK/GSK3/CLK group;

AGC, protein kinase A, G, and C families; CAMK, calcium and

calmodulin regulated kinases; and STE, homologs of the yeast

STE7, STE11, and STE20 genes. Figure S4 in File S2.

Visualization of model. Proteins, domains, and linear motifs are

represented as boxes, which are nested to indicate structural

relationships. Lines that begin and end with an arrowhead

represent direct binding interactions. Arrowheads point to

functional components that mediate protein-protein interactions.

Lines that originate at a box representing an enzyme (a kinase or

phosphatase) and end with an open circle, or open circle overlayed

with a diagonal bar, indicate enzyme-substrate relationships. An

open circle denotes phosphorylation and an open circle overlaid

with a diagonal bar denotes dephosphorylation. Flags (vertical

lines connected to a small square box at top and a text label at

bottom) represent sites of post-translational modification. All of

these sites are pTyr sites. Compartmental locations of proteins are

indicated by boxed labels near the lower left corners of protein

boxes. The following symbols are used to denote locations: E,

extracellular; M, membrane anchored; and C, cytosol. Locations

that can be inferred are not indicated. Protein boxes are organized

in layers, which are indicated by shading. Stimulating antibodies

are represented in the top layer, TCR/CD3 and CD28 are

represented in the next layer, their direct interaction partners are

indicated in the next layer, and so on. Elements of this map

directly related to elements of the underlying rule-based model

that it visualizes. A rule-based model is composed of molecule type

definitions and rules, as well as specifications of rate laws,

parameters, and initial conditions. Molecule type definitions of

the model are illustrated here by protein boxes. Rules are

illustrated by arrows. Each arrow corresponds to a single rule or a

set of related rules. Numbers next to arrows reference rules

presented in File A in File S1. Figure S5 in File S2. Principal

component analysis of time-course data used to guide model

specification and estimate model parameter values. Experimental

time courses for the 16 pTyr sites included in the model were

analyzed by principal component analysis and found to separate

into three classes, which are distinguished by different background

colors and labeled 1–3. Time courses in Class 1 correspond to

pTyr sites that were observed to undergo increases in phosphor-

ylation; according to the model, these increases occur through

mechanisms that do not require prior ITAM phosphorylation. An

example of a pTyr site in Class 1 is CD3G Y171, which in the

model can be phosphorylated by LCK bound to CD28 through a

constitutive interaction that does not require ITAM phosphory-

lation. Time courses in Class 2 correspond to pTyr sites that were

also observed to undergo increases in phosphorylation; however,

according to the model, these increases in phosphorylation occur

through mechanisms that require ITAM phosphorylation. For

example, ZAP70 must be recruited to a phosphorylated ITAM

before it can be phosphorylated by LCK at Y493. Time courses in

Class 3 correspond to pTyr sites were observed to undergo

decreases in phosphorylation. Figure S6 in File S2. Experimen-

tal and simulated time courses. (A through P) Phosphorylation

dynamics of the 16 pTyr sites used to guide model construction

and estimate model parameters are plotted. Points represent the

average of measurements from three independent phosphopro-

teomic experiments, with error bars representing standard

deviations. Simulation results are plotted as solid lines. Experi-

mental measurements and simulation results are normalized to

baseline and log2 transformed. (Q and R) Measured phosphory-

lation dynamics of pTyr sites in PAG1, additional to the site shown

in Panel m. The dynamics of these sites are similar to the dynamics

of PAG1 pY163; these sites are not explicitly considered in the

model. Note that the results presented here were presented earlier

in Figs. 2–4 in different form. Figure S7 in File S2. PTPN11

levels in normal cells and in cells depleted of PTPN6.

Immunoblots of PTPN11 (SHP-2) in normal cells (WT) and in

cells depleted of PTPN6 (SHP-1 KD). Blots are representative of

the results from multiple (at least two) experiments. Figure S8 in
File S2. In vitro phosphatase activity of PTPN6. Immunoprecip-

itated LCK was treated or untreated with recombinant PTPN6

and immunoblotted using phospho-tyrosine specific antibodies as

indicated. LCK specific antibodies were used to show equal

amounts of immunoprecipitated LCK. Blots are representative of

the results from multiple (at least two) experiments. Figure S9 in
File S2. Disengagement of the shortcut pathway and engagement

of the longer LCP2-dependent pathway to WAS activation. (A)

Predicted association of NCK1/2 with CD3E at 0 and60 s of

stimulation. The y-axis indicates the number of NCK molecules

associated with TCR/CD3 complexes per cell. (B) Predicted

association of NCK1/2 with phosphorylated LCP2 at 0 and 60 s

of stimulation. The y-axis indicates the number of NCK molecules

associated with LCP2 per cell. (C) Immunoblot of LCP2

phosphorylation at Y145 in normal (WT) and LCP2 KD cells

stimulated for the indicated times. (D) Immunoblot of LCP2

phosphorylation at Y113 in normal (WT) and LCP2 KD cells

stimulated for the indicated times. Blots are representative of the

results from multiple (at least two) experiments. Table S3 in File
S2. Proteins and pTyr sites included in the model for TCR

signaling. Table S4 in File S2. Summary of earlier phospho-

proteomic studies of TCR signaling. Table S5 in File S2.

Comparison of selected models for immunoreceptor signaling in

which phosphosite dynamics were considered.

(PDF)

File S3 This PDF file provides the Supplementary Text.
Supplementary Text S1 in File S3. This PDF file provides

extensive annotation of the model.

(PDF)
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