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Abstract

One of the important modes of pre-mRNA post-transcriptional modification is alternative splicing. Alternative splicing
allows creation of many distinct mature mRNA transcripts from a single gene by utilizing different splice sites. In plants like
Arabidopsis thaliana, the most common type of alternative splicing is intron retention. Many studies in the past focus on
positional distribution of retained introns (RIs) among different genic regions and their expression regulations, while little
systematic classification of RIs from constitutively spliced introns (CSIs) has been conducted using machine learning
approaches. We used random forest and support vector machine (SVM) with radial basis kernel function (RBF) to
differentiate these two types of introns in Arabidopsis. By comparing coordinates of introns of all annotated mRNAs from
TAIR10, we obtained our high-quality experimental data. To distinguish RIs from CSIs, We investigated the unique
characteristics of RIs in comparison with CSIs and finally extracted 37 quantitative features: local and global nucleotide
sequence features of introns, frequent motifs, the signal strength of splice sites, and the similarity between sequences of
introns and their flanking regions. We demonstrated that our proposed feature extraction approach was more accurate in
effectively classifying RIs from CSIs in comparison with other four approaches. The optimal penalty parameter C and the RBF
kernel parameter c in SVM were set based on particle swarm optimization algorithm (PSOSVM). Our classification
performance showed F-Measure of 80.8% (random forest) and 77.4% (PSOSVM). Not only the basic sequence features and
positional distribution characteristics of RIs were obtained, but also putative regulatory motifs in intron splicing were
predicted based on our feature extraction approach. Clearly, our study will facilitate a better understanding of underlying
mechanisms involved in intron retention.
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Introduction

As an essential post-transcriptional process, alternative splicing

(AS) can increase transcriptome plasticity and protein diversity [1].

There are primarily three types of AS: intron retention, exon

skipping, and alternative choices of 59 and 39 splice sites (59ss and

39ss, respectively) of introns [2]. The frequency and types of AS

differ significantly between vertebrates and invertebrates [3]. For

example, only ,19% of multi-exon genes are alternatively spliced

in fruit fly, while it is ,95% in human [4,5]. In vertebrates and

especially mammals, most alternatively spliced genes possess exons

that are entirely spliced out or truncated, and intron retention is

the least prevalent form of AS [6–8]. In invertebrates and plants,

in contrast, more introns have their retention in mature mRNAs

[3,7,9,10]. A recent genome-wide study in Arabidopsis reports that

,42% of the multi-exon genes undergo AS with ,40% of those

genes having retained introns (RIs) but only 3% having spliced

exons [11]. Furthermore, it is likely that the number of AS genes

identified in plants will keep increasing with the increased number

of tissue-specific transcriptome studies. Syed et al. [12] reports that

the AS events being found have risen from 1.2% to 61% over the

past decade in Arabidopsis. Accumulating evidence indicates

alternative splicing in invertebrates and plants might have different

mechanisms in comparison with vertebrates and especially

mammals, and the extent and complexity of intron retention in

plants still need to be specifically characterized.

Transcript samples with RIs that are examined by RT-PCR are

shown to co-purify with polyribosomes, suggesting that these

intron retention events are not the result from incomplete splicing

but are found in their nuclear exports [13]. Some researches show

that specific abiotic stresses can impact on RIs. By analyzing the

splicing process of a cold-regulated gene encoding ribokinase

(7H8) protein, Mastrangelo et al. [14] suggests that 7H8 cold-

dependent intron retention is a general trait in cereals. Palusa et
al. [15] reports that various abiotic stresses affect the splicing

pattern of serine/arginine-rich (SR) genes in Arabidopsis. On the

other hand, there are many studies indicating that intron retention

is a major AS phenomenon in plants [13,16,17], most of which
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concentrate on the positional distribution of RIs in 39 UTR, 59

UTR and CDS regions. However, it still lacks research on

characterization, comparison and prediction of two types of

introns using large amount of data by machine learning

approaches in plants. Therefore, further works are required to

deepen our understanding of RIs and unravel the underlying

molecular and biological mechanisms.

Machine learning approaches have been widely applied to

knowledge extraction from biological experimental data [18]. For

classification of various problems in the domain of bioinformatics,

prior studies suggest that SVM outperform k-nearest neighbors,

neural networks and decision trees [19–21]. In SVM applications,

the radial basis kernel function (RBF) that has only one kernel

parameter c is widely adopted [22]. Unlike the linear kernel, it can

handle data with nonlinear relations between class labels and

features [23]. Only under certain parameters, the sigmoid kernel is

valid and demonstrated to behave like RBF [24]. Additionally, the

polynomial kernel has more kernel parameters and demands more

training time than RBF, and it can easily fall into numerical

difficulties with the degree increase [23]. Therefore, RBF is

selected and used in our study. In the SVM training procedure

with RBF kernel, both c and the penalty parameter C settings are

shown to significantly influence the classification accuracy [25].

Particle swarm optimization (PSO), a meta-heuristic optimization

algorithm that simulates the social behavior of bird flocking or fish

schooling [26], proves to be an appropriate approach in finding

better parameters of SVM [27]. On the other hand, random forest

has been reported as another competitive classification algorithm

and received increasing interests [28,29]. After surveys of random

forest applications in bioinformatics for the recent decade,

Boulesteix et al. [30] summarizes that random forest offers

attractive features such as direct handling of high-dimensional

data and advantages in parameters selection. Especially compared

with SVM, it is easier for random forest to obtain excellent

performance using the default parameterization without tuning

parameters in general [31,32]. Recent works show that random

forest classifiers obtain better performance comparable to SVM in

some bioinformatics applications including classification of cancer

microarray data [33], identification of DNA-binding proteins [34],

and prediction of miRNA targets [35].

Using random forest and in-house implemented PSOSVM that

utilizes PSO to optimize parameters C and c of SVM, our study

was set up to detect systematically the differences between two

types of introns, and characterize and categorize them accurately.

Our proposed feature extraction approach is novel and hybrid,

including three aspects: basic intron sequence features; frequent

short linear sequence motifs; and features extracted from splice

sites and the flanking sequences of introns. In our study,

performances of random forest and PSOSVM to classify RIs

and CSIs were analyzed and compared, and the results of

classification based on different feature sets suggested that our

feature extraction approach had a distinct advantage.

Materials and Methods

Dataset
RIs are defined if the introns are spliced out in at least one

isoform (mRNA) but entirely retained in at least one other isoform

for the same genes. In addition, for multiple RIs founded in

different isoforms of the same genes, if the differences in the 59

splice sites (or the 39 splice sites) of these RIs are less than 6 bp, we

define these RIs as redundant ones. Hence the longest one is

selected among them for downstream data analysis. CSIs are

defined as ones that are always spliced out in all isoforms of

individual genes.

Based on TAIR10 gene annotation, coordinates of introns in

genome sequences were determined using TAIR10_GFF3_genes.

gff (ftp://ftp.arabidopsis.org/home/tair/Genes/TAIR10_genome_

release/) by a Perl script. Then using GMAP [36], we extracted RIs

and CSIs sequences, splice sites and flanking exons sequences of

introns in Arabidopsis from the genome sequence files (ftp://

ftp.arabidopsis.org/home/tair/Sequences/whole_chromosomes/). R

quantile() function was employed to generate intron length quantiles

for analyzing the intron length distribution in Arabidopsis.

Feature extraction approach
Our new hybrid feature extraction approach combines the

following three aspects:

(A) Basic features extraction. On one hand, we consider

some of the most common global features of nucleotide sequences,

such as intron length, nucleotide occurrence probabilities of A, C,

G and T in introns, AT content and GC content. On the other

hand, we determine local features of segmental nucleotides

composition [37], which provide crucial complementary to the

global features and are defined as segmental probabilities of
four nucleotides correlation factors (hAG ,hAC ,hAT ,hGC ,
hGT ,hCT ), as shown below:

For a L-length nucleotide sequence (SL):

SL~R1R2R3R4R5R6R7:::RL ð1Þ

m~ceiling(L=x) ð2Þ

Here x is set to 20 in our work, because the length of the

shortest intron sequence is 20 bp in our datasets. m is the smallest

integer not less than (L=x).

SL is divided into m sections as following:

R1R2:::R20|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
1

R21:::R40|fflfflfflfflffl{zfflfflfflfflffl}
2

::R20m{19:::RL|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

Each section includes 20 bp except the last section, which

includes (L{20mz20) bp.

hAG~
1

m

Xm

i~1
PA

i {PG
i

�� ��
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1

m
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�� ��
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m
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�� ��
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m
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i~1
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i {PT
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�� ��

9>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>;

ð3Þ

Here PA
i ,PC

i ,PG
i ,PT

i denote probabilities of the corresponding 4

bases (A, C, G, T) in the ith section respectively.

(B) Frequent motifs extraction. Because of the differences

between RIs and CSIs, some subsequences appear more
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frequently in RIs than CSIs, or vice versa. In this paper, these

motifs need to be more frequent in either RIs or CSIs but not

frequently occur in both RIs and CSIs. We searched l-mer

subsequences using sliding window with the step size of 1, and

extracted all subsequences from 2 to 5-mer because l-mer

subsequences occur with low frequencies if l is greater than 5.

For example, the mean frequency of 6-mer subsequences is low

(2.01E-05). In order to discover frequent motifs from the above-

mentioned l-mer subsequences, evaluation indicators are required

and defined as following:

FSL
(x(l))~

TSL
(x(l))

WSL
(l)

ð4Þ

WSL
(l)~L{lz1 ð5Þ

Here, L refer to the length of SL (Eq. 1), x(l) designates l-mer

subsequence, TSL
(x(l)) denotes the occurrence number of x(l) in

SL while WSL
(l) denotes the number of all l-mer subsequences

within SL. So FSL
(x(l)) means the frequency of x(l) in SL, which

will be the value of feature vector if x(l) is determined as a

frequent motif.

S(x(l))~
C(x(l))

n
ð6Þ

Dataset ({SLi
}) include n nucleotide sequences. In {SLi

},

C(x(l)) refers to the number of sequences in which x(l) is

discovered. S(x(l)) is used to describe the confidence of x(l) in

{SLi
}. In this paper, frequent motifs must have higher value of

S(x(l)) in either RIs or CSIs.

T(x(l))~
Xn

i~1
TSLi

(x(l)) ð7Þ

W (l)~
Xn

i~1
WSLi

(l) ð8Þ

F (x(l))~
T(x(l))

W (l)
S(x(l)) ð9Þ

T(x(l)) denotes the occurrence number of x(l) in {SLi
}, and

W (l) denotes the total number of l-mer subsequence included in

{SLi
}. F (x(l)) represents the frequency of x(l) in {SLi

}.

a(x(l))~
FB(x(l)){FA(x(l))

FB(x(l))zFA(x(l))
ð10Þ

In Eq. 10, FB(x(l)) is the frequency of x(l) in dataset of CSIs,

and FA(x(l)) is the frequency of x(l) in dataset of RIs. a(x(l))
represents the relative difference of x(l) between CSIs and RIs

datasets. The positive value of a(x(l)) means a higher frequency of

x(l) in CSIs than in RIs, the negative value of a(x(l)) means the

opposite case. So, we need to consider the value of a(x(l)) and

Figure 1. Feature extraction approaches for calculating signal
strength of splice sites and similarity of intron and the flanking
exons. A. The sequence extraction approach for calculating signal
strength of splice sites; B. The sequence extraction approach for
calculating increment of diversity (ID).
doi:10.1371/journal.pone.0104049.g001

Table 1. The parameter values or ranges of PSOSVM.

Parameter Value or Range

t(the number of iterations) 10

S(the number of particles) 100

D(dimensions of particle) 2

C1 1.49618

C2 1.49618

w 0.7298

C (228, 210)

c (228, 28)

The rule-of-thumb settings of C1 , C2 and w are cited from [74].
doi:10.1371/journal.pone.0104049.t001

Figure 2. The pseudo-code of PSOSVM. The details of Eq. 16 are
illustrated in Materials and Methods.
doi:10.1371/journal.pone.0104049.g002
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S(x(l)) as a whole, and select appropriate thresholds of a(x(l)) and

S(x(l)) to decide frequent motifs.

(C) Splice sites and the flanking sequences of introns

features extraction. To quantify the signal strength of 59 and

39 splice sites, we extracted 9 bases for donor sites (23,+6) and 23

bases for acceptor sites (221,+2) from introns and their flanking

exons (see details in Figure 1A), and then calculated frequencies of

nucleotide A, C, G and T, which were selected as the parameters

of position weight matrix (PWM) [38]. The PWM is defined as

following:

Pib~fib=N ð11Þ

Wib~ln(Pib=P0b) ð12Þ

Here, Pib is the position probability matrix. N is the total

number of sequences in the training sets. b represents any of the

four nucleotides: A, C, G, and T. fib denotes the occurrence

number of b in the ith position of the N aligned sequences along

the splice sites. P0b is equal to 0.25, and Wib denotes the PWM

value of b in the ith position. For a n-length sequence, the PWM

scoring function (SF ) is defined as:

SF~
Xn

i~1
Wib ð13Þ

SF denotes the quantitative value of the signal strength of splice

site. The greater value of SF means the more probability of

constructive splicing sites [39].

All of the sequences extracted from 220 to +20 bp at donor

(acceptor) sites were separated into two datasets from splice sites

(see details in Figure 1B): one exon sequences dataset and one

intron sequences dataset. Increment of diversity (ID) is used to

depict the similarity level of these two datasets [40]. The difference

between RIs and their flanking sequences datasets (or CSIs and

their flanking sequences datasets) can be quantitatively described

by ID.

Let X represents d-dimensional category space X :

{n1,n2,:::,nd}, the standard diversity measure for X is defined as:

D(X )~D(n1,n2,:::,nd )~N ln N{
Xd

i~1
ni ln ni ð14Þ

Here d represents the total number of trimers, ni is the absolute

frequency of the ith trimer in nucleotide sequence, N is equal toPd
i~1 ni. RIs have the similar trimer usage with the exons, which is

different from CSIs where trimer frequencies are obviously

different between introns and flanking exon regions [41].

For the two d-dimensional sources X : {n1,n2,:::,nd} and Y :

{m1,m2,:::,md}, ID depicts the similarity between the X and Y . It

is defined as:

ID(X ,Y )~D(XzY ){D(X ){D(Y ) ð15Þ

Here D(XzY ) is the measure of diversity of the mixed source

XzY : {n1zm1,n2zm2,:::,ndzmd }.

By the above-mentioned feature extraction approach, the

sequence information in our dataset was changed into feature

vector using R codes that utilize ‘‘seqinr’’ package (http://cran.r-

project.org/web/packages/seqinr/index.html).

Random Forest
Random forest is an ensemble classifier that consists of many

independent decision trees [28]. Each tree is created by bootstrap

samples of the original training data using a randomly selected

subset of features [42]. At each split about 37% of the training

data, named as ‘‘out of bag’’ (OOB) samples, is not used to

construct but evaluate the performance of each classification tree

[33]. The other remainder, named as ‘‘in-bag’’ samples, is used to

construct each classification tree. Then individual trees are

combined through a voting process to provide an unbiased

prediction. Compared with other classification approaches such as

decision tree, it possesses internal cross-validation [43] and could

be more accurate and tolerant to noises [35]. The random forest

algorithm is available in Weka [44].

PSOSVM
SVM classifier, as a typical 2-class classifier, is to calculate an

optimal linear separating plane that separates two classes of the

dataset [45]. For non-linearly separable cases, samples are mapped

into a high-dimensional feature space where a separating hyper

plane can be found, and proper kernel function is sought to realize

this nonlinear mapping [46].

In our study we used RBF kernel. Considering two samples

xi,xj[Rd (i=j), the RBF kernel is calculated using

K(xi,xj)~exp({c xi{xj

�� ��2
), where d denotes the number of

dimensions of input feature vector and c (.0) represents the width

of RBF [47]. In general, the performance of SVM is determined

by parameters (C, c). The grid search algorithm is a traditional

method to find the best (C, c) [48]. However, it is difficult to obtain

a satisfactory outcome because of too limited parameter pairs to

search from the huge size of possible search space by applying this

method. Lin et al. [26] introduces PSO for parameter determi-

nation and feature selection of SVM, and experimental results

demonstrate that the classification accuracy of SVM optimized by

PSO performs better than many other parameter optimal

approaches [49].

PSO consists of particles in the population that search for the

best position by following its best solution [50]. A particle is

considered as a point in a D-dimension space, and its status is

represented based on its position and velocity. Let

xt
i~(xt

i1,xt
i2,:::,xt

iD) and vt
i~(vt

i1,vt
i2,:::,vt

iD) represent the D-

dimensional position and velocity of particle i at iteration t

respectively. Let pt
i~(pt

i1,pt
i2,:::,pt

iD) represents the best personal

Figure 3. Numbers of various RNA types annotated in TAIR10
gene annotation for Arabidopsis. Each horizontal bar (with the
number) indicates the number for a given RNA type.
doi:10.1371/journal.pone.0104049.g003
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solution that particle i has obtained until iteration t, and pt
gbest

indicates the best global solution obtained from pt
i in the

population at iteration t. To search for the optimal solution, each

particle updates its velocity and position as following:

vtz1
id ~w|vt

idzC1|rand()|(pt
id{xt

id )

zC2|rand()|(pt
gbest{xt

id ),

xtz1
id ~xt

idzvt
id

d~1,2,:::,D

ð16Þ

Here C1 denotes the cognition learning factor, C2 denotes the

social learning factor, rand() is positive random number which is

uniformly sampled from the interval [0,1].

In this study, parameters of our proposed PSOSVM were set as

shown in Table 1, and the pseudo-code of the PSOSVM was

illustrated in Figure 2. We implemented PSOSVM algorithm in

the eclipse platform integrated with Weka (http://www.cs.

waikato.ac.nz/ml/weka/) and LibSVM (http://www.csie.ntu.

edu.tw/,cjlin/libsvm). The program of our PSOSVM was

written in java.

In order to select optimal parameters C and c in the population,

the fitness as an evaluation indicator in PSOSVM was necessary.

Here the fitness of (Ci,ci) (Figure 2) was set to be the averaged

accuracy of the SVM classifier on the training dataset via 10-fold

cross-validation (10FCV) experiment.

Performance assessment
Several assessment measures were used to evaluate the

classification performance using random forest and PSOSVM in

this study. All of them were deduced from the numbers of true

positives (TP), false positives (FP), true negatives (TN ) and false

negatives (FN ) [51]:

Sensitivity~TP=(TPzFN) ð17Þ

Specificity~TN=(TNzFP) ð18Þ

Accuracy~(TPzTN)=(TPzFNzTNzFP) ð19Þ

F-Measure~2|TP=(2|TPzFPzFN) ð20Þ

Here Accuracy (Eq. 19) represents the rate of overall correct

classifications. F-Measure (Eq. 20) is often used as a single-value

benchmark that characterizes classification performance. A

receiver operating characteristics (ROC) curve plots True Positive

Rate (i.e., Sensitivity) versus False Positive Rate (i.e., 1-Specificity)

[52], providing a valuable tool to summarize the accuracy of

predictions. The area under the ROC curve (AUC) is used to

quantitatively compare the performances of different predictive

models without regarding to class distribution or error costs. So we

also evaluated the performance using AUC. Moreover, in our

experimental data, we utilized probability estimates instead of 2

1/+1 class labels [53] for each test instance to generate more

accurate ROC curve and AUC for PSOSVM.

Results

Experimental dataset
In TAIR10 gene annotation for Arabidopsis, there are 28,775

genes, 3,903 transposable element genes and 924 pseudogenes. All

these genes except pseudogenes have been used for further

analysis, and they have a total of 40,745 annotated RNAs, which

can be categorized into 8 different RNA types (Figure 3). It is clear

from Figure 3 that most of the annotated RNAs are mRNAs

(86.85%, 35,386 out of 40,745). As shown in Table 2, we found a

total of 2,811 RIs and 113,098 CSIs in Arabidopsis. Interestingly,

no RI was detected in chloroplast (ChrC) and mitochondrion

(ChrM) while only 42 CSIs cases were found in these organelle

genomes. For the 8 different RNA types, both RIs (98.26%, 2,762

out of 2,811) and CSIs (97.53%, 110,304 out of 113,098) were

detected overwhelmingly in mRNAs whereas they (RIs: 1.74%, 49

out of 2,811 and CSIs: 2.47%, 2,794 out of 113,098) were rarely

discovered among other 7 RNA types. Therefore, all the RIs

(2,762) and CSIs (110,262 = 110,304-42) detected in mRNAs

within chromosomes Chr1–Chr5 constituted our data set for

downstream analysis.

Different from human genome that has much longer introns

(5,500 bp in average) [54], Arabidopsis has much shorter introns.

As shown in Table 3, the average lengths of RIs and CSIs are

145 bp and 160 bp respectively, and introns length varies greatly

within a range from 8 to 10,234 bp. Based on the intron length

distribution generated by quantile() in terms of the given

probabilities (0.02, 0.2, 0.4, 0.6, 0.8, 0.98), 96% RIs and CSIs

were found within the range from 44 to 501 bp and from 70 to

631 bp respectively. This suggested that extremely large introns

(i.e., RIs: 2,075 bp and CSIs: 10,234 bp, 9,724 bp, 7,384 bp) and

extremely small introns (i.e., those less than 20 bp) became

outliers, which would cause a negative effect on classification.

Consequently, we obtained the high-quality dataset including

2,520 RIs and 110,254 CSIs after removing these outliers (i.e., 13

Table 2. Distribution of RIs and CSIs in Arabidopsis.

Introns Categories RIs CSIs

All RNAs 2,811 113,098

mRNAs 2,762 110,304

ChrC, ChrM 0 42

Chr1, Chr2, Chr3, Chr4, Chr5 2,762 110,262

Redundant Cases 229 0

All RNAs means the 8 types of RNAs described in Figure 3. Redundant cases could only happen in RIs, the detailed description sees Materials and Methods.
doi:10.1371/journal.pone.0104049.t002
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RIs and 8 CSIs) and 229 redundant RIs (see the definition in

Materials and Methods).

Supervised machine learning approaches for the identification

of RIs and CSIs require a set of labeled samples [55]. In this study,

RIs were regarded as positive samples and CSIs were regarded as

negative samples. However, the proportion of positive to negative

samples was approximately 1:44, which was unbalanced and the

performance of classification tended to be biased towards the

negative class. To address this issue, under-sampling proves to be

an efficient method for classifying unbalanced dataset [56]. We

randomly selected three sets of 2600 CSIs from negative samples,

by which we conducted our experiments and obtained similar

results. So in this paper, we randomly chose one such set of 2,600

CSIs and integrated with 2,520 RIs as our final experimental

dataset.

A new hybrid feature extraction approach for
classification between RIs and CSIs

As shown in Table 4, our hybrid feature extraction approach

obtained 37 features (combining A+B+C features) for each intron

in the experimental dataset. A denotes basic features, including

both global features (e.g., Length, nucleotide occurrence proba-

bilities of A, C, G and T, AT content, GC content) and local

features (e.g., hAG,hAC ,hAT ,hGC ,hGT ,hCT ). B denotes frequent

motifs features, which are selected from all 2 to 5-mer motifs based

on Eq. 4–Eq. 10, and have relatively high values of a(x(l))j j and

STrue(x(l)) or SFalse(x(l)). Among the selected frequent motifs,

some of them (i.e., cc, gg, cg, ccg, cga, cgg, ggag, gggt, gaag, ttcg)

have negative values of a(x(l)) and higher values of STrue(x(l)).
Whereas, others (i.e., ta, at, atgt, taat, tatat, atatt, aaata, ttata,

attat) possess positive values of a(x(l)) and higher values of

SFalse(x(l)). C denotes the signal strength features of the splice sites

(SFvalue, SFaccvalue) and the similarity level features (IDdonv,

IDacceptv) of two datasets, which include sequences from 220 to

21 and from +1 to +20 sites for 59 and 39 splice sites (Figure 1B).

Besides our hybrid feature extraction approach, we also built

complete features (52) and optimized features (27) to classify RIs

and CSIs (Table 4). All trimer sequences have more obvious

differences between RIs and CSIs than dimers, and they also

present higher frequencies of occurrence in our datasets than

tetramers and pentamers. So we sorted values of a(x(l))j j among

all trimers and selected top 15 trimers with higher values of

a(x(l))j j. By integrating the frequencies of these 15 trimers with

our combined A+B+C features, the complete features were

obtained and defined as the 52 feature set. Moreover, we also

employed the PSOSearch method to optimize the complete 52

feature set for getting better classification accuracy with less

features. PSOSearch is a feature optimal selection method that

implements the PSO algorithm. It is available in Weka 3.7.3. In

the optimizing process of PSOSearch, the accuracy of random

forest classifier was utilized to compare the classification perfor-

mance of different feature sets. Finally, the optimized features were

obtained and defined as the 27 feature set. The last feature is class

label with True representing RIs and False representing CSIs.

Evaluation of our hybrid feature extraction approach in
comparison to other four feature sets

In this work, because of the diversity of different features (e.g.,

intron length, SFvalue and frequencies of frequent motifs), we

firstly employed scale function to normalize values of individual

features. Then, we selected 60% samples from the experimental

dataset to verify the proposed feature extraction approach. Finally,

the normalized feature vectors were adopted as inputs to classify
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RIs and CSIs by employing random forest and PSOSVM

respectively.

By using PSO, the optimal parameters C and c were selected

and applied to test the performance of SVM classifier via 10-fold

cross-validation. But for random forest, due to the ‘‘out-of-bag’’

error estimation, it is unnecessary to utilize cross-validation to

obtain an unbiased estimate of the test set error [33]. We split 90%

of samples for training whereas the remainder is used for testing

the performance of random forest classifier. As shown in Table 5,

the square root of the whole number of features is set for the

parameter numFeatures, and the other parameter (numTrees) of

random forest was set from 30 to 50 with a step size of 2 to find the

optimal value using grid search algorithm.

In order to demonstrate the performance of our hybrid feature

extraction approach, we employed five different feature sets to

classify on our dataset: (1) A feature set, (2) A+C feature set, (3) our

combined A+B+C feature set, (4) complete 52 feature set and (5)

optimized 27 feature set (see Table 4). For each feature set,

random forest and PSOSVM were carried out to do classification.

The values of optimal parameters and performances of both two

classifiers are shown in Table 5. Clearly, the combined A+B+C
feature set showed better classification performances than other

four feature sets for both random forest (i.e., Accuracy = 0.808, F-

Measure = 0.808 and AUC = 0.900) and PSOSVM (Accura-

cy = 0.774, F-Measure = 0.774 and AUC = 0.844). On the other

hand, based on these three assessment measures, the random

forest classifier always achieved better classification performance

than PSOSVM. The differential performance between these two

classifier reached 0.056 obtained by AUC assessment measure

using our combined feature set (Figure 4).

In Table 5, the performances of AUC appear to be better than

those of Accuracy and F-Measure for all feature sets using random

forest and PSOSVM. The performances of Accuracy and F-

Measure are equal in all feature sets except A, in which the

performance of F-Measure increases by 0.001 than that of

Accuracy for random forest while the opposite case happens for

PSOSVM. Interestingly, these five different feature sets display the

same change trend of classification performance in terms of these

three assessment measures for both random forest and PSOSVM.

We focus on F-Measure (Figure 5) to illustrate this trend.

As shown in Figure 5, compared with our combined feature set,

it is impossible to obtain better performance for applying sectional

feature sets (e.g., A or A+C), complete 52 feature set, or optimized

27 feature set. This result suggests, not only for PSOSVM but also

for random forest, that our hybrid feature extraction approach

selected useful features for better classification between RIs and

CSIs.

The influences of short motifs, splice sites and flanking
exon sequences in RIs

When we further investigated the influence of the feature sets in

classifying RIs and CSIs, we discovered that C feature set made

Table 4. Feature vectors of experimental dataset.

Feature types Feature vector

Basic Features [A] Length; AT content; GC content; nucleotide occurrence probabilities of A, C, G and T;
hAG ,hAC ,hAT ,hGC ,hGT ,hCT

Frequent motifs features [B] cc, gg, cg, ccg, cga, cgg, ggag, gggt, gaag, ttcg; ta, at, atgt, taat, tatat, atatt, aaata, ttata, attat

Splice sites and the flanking sequences features [C] SFvalue, SFaccvalue; IDdonv, IDacceptv

Complete features [52] Combined features (A+B+C) and 15 frequencies of trimmers (agg, ata, atg, cgc, cta, gcg, gga, ggg,
gta, taa, tac, tag, tat, tcg, tta)

Optimized features [27] Length, g, t, AT, hAC ,hAT ,hGC , cg, ta, cga, cta, gga, tac, tag, tta, gaag, ttcg, atgt, taat, attat, tatat,
aaata, SFvalue, SFaccvalue, IDdonv, IDacceptv

Class label True (RIs); False (CSIs)

doi:10.1371/journal.pone.0104049.t004

Table 5. Optimal parameters and performances of random forest and PSOSVM using five different feature sets.

Algorithm Feature set Parameter (numFeatures) Parameter (numTrees) Accuracy F-Measure AUC

Random forest A 4 42 0.771 0.772 0.867

A+C 4 42 0.785 0.785 0.897

Combined A+B+C 6 42 0.808 0.808 0.900

Complete 52 7 42 0.782 0.782 0.898

Optimized 27 5 42 0.788 0.788 0.891

Algorithm Feature set Parameter (C) Parameter (c) Accuracy F-Measure AUC

PSOSVM A 187.29 15.64 0.742 0.741 0.838

A+C 1.0 5.5 0.771 0.771 0.842

Combined A+B+C 59.46 0.17 0.774 0.774 0.844

Complete 52 1.40 0.22 0.771 0.771 0.843

Optimized 27 1.27 0.52 0.763 0.763 0.840

doi:10.1371/journal.pone.0104049.t005
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the greatest contribution to improve the classification perfor-

mance: for example, 3% F-Measure increase using PSOSVM, and

3% AUC increase using random Forest for A+C feature set in

comparison with A feature set (Table 5). As shown in Table 6, RIs

have lower signal strength of splice sites (SFvalue = 3.930,

SFaccvalue = 5.075) than CSIs (SFvalue = 4.806, SFaccva-

lue = 6.363). In addition, RIs have smaller values of IDdonv

(17.934) and IDacceptv (17.891) than CSIs (IDdonv = 18.412,

IDacceptv = 18.385), which suggests that intron sequences and

flanking exon sequences for both donor sites (59 splice sites) and

acceptor sites (39 splice sites, see Figure 1B) have higher similarity

in RIs than in CSIs. The significant differences among these four

features (SFvalue, SFaccvalue, IDdonv and IDacceptv) were

detected between RIs and CSIs using one-way ANOVA (P,

0.0001, see Table 6). This result demonstrated that these four

features were indeed effective in classification between two kinds of

introns.

Meanwhile, we also found that some short motifs were relatively

frequent but quite different between the RIs and CSIs. So we

extracted B feature set, and the results showed that they indeed

helped us improve the classification performance, especially by

using random forest (e.g., 2.3% F-Measure and Accuracy increase

for our A+B+C feature set in comparison with A+C feature set, see

Table 5). As showed in Figure 6, some short motifs (e.g., cc, gg, cg,

ccg, cga, cgg, ggag, gggt, gaag, ttcg) have higher frequencies in RIs

than CSIs whereas others (e.g., ta, at, atgt, taat, tatat, atatt, aaata,

ttata, attat) occur higher frequencies in CSIs than RIs.

Discussion

Different from previous bioinformatics analyses of AS in

Arabidopsis [11,57], we used the most recent and well-annotated

gene data from TAIR10 to extract our experimental intron dataset

that consists of 2,520 RIs and 110,254 CSIs, and found RIs and

CSIs showed distinctive characteristics in their sequences. We not

only discovered similar features including shorter intron length,

lower AT content and higher GC content in RIs with previous

reports [13,58], but also found hGC (14.3% versus 12.4%) was

obviously higher and hCT was conversely lower (23.0% versus

25.5%) in RIs than in CSIs. This indicates that difference between

G and C contents for segmental intron sequences in RIs is greater

than that in CSIs, whereas the difference between C and T

contents for segmental intron sequences is higher in CSIs than that

in RIs. As for the terminal dinucleotide splice signals of introns,

there was no surprise that the consensus GT-AG introns (i.e.,

introns that begin with GT and end with AG) held 99% of CSIs

and 96.7% of RIs. The second largest class, GC-AG introns,

appeared more frequently in RIs than CSIs (2.61% versus 0.90%).

This finding suggests that in Arabidopsis the unusual GC-AG

introns appear to be more frequent in RIs than CSIs while the

canonical GT-AG introns are richer in CSIs than RIs. Another

Figure 4. The ROC curves of random forest versus PSOSVM. The
ROC curve of random forest is shown by the solid line and PSOSVM by
the dashed line. The classification accuracy of these two methods is
measured by AUC (the area under the ROC curve). Random forest gains
significant advantages compared to PSOSVM (i.e., 0.900 versus 0.844).
doi:10.1371/journal.pone.0104049.g004

Figure 5. Performance of random forest and PSOSVM (F-
Measure) in five different feature sets. Classification accuracy is
assessed with F-Measure. Each solid round dot represents the accuracy
of random forest and each triangle means the accuracy of PSOSVM for a
given feature set. Compared with the other feature sets, our combined
A+B+C feature set obtains the optimal classification performance by
using both classifiers.
doi:10.1371/journal.pone.0104049.g005

Table 6. The mean value and P value of SFvalue, SFaccvalue, IDdonv and IDacceptv.

SFvalue SFaccvalue IDdonv IDacceptv

The mean value in RIs 3.930 5.075 17.934 17.891

The mean value in CSIs 4.806 6.363 18.412 18.385

P value (One–way ANOVA) 2.2e-16 2.2e-16 6.488e-07 3.545e-07

P value was calculated by applying F-test in one-way ANOVA based on experiment dataset included RIs and CSIs. The influences of classification among four features are
all significant (p,0.0001).
doi:10.1371/journal.pone.0104049.t006
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interesting phenomenon in our data analysis is that more than half

of RIs (58.4%) occurs in CDS, CDS+39UTR or CDS+59UTR

regions. Such positional distribution characteristic of RIs indicates

the potential that these introns are partly or entirely translated to

proteins. Previous studies demonstrate that growing examples of

cellular mRNAs with RIs express functional proteins by avoiding

degradation through the nonsense-mediated decay (NMD)

[59–61]. Our data analysis also provides a support for this trend

by a high rate of RIs existing in coding regions.

It is well known that cis-acting sequences or motifs [62], such as

enhancers and silencers in exons or introns, play significant roles

for the regulation of AS. Plenty of studies indicate that exonic

splicing enhancers and silences (ESEs and ESSs), most of which

are known to bind SR proteins of the spliceosome, affect intron

Figure 6. The mean occurrences of B frequent motifs between RIs and CSIs. In the left side of the histogram there are ten frequent motifs
that have higher occurrences in RIs than in CSIs. In the right site of the histogram there are nine frequent motifs that have higher occurrences in CSIs
than in RIs.
doi:10.1371/journal.pone.0104049.g006
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excision [63,64]. Pertea et al. [65] has identified 84 putative exonic

splicing enhancers (hexamers) in Arabidopsis by a computational

approach. Although intronic splicing enhancers and silences (ISEs

and ISSs) are less understood than ESEs and ESSs, a previous

study also suggests [66] that these intronic splicing regulatory

motifs also commonly impact on AS in mammals. Based on our

feature extraction approach of B feature set, we analyzed all ggg-

containing motifs with length from 3 to 5 bp included g triples

(ggg, a well-established mammalian ISEs [67]), and found the

mean value of a(x(ggg-containing motifs)) was 20.358, which

indicated that ggg-containing motifs occurred more frequently in

RIs than in CSIs. So the above result suggests these ggg-containing

motifs, such as ‘‘gggt’’, ‘‘gggtt’’ and ‘‘tgggt’’, play a role of ISSs in

Arabidopsis, instead of the role of ISEs in mammals. Of all ggg-

containing motifs, ‘‘gggt’’ proves to contribute in distinguishing

RIs from CSIs by our classification methods. In addition, the result

of our extraction approach of B feature set also discovers that the

mean value of a(x(ggag-containing motifs)) was 20.539, which

indicated that ggag-containing motifs also have higher occurrences

in RIs than in CSIs. In our study, the frequent motifs ‘‘ta, at, atgt,

taat, tatat, atatt, aaata, ttata, attat’’ suggest some at/ta-rich motifs

(i.e., ones include linear repeat or combination of ‘‘at’’ or ‘‘ta’’ (at

least two ‘‘at’’ or ‘‘ta’’)) may be ISEs in Arabidopsis. We checked all

at/ta-rich motifs with length 4 and 5 bp and obtained the mean

value of a(x(at=ta-rich motifs)) was 0.276, which illustrated at/

ta-rich motifs had more frequently in CSIs than RIs. Furthermore,

as the outstanding representatives of these at/ta-rich motifs,

‘‘taat’’, ‘‘tatat’’, ‘‘atatt’’, ‘‘ttata’’ and ‘‘attat’’ have been proved to

help recognizing the CSIs in our data analysis. Overall, ggg-

containing and ggag-containing motifs seem to be ISSs because of

their obvious abundance in RIs than in CSIs. On the other hand,

at/ta-rich motifs appear to be ISEs because of their significant

abundance in CSIs than RIs in Arabidopsis, which would

potentially promote the identification of intronic splicing regula-

tory elements in plants.

Our results clearly demonstrate that random forest offers more

advantageous classification performance than PSOSVM on five

different feature sets. Performances of these two kinds of classifier

are influenced by their respective parameters. Our experience

showed that the parameter optimization was easier to implement

for random forest (numFeatures =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
numbers of features
p

, where

numTrees is obtained by grid search), and the optimized

parameters were beneficial to obtain stable classifier performance.

In contrast, different values of (C, c) would cause large variation in

the classifier performance of SVM [22]. Although we employed

PSO to search the optimal parameters and have obtained better

classification performance in comparison with the result using

traditional grid search method, the classification performance of

SVM may be further improved if the parameters could avoid

trapping into local optima [68]. Unlike SVM, individual decision

trees in random forest automatically utilize informative features

more frequently in training process and achieve independent

predictions, which were combined to gain accurate prediction of

the forest [30,69]. Therefore random forest presents significant

superiority in failure tolerances and robustness, which plausibly

explain the consistent advantageous performance of random forest

classifier for all five feature sets in our study.

In this study, we utilized current TAIR10 mRNA (transcript or

isoform) annotation in Arabidopsis, which does not provide any

quantitative expression information (i.e., highly expressed versus

rarely expressed mRNA) for alternate isoforms derived from the

same genes. It is likely that highly expressed retained introns have

different signal strength than retained introns with low expression

levels. Therefore, utilizing RNA-Seq data to extract and incorporate

expression information in intron level will definitely facilitate the

development of more accurate and robust classifier by machine

learning strategies. In fact, a recent RNA-Seq data analysis

already shows evidence for novel transcripts and alternative

splicing events in Arabidopsis that are not annotated in TAIR10

[70]. As more and more RNA-Seq and their meta-data (e.g.,

including environmental treatments, developmental stages and

sampled tissues) are becoming available, more novel isoforms

and previously un-annotated RIs will be evident in Arabidopsis,
which can help us enhance the classification performance by

providing more members within the RIs class. Moreover, we

can do further classification of RIs that might be related to

different environmental and/or developmental cues. Obviously,

more RIs with different meta-data can be further analyzed to

extract stress-, tissue-, or growth stage-specific features so that

we can better understand how RIs are affected by both external

and internal conditions in plants. On the other hand, RNA

secondary structures have been demonstrated to affect alterna-

tive splicing [11,71,72]. Recently, the first in vivo genome-wide

RNA structure map in Arabidopsis [73] highlights the impor-

tance of RNA secondary structures in alternative splicing

(including intron retention). Therefore, a great challenge is

how to accurately and effectively incorporate RNA secondary

structures as features to enhance the performance and accuracy

of our classifier. Without a doubt, a comprehensive feature

extraction including both linear sequence features and RNA

secondary structure features will definitely facilitate our under-

standing of how RIs are regulated in plants.

Conclusions

The primary contribution of this work is our novel hybrid

feature extraction approach that reveals overall features of introns,

splice sites and flanking exons. These features can be utilized to

effectively categorize and differentiate between RIs and CSIs. The

experiments on five different feature sets verified that our

combined A+B+C feature set could obtain the optimal classifica-

tion performance by applying random forest and PSOSVM

classifiers after tuning parameters. Follow-up analysis of these

features has revealed interesting information about RIs in

comparison with CSIs:

(1) In average RIs have shorter length (145 bp versus 160 bp),

higher GC content (35.76% versus 32.43%) and lower AT

content (64.24% versus 67.57%) than CSIs.

(2) RIs show different features of segmental nucleotides compo-

sition, such as higher hGC and lower hCT locally.

(3) RIs possess lower signal strength of 59 and 39 splice sites

(SFvalue, SFaccvalue), and terminal dinucleotide GC-AG

appears a higher frequency in RIs than CSIs.

(4) The RIs show higher similarity with their flanking exons than

CSIs.

(5) We here propose ggg-containing and ggag-containing motifs

as ISSs as they are enriched in RIs. Accordingly, at/ta-rich

motifs seem to be ISEs because of abundant in CSIs.

These features information about RIs can effectively facilitate

an understanding of recognition mechanism of RIs in Arabidopsis.
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34. Nimrod G, Szilágyi A, Leslie C, Ben-Tal N (2009) Identification of DNA-

binding Proteins Using Structural, Electrostatic and Evolutionary Features.

J Mol Biol 387: 1040–1053. doi:10.1016/j.jmb.2009.02.023.

35. Mendoza MR, da Fonseca GC, Loss-Morais G, Alves R, Margis R, et al. (2013)

RFMirTarget: Predicting Human MicroRNA Target Genes with a Random

Forest Classifier. PLoS ONE 8: e70153. doi:10.1371/journal.pone.0070153.

36. Wu TD, Watanabe CK (2005) GMAP: a genomic mapping and alignment
program for mRNA and EST sequences. Bioinformatics 21: 1859–1875.

doi:10.1093/bioinformatics/bti310.

37. Wu R, Hu Q, Li R, Yue G (2012) A novel composition coding method of DNA

sequence and its application. Match-Commun Math Comput Chem 67: 269.

38. Yang W, Li Q (2008) One parameter to describe the mechanism of splice sites

competition. Biochem Biophys Res Commun 368: 379–381. doi:10.1016/

j.bbrc.2008.01.089.

39. Florea L (2006) Bioinformatics of alternative splicing and its regulation. Brief
Bioinform 7: 55–69. doi:10.1093/bib/bbk005.

40. Wang F, Wang Z, Li H, Yang K (2011) Prediction of protein structural classes

using the theory of increment of diversity and support vector machine. Wuhan

Univ J Nat Sci 16: 260–264. doi:10.1007/s11859-011-0747-6.

41. Marquez Y, Brown JWS, Simpson C, Barta A, Kalyna M (2012) Transcriptome

survey reveals increased complexity of the alternative splicing landscape in

Arabidopsis. Genome Res 22: 1184–1195. doi:10.1101/gr.134106.111.

42. Statnikov A, Wang L, Aliferis CF (2008) A comprehensive comparison of

random forests and support vector machines for microarray-based cancer

classification. BMC Bioinformatics 9: 319. doi:10.1186/1471-2105-9-319.

43. Naidoo L, Cho MA, Mathieu R, Asner G (2012) Classification of savanna tree

species, in the Greater Kruger National Park region, by integrating
hyperspectral and LiDAR data in a Random Forest data mining environment.

ISPRS J Photogramm Remote Sens 69: 167–179. doi:10.1016/j.isprsjprs.

2012.03.005.

44. Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, et al. (2009) The
WEKA Data Mining Software: An Update. SIGKDD Explor Newsl 11: 10–18.

doi:10.1145/1656274.1656278.

45. Byvatov E, Schneider G (2003) Support vector machine applications in

bioinformatics. Appl Bioinformatics 2: 67–77.

46. Hua S, Sun Z (2001) Support vector machine approach for protein subcellular

localization prediction. Bioinformatics 17: 721–728. doi:10.1093/bioinfor-

matics/17.8.721.

47. Scholkopf B, Sung K-K, Burges CJC, Girosi F, Niyogi P, et al. (1997)
Comparing support vector machines with Gaussian kernels to radial basis

function classifiers. IEEE Trans Signal Process 45: 2758–2765. doi:10.1109/

78.650102.

48. Huang C-L, Wang C-J (2006) A GA-based feature selection and parameters

optimizationfor support vector machines. Expert Syst Appl 31: 231–240.
doi:10.1016/j.eswa.2005.09.024.

Classification of Retained Introns and Constitutively Spliced Introns

PLOS ONE | www.plosone.org 11 August 2014 | Volume 9 | Issue 8 | e104049

http://link.springer.com/chapter/10.1007/978-3-540-28647-9_85
http://link.springer.com/chapter/10.1007/978-3-540-28647-9_85
https://www.cs.sfu.ca/people/Faculty/teaching/726/spring11/svmguide.pdf
https://www.cs.sfu.ca/people/Faculty/teaching/726/spring11/svmguide.pdf


49. Zhang X, Guo Y (2009) Optimization of SVM Parameters Based on PSO

Algorithm. Fifth International Conference on Natural Computation, 2009.

ICNC ’09. Vol. 1. pp. 536–539. doi:10.1109/ICNC.2009.257.

50. Abdi MJ, Hosseini SM, Rezghi M (2012) A Novel Weighted Support Vector

Machine Based on Particle Swarm Optimization for Gene Selection and Tumor

Classification. Comput Math Methods Med 2012. Available: http://www.

hindawi.com/journals/cmmm/2012/320698/abs/. Accessed 6 November

2013.

51. Liu J, Gough J, Rost B (2006) Distinguishing Protein-Coding from Non-Coding

RNAs through Support Vector Machines. PLoS Genet 2: e29. doi:10.1371/

journal.pgen.0020029.

52. Bradley AP (1997) The use of the area under the ROC curve in the evaluation of

machine learning algorithms. Pattern Recognit 30: 1145–1159. doi:10.1016/

S0031-3203(96)00142-2.

53. Fawcett T (2006) An introduction to ROC analysis. Pattern Recognit Lett 27:

861–874. doi:10.1016/j.patrec.2005.10.010.

54. Sakharkar MK, Chow VTK, Kangueane P (2004) Distributions of exons and

introns in the human genome. In Silico Biol 4: 387–393.

55. Wei L, Yang Y, Nishikawa RM, Jiang Y (2005) A study on several Machine-

learning methods for classification of Malignant and benign clustered

microcalcifications. IEEE Trans Med Imaging 24: 371–380. doi:10.1109/

TMI.2004.842457.

56. Yen S-J, Lee Y-S (2009) Cluster-based under-sampling approaches for

imbalanced data distributions. Expert Syst Appl 36: 5718–5727. doi:10.1016/

j.eswa.2008.06.108.

57. Eichner J, Zeller G, Laubinger S, Rätsch G (2011) Support vector machines-
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