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Abstract

An individual-tree diameter growth model was developed for Cunninghamia lanceolata in Fujian province, southeast China.
Data were obtained from 72 plantation-grown China-fir trees in 24 single-species plots. Ordinary non-linear least squares
regression was used to choose the best base model from among 5 theoretical growth equations; selection criteria were the
smallest absolute mean residual and root mean square error and the largest adjusted coefficient of determination. To
account for autocorrelation in the repeated-measures data, we developed one-level and nested two-level nonlinear mixed-
effects (NLME) models, constructed on the selected base model; the NLME models incorporated random effects of the tree
and plot. The best random-effects combinations for the NLME models were identified by Akaike’s information criterion,
Bayesian information criterion and 22 logarithm likelihood. Heteroscedasticity was reduced with two residual variance
functions, a power function and an exponential function. The autocorrelation was addressed with three residual
autocorrelation structures: a first-order autoregressive structure [AR(1)], a combination of first-order autoregressive and
moving average structures [ARMA(1,1)] and a compound symmetry structure (CS). The one-level (tree) NLME model
performed best. Independent validation data were used to test the performance of the models and to demonstrate the
advantage of calibrating the NLME models.

Citation: Xu H, Sun Y, Wang X, Fu Y, Dong Y, et al. (2014) Nonlinear Mixed-Effects (NLME) Diameter Growth Models for Individual China-Fir (Cunninghamia
lanceolata) Trees in Southeast China. PLoS ONE 9(8): e104012. doi:10.1371/journal.pone.0104012

Editor: Rongling Wu, Pennsylvania State University, United States of America

Received February 18, 2014; Accepted July 6, 2014; Published August 1, 2014

Copyright: � 2014 Xu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: Total expense of field investigation was borne by the Special Public Interest Research and Industry Fund of Forestry (No. 200904003-1) and the project
of forestry science and technology research (No. 2012-07). The funders had no role in study design, data collection and analysis, decision to publish, or
preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* Email: sunyj@bjfu.edu.cn

Introduction

China-fir (Cunninghamia lanceolata (Lamb.) Hook) is the most

commonly grown afforestation species in southeast China because

of its fast growth and good wood qualities. It is widely used for

buildings, furniture, bridge construction and many other purposes.

Growth and yield models are commonly used for forest

management planning because they can simulate stand develop-

ment and production under various management alternatives

[1,2]. Individual-tree diameter growth models are a fundamental

component of forest growth and yield prediction frameworks [3–

5]. The models are based on extensive growth data obtained from

diverse regions and management levels. Individual-tree diameter

growth can be expressed as a function of tree size, competitive

effect, stand structure and site quality [6]. A distance-independent

individual-tree model structure may be flexible enough to predict

diameter growth in monospecific even-aged stands and in mixed-

species and multi-aged stands [7].

Regression analysis, such as ordinary non-linear least squares

(ONLS) regression, is the most commonly used statistical method

in forest modeling [8]. Individual-tree diameter growth models

have been fitted to growth increment data collected repeatedly

over time on the same tree [9]. The hierarchical nature of the data

results in spatial and temporal correlation among observations

made in the same sampling unit (i.e., plot and tree) [10]. However,

the stochastic structure is often ignored and independence of

observations is assumed [11–15]. Furthermore, the data are

autocorrelated and cannot be considered independent samples of

the basic tree population [10]. The ONLS regression assumption

of independent residuals is therefore violated, biasing the estimates

of the standard error of the parameter estimates [16]. Many recent

efforts to develop diameter growth models have used nonlinear

mixed-effects (NLME) models [5,17].

NLME models include both fixed effects, which are parameters

associated with an entire population or with certain repeatable

levels of experimental factors, and random effects, which are

associated with individual experimental units drawn at random

from a population [18]. Random effects account for spatial and

temporal correlation by defining the covariance structure of the

model’s random components and by using this structure during

parameter estimation. NLME models provide an efficient

statistical method for explicitly modeling hierarchical stochastic

structure. Growth models can be calibrated by predicting random

components from tree- or plot-level covariates when a new subject

is available and is not used in the fitting of the model by using the

empirical best linear unbiased predictors (EBLUPs) [3,4,12,19].

Statistical models in which both fixed and random effects enter

nonlinearly are increasingly common in the biosciences [20]. The
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models are relevant to many disciplines, including forestry,

agriculture, ecology, biology, biomedicine and pharmacokinetics

[21]. They are used to analyze data with complex structures,

including grouped data, longitudinal data, repeated measures data

and multivariate multilevel data [22]. One of the most common

applications is for analysis of nonlinear growth data [23]; these are

data measured repeatedly over time on the same tree (multiple

observations obtained from the same sampling unit or subject in

sequence over time) and are also known as longitudinal data

[12,24].

The main purpose of this study was to develop an individual-

tree diameter growth model for C. lanceolata (Lamb.) Hook

growing in Fujian province, southeast China. The data were

derived from 144 increment cores from 72 trees in 24 sample plots.

One-level and nested two-level nonlinear mixed modeling

approaches that included both fixed and random components

were applied to the hierarchical structure of the data. This

diminished the level of variance among the sampling units, which

were included as covariates. In developing the diameter growth

models, we considered nested two-level models and a single-level

model. The first level is the plot and the second level is the tree,

nested within the plot. Our preliminary analysis showed that the

NLME models with random effects effectively removed the

heteroscedasticity and autocorrelations in the repeated-measure

data and therefore could be important tools for sustainable

management of China-fir species within the study area. The

predictive ability of the developed model and the applicability of

the NLME model were demonstrated using separate validation

data.

Materials and Methods

Data
The data were obtained from 24 single-species plots of

plantation-grown China-fir on the Jiangle state-owned forest farm

in southeast China (Figure 1). One-hundred and forty-four

increment cores were collected from 72 trees; 15 cores missed

the pith and were excluded from analysis. The increment cores

were extracted from three mean trees in each plot; the mean trees

were trees with a diameter at breast height (dbh; 1.3 m above

ground) approximately equal to the plot mean dbh. Two cores

were collected perpendicular to each other from each tree at breast

height. The sample plots were square and varied in size from 400

to 600 m2. All standing live trees (height .1.3 m) on the plots

were measured for dbh (outside bark) and tree height. Three to

five dominant trees on each plot were chosen to calculate plot

dominant height. Using the Lintab tree-ring measurement system

(Rinntech Company in Germany), the width of each annual

growth ring (radial increment data) was measured; trees were

assumed to be round, so the diameters were calculated as twice the

radius. Growth data from the seed orchard at the forest farm

indicate that China-fir requires two years to attain a height of

1.3 m. Diameter data were therefore assigned an initial age of 3

years. Independent data were used for model validation. The data

were randomly divided into two groups; 75% of the points were

used for model fitting, and 25% were used for model validation.

The fitting data and the validation data included 54 trees from 23

plots and 18 trees from 13 plots, respectively. Summary statistics

for both fitting and validation data are shown in Table 1.

Methods
Nested two-level NLME model. The model data were

derived from the measured annual increment of the sampled trees.

The nested sampling structure created a high degree of correlation

among observations taken from the same tree and plot. The

mixed-effects modeling approach is a common means of

addressing the correlation structure in the data [13,23]. A general

expression for a NLME model can be defined as [22,25].

DBHijk~f wij ,tijk

� �
zeijk, i~1,:::,M, j~1,:::,Mi, k~1,:::,nij ð1aÞ

where M is the number of plots, Mi is the number of trees within

the ith plot, and nij is the number of observations (increments).

DBHijk is the dbh (cm) at the kth age of the jth tree taken from the

ith plot, tijk is the age, wij is the parameter vector r61 (where r is

the number of parameters in the model), f is a nonlinear function

of the predictor variables and the parameter vector, and eijk is the

within-group error including the within-group variance and

correlation [26]; the error is assumed normally distributed with

a mean of zero and a positive-definite variance-covariance

structure Rij, generally expressed as a function of the parameter

vector d [27].

eijk*N 0,Rij

� �
ð1bÞ

Figure 1. Seventy two trees in twenty four sample plots on Jiangle state-owned forest farm in southeast China.
doi:10.1371/journal.pone.0104012.g001
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Moreover, wij can be expressed as:

wij~AijlzBi,jmizBijmij ð2aÞ

mi*N 0,yið Þ, mij*N 0,yij

� �
ð2bÞ

where l is the p61 vector of fixed population parameters (where p
is the number of fixed parameters in the model). mi and mij are the

q161 and q261 vectors of random effects associated with the first

and second levels, respectively (where q1 and q2 are the numbers

of random parameters of two-level in the model), which are

assumed to be normal (or Gaussian) with a mean of 0 and have the

variance-covariance matrices yi and yij; these are the q16q1 and

q26q2 variance-covariance matrices associated with the first and

second level random effects, respectively. Aij , Bi,jand Bij are the

design matrices r6p, r6q1 and r6q2 for the fixed and random

effects specific to each sampling unit.

Individual-tree diameter growth equation. Five theoret-

ical nonlinear growth equations, the Richards, Weibull, Korf,

Logistic and Schumacher equations, were selected as candidates

for modeling diameter growth. These equations are widely used

for the simulation of individual-tree growth, particularly the

Richards and Korf equations. Mathematical expressions of the

equations are shown in Table 2.

The five above-mentioned equations are all S-shaped growth

equations with inflection points and asymptotes. A characteristic of

the Richards, Weibull and Korf equations is that the coordinates

of the inflection points are variable multiples of asymptotic values;

in contrast, the equivalent values of the logistic and Schumacher

equations are fixed multiples [28]. The five equations were initially

fit by ONLS regression using the R nls function without random

parameters. Different initial values for the parameters were tried to

ensure that a global minimum was achieved. The best performing

function was selected as the base model by applying three

statistical criteria; absolute mean residual (AMR), root mean

square error (RMSE), and adjusted coefficient of determination

(R2
adj) [29]. The function with the smallest AMR and RMSE and

the largest R2
adj provides the best fit. The adjusted coefficient of

determination is used similarly as an unbiased estimator in both

multiple regression and canonical redundancy analysis. The

formulas of the fit statistics are:

AMR~
XM

i~1

XMi

j~1

Xnij

k~1

yijk{ŷyijk

�� ��
nij

ð3Þ

RMSE~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XM

i~1

XMi

j~1

Xnij

k~1

yijk{ŷyijk

� �2

nij{r

vuut
ð4Þ

R2
adj~1{ nij{1

� � PM
i~1

PMi
j~1

Pnij
k~1

yijk{ŷyijk

� �2

nij{rPM
i~1

PMi
j~1

Pnij
k~1 yijk{

-

y
� �2

2
66664

3
77775 ð5Þ

where ŷyijk is the predicted increment at the kth age within the jth
tree within the ith plot.

-

y is the average of observations.T
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Mixed parameter evaluation. A crucial issue in fitting

mixed-effects models is deciding which parameters should be

considered random effects and which can be treated as fixed

effects. A common approach is to start with random effects for all

parameters and then to examine the fitted object to decide which,

if any, of the random effects can be eliminated from the model

[18]. Different combinations of model parameters were therefore

tested to ascertain their contribution to predictions of diameter

growth; the best model was selected by Akaike’s information

criterion (AIC) [30], Bayesian information criterion (BIC) [31] and

22 log-likelihood (22 LL) [32]. The best model gave the smallest

AIC, BIC and 22 LL. The appropriate variance function and

autoregressive structure for the NLME models were determined

by the likelihood ratio test (LRT) [18,33]. All NLME models

presented in this paper were calibrated using the nlme function in

the R statistical environment [34].

Determining the variance-covariance structure. The

variance-covariance matrices yi and yij are positive-definite and

symmetric, which is to say that all their eigenvalues must be strictly

positive [18]. A hypothetical 262 variance-covariance matrix is

shown as follows [24,35]:

s2
u suw

swu s2
w

" #

where s2
u and s2

w are the variance for the random effects u and w,

respectively, and suw~swu is the covariance between random

effects u and w.

Determining the structure of Rij. The matrix Rij is allowed

to depend on both random and fixed effects, as well as on a set of

common but unknown parameters. The matrix accounts for

within-plot heteroscedasticity and autocorrelation [24,26,27] by

including both correlation effects and weighting factors. The

matrix is expressed as [24,36]:

Rij~s2G0:5
ij IijG

0:5
ij ð6Þ

where for a tree j in plot i, with nij increment, Rij is the nij6nij

within-tree variance-covariance matrix that defines within-group

variability, Gij is an nij6nij diagonal matrix of within-tree error

variance (heteroscedasticity), Iij is an nij6nij matrix of within-tree

autocorrelation of the errors, and s2 is a scaling factor for the error

dispersion [13].

In individual-tree diameter growth models, the variance is often

found dependent on the means, and the variance will generally

increase with increasing mean tree diameter. To remove this

effect, we modeled the variance as an exponential function or

power function which was used for Gij matrix [18]. And for the

exponential function and power function, the diagonal elements of

Gij are t2d
ijk and 2dtijk, respectively, and the off-diagonal elements

are all 0.

varexp eijk

� �
~s2 exp 2dtijk

� �
ð7Þ

varpower eijk

� �
~s2t2d

ijk ð8Þ

Autocorrelation structures were used for Iij matrix to address

the within-tree autocorrelations of the errors observed in the data

[37,38]. A method was selected from among three commonly used

approaches: first-order autoregressive structure [AR(1)], a combi-

nation of first-order autoregressive and moving average structures

[ARMA(1,1)], and the compound symmetry structure (CS) [18].

Table 3. Performance criteria for individual-tree diameter growth equations.

Equations Fitting data Validation data

AMR RMSE R2
adj AMR RMSE R2

adj

Richards 2.2169 3.3224 0.7729 3.7228 4.7236 0.7448

Weilbull 2.2724 3.3503 0.7690 3.7646 4.7196 0.7452

Korf 2.1286 3.2710 0.7855 3.6101 4.5369 0.7641

Logistic 2.3789 3.4523 0.7548 4.0064 5.0181 0.7120

Schumacher 2.1390 3.2808 0.7785 3.5979 4.6037 0.7576

doi:10.1371/journal.pone.0104012.t003

Table 2. Mathematical expressions of the five equations.

Equation Expression Inflection point Parameters

Abscissa Ordinate

Richards DBH~w1 1{exp {w2tð Þð Þw3 1= w2 lnw3ð Þ w1 1{1=w3ð Þw3 w1, w2.0

Weibull DBH~w1 1{exp {w2tw3

� �� �
w3{1ð Þ=w2w3ð Þ1=w3 w1 1{exp 1{w3ð Þ=w3ð Þ w1, w2, w3.0

Korf DBH~w1 exp {w2

�
tw3

� �
w3z1ð Þ=w2w3ð Þ{1=w3 w1 exp w3{1ð Þ=w3ð Þ w1, w2, w3.0

Logistic DBH~w1= 1zexp w2{w3tð Þð Þ w2/w3 w1/2 w1, w3.0

Schumacher DBH~w1 exp {w2=tð Þ w2/2 w1e22 w1, w2.0

w1, w2 and w3 are the formal parameters.
doi:10.1371/journal.pone.0104012.t002
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AR 1ð Þ~s2

1 r r2

r 1 r

r2 r 1

2
64

3
75 ð9Þ

ARMA 1,1ð Þ~s2

1 c cr

c 1 c

cr c 1

2
64

3
75 ð10Þ

CS~

s2zs1 s1 s1

s1 s2zs1 s1

s1 s1 s2zs1

2
64

3
75 ð11Þ

where r is the autoregressive parameter, c is a moving average

component, s2 is the residual variance, and s1 is the residual

covariance [37–40].

Parameter estimation. The parameters in the equations

were estimated by maximum likelihood (ML) using the Lindstrom

and Bates (LB) algorithm implemented in the R nlme function

[18,22]. The LB algorithm and nlme function are detailed in

several articles (see, for example, [18,22]).

Predicting the random effects parameters is more problematic

during model application and prediction than during the fitting

process. In this case, they were estimated by the EBLUPs [25],

using the increment data.

b̂bi&D̂DẐZT
i R̂RizẐZiD̂DẐZT

i

� �-1

êei ð12Þ

where b̂bi is the estimated random effects vector of EBLUPs, D̂D is

the q6q estimated variance-covariance matrix (q is number of

random-effects parameters) for the random effects, R̂Ri is the

estimated variance-covariance matrix for the error term, ẐZi is the

estimated partial derivatives matrix with respect to the random

effects parameters for the new observation, and êei is the residual

vector, whose dimension is the number of observations, and whose

components are given by the difference between the observed

diameter growth value for each tree, and the value predicted by

the model including only fixed effects.

The standwise calibration was used to evaluate the accuracy of

the calibration [12]. This type of calibration involves using the

random plot components predicted from the increments of a small

sample of trees per plot to predict the increment of the trees within

the plot not used in the calibration. In this case, the calibration was

made with 1, 2 and 3 trees per plot. The random parameters of

new observations could be predicted with Equation 12.

Results

Function selection
The R nls function was used to evaluate the parameter

estimates and model fit statistics of the five equations (Table 2); the

results are listed in Table 3. The Korf equation had slightly better

predictive ability than the others. Therefore, the Korf equation

was selected as the basic nonlinear model for estimating diameter

growth. The final base model is given by:

Table 4. Evaluation indices of each NLME model.

Effects Mixed parameters AIC BIC 22LL

Nested effects of plots and trees w1 2992.3380 3022.0250 2980.3380

w2 not converge

w3 3649.1130 3678.8010 3637.1140

w1, w2 2164.7940 2214.2730 2144.7940

w1, w3 2080.9480 2130.4270 2060.9480

w2, w3 not converge

w1, w2, w3 not converge

Plots effects w1 5151.7190 5176.4590 5141.7200

w2 5744.9100 5769.6500 5734.9100

w3 5209.6700 5234.4100 5199.6700

w1, w2 5146.6480 5181.2840 5132.6480

w1, w3 5145.6490 5180.2850 5131.6500

w2, w3 5168.1260 5202.7620 5154.1260

w1, w2, w3 not converge

Trees effects w1 2995.6300 3020.3690 2985.6300

w2 4145.6660 4170.4060 4135.6660

w3 3651.0750 3675.8150 3641.0760

w1, w2 2167.8120 2202.4480 2153.8120

w1, w3 2083.0270 2117.6630 2069.0280

w2, w3 2102.0420 2151.5210 2082.0416

w1, w2, w3 not converge

doi:10.1371/journal.pone.0104012.t004
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DBHijk~w1 exp {w2

.
t
w3
ijk

� �
zeijk ð13Þ

NLME model construction
The approach used to construct the NLME models was to fit

the models with nested effects of plot and tree for Equation 13 and

then to successively remove the random effects. The results are

listed in Table 4. Four of the NLME models reached convergence

with nested effects of plot and tree; the fifth and sixth models

converged when the one-level models included the random effects

of plot and tree, respectively.

LRT, AIC, BIC and 22 LL fit statistics were compared among

different combinations of random effects parameters (Table 4).

The models represented by Equations 14–16, incorporating the

nested effects of plot and tree, plot effects and tree effects on w1

and w3, yielded the smallest AIC, BIC and 22 LL.

DBH
p and t
ijk ~ b1zu1izu1ij

� �
exp {b2

,
t

b3zu3izu3ij

� �
ijk

0
@

1
Azeijk ð14Þ

DBH
p
ijk~ b1zu1ið Þexp {b2

	
t

b3zu3ið Þ
ijk


 �
zeijk ð15Þ

DBHt
ijk~ b1zu1j

� �
exp {b2

,
t

b3zu3j

� �
ijk

0
@

1
Azeijk ð16Þ

where DBH
p and t
ijk and DBH

p
ijk, DBHt

ijk are the diameters at

breast height for the three effects; b1, b2 and b3 are fixed-effects

parameters; u1i and u3i are random-effects parameters generated

by plot on w1 and w3, respectively; u1j and u3j are random-effects

parameters generated by tree on w1 and w3, respectively; and u1ij

and u3ij are random-effects parameters generated by interaction of

plot and tree on w1 and w3, respectively.

NLME models with heteroscedasticity and
autocorrelation

We used the power function or the exponential function as the

variance functions and the AR(1), ARMA(1,1) or CS as the

autocorrelation structures to fit diameter growth models incorpo-

rating different random effects. The results of the models provided

the best fit are shown in Table 5. The selected models had the

smallest AIC, BIC and 22 LL. Thus, the final models of plot

effects, tree effects and the two nested effects are, respectively:

Equation 14zEquation 7zEquation 10 ð17Þ

Equation 15zEquation 8zEquation 10 ð18Þ

Equation 16zEquation 7zEquation 10 ð19Þ

Parameter estimates
Nested effects of plot and tree. The nested two-level

NLME diameter growth model is:

DBH
p and t
ijk ~ 27:2796zu1izu1ij

� �

exp {24:7556

,
t

1:5416zu3izu3ij

� �
ijk

0
@

1
Azeijk

ð20aÞ

where

mi~
u1i

u3i

� 

*N

0

0

� 

,yi~

3:5713 {0:1411

{0:1411 0:0640


 �� �
ð20bÞ

mij~
u1ij

u3ij

� 

*N

0

0

� 

,yij~

6:0658 {0:5052

{0:5052 0:0788


 �� �
ð20cÞ

Table 5. Performance criteria for the best NLME models.

Effects Mixed parameters AIC BIC 22LL LRT p Value

Plots effects w1 5151.72 5176.46 5141.72

w1, w3 5145.65 5180.29 5131.65 10.07 0.0065

w1, w3 with exponential
function and ARMA(1,1)

2042.40 2091.88 2022.40 3109.24 ,0.0001

Trees effects w1 2995.63 3020.37 2985.63

w1, w3 2083.03 2117.66 2069.03 916.60 ,0.0001

w1, w3 with exponential
function and ARMA(1,1)

1113.96 1163.44 1093.96 975.07 ,0.0001

Nested effects of
plots and trees

w1 2992.34 3022.03 2980.34

w1, w3 2080.95 2130.43 2060.95 919.39 ,0.0001

w1, w3 with exponential
function and ARMA(1,1)

1112.75 1177.07 1086.75 974.20 ,0.0001

doi:10.1371/journal.pone.0104012.t005
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Plot effects. The NLME diameter growth model incorpo-

rating the effect of plot is:

DBH
p
ijk~ 21:9361zu1ið Þexp {52:3880

	
t

1:9153zu3ið Þ
ijk


 �
zeijk ð21aÞ

where
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0
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Tree effects. The NLME diameter growth model incorpo-

rating the effect of tree is:

DBHt
ijk~ 27:2695zu1j

� �

exp {24:6702

,
t

1:5367zu3j

� �
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@
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Figure 2. Residual error map of diameter growth of each model.
doi:10.1371/journal.pone.0104012.g002

Figure 3. Scatter plot of fitted values against observed values of diameter growth of each model.
doi:10.1371/journal.pone.0104012.g003
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Model prediction
The predictive ability of Equation 13 was evaluated using

predict procedures and Equations 3–5 on both fitting and

validation data. The performance of the NLME models, with

and without modeling the error structure, was evaluated using

cross-validation procedures for both fitting and validation data; the

random effects were predicted with the EBLUPs (Equation 12),

using the measurement data.

Table 6 lists the three fit statistics for Equation 13 and

Equations 20a–22a with and without random effects. Equation

20a was the best predictor, with increases in R2
adj and decreases in

AMR and RMSE for both fitting and validation data, but it was

more complex than the others and incurred significant computing

cost. In Figure 2, the residuals of Equations 13 and 20a–22a are

plotted against the fitted values; the fitted values are plotted against

the observed values in Figure 3. Based on the above analysis, we

can conclude that, although Equation 20a is the strongest

predictor, it is more complex than Equation 22a and the

difference between them is small. Compared with Equation 13,

Equation 22a had a higher R2
adj, 0.9956 compared to 0.7758, and

a lower RMSE, 0.5344 compared to 3.2810. Therefore, the

NLME model incorporating the random effect of trees was the

best model for predicting diameter growth of individual China-fir

trees in the single-species plantations of the study area.

Discussion

Of the 5 theoretical growth equations tested, the Korf equation

best fit the individual-tree diameter growth data of China-fir when

evaluated on the basis of AMR, RMSE and R2
adj. The Korf

equation is widely used for forest growth and yield simulation

models [41–43]. ONLS regression is commonly used to build

forest growth models, but its value is limited because tree data

typically violate the assumption of independent and identically

distributed errors [13,44,45]. NLME models are a useful tool for

analyzing repeated measures data and spatially correlated data

[18,33]. A model can be constructed with a unique variance-

covariance structure that eliminates the influence of the random

effects (plot and tree effects in this study). The two primary

challenges in fitting NLME models are determining the mixed

parameters and calculating the random effects [9,18,24,33,46]. An

additional source of inherent correlation would be the effect of

year, where observations coming from the same year would be

highly correlated; tree-ring width is largely related with yearly

climate variables [47]. However, year effects were not analyzed in

this study. Incorporating annual climate factors into the NLME
models may be an appropriate area for future research.

The Korf equation has been widely used as the base NLME
model for forest growth and yield prediction. For example, Cheng

and Gordon [48] successfully used the Korf equation with NLME
models to fit loblolly pine (Pinus taeda L.) diameter-age

relationships; the one-level (tree) individual-tree NLME model,

based on the Korf equation, with random effects parameters w1

and w3 had the best fit. Parameters w1, w2 and w3 are the

asymptotic values, the values associated with the growth rate of the

tree and the values associated with the curve shape (inflection

point) of the Korf equation, respectively. Therefore, the random

effects (tree) mainly influence the maximum value and the

inflection point, with evidence that the growth rate of the tree

affects the model fit.

Sometimes, no prior information is available from which the

random parameters can be predicted. In this case, the mixed-

effects model with the random parameters set to 0 is not the same
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as the population average model and will give biased predictions.

Instead, the population average model, fit without random effects,

should be used.

Conclusions

Five theoretical growth equations were evaluated for estimating

the diameter growth of China-fir trees grown in monospecific

plantations in Fujian province, southeast China. The equations

can be evaluated for both biological and statistical meaning. All 5

equations and the Korf equation in particular were commonly and

successfully used to model individual-tree diameter growth. One-

level (plot or tree) and nested two-level (tree nested within plot)

NLME models based on the Korf equation, with variance

functions and correlation structures, were used to estimate

diameter growth of individual trees; this approach was necessitated

by the hierarchical structure of the experimental design and the

autocorrelated tree-ring data. The results showed that the one-

level (tree) NLME model (Equation 22a) with random effects was

better than the others (Equations 13, 20a and 21a) (Table 5,

Figure 2 and 3). Therefore, we recommend using nonlinear

mixed-effects models to estimate individual-tree diameter growth.
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