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Abstract

In the context of genetics and breeding research on multiple phenotypic traits, reconstructing the directional or causal
structure between phenotypic traits is a prerequisite for quantifying the effects of genetic interventions on the traits.
Current approaches mainly exploit the genetic effects at quantitative trait loci (QTLs) to learn about causal relationships
among phenotypic traits. A requirement for using these approaches is that at least one unique QTL has been identified for
each trait studied. However, in practice, especially for molecular phenotypes such as metabolites, this prerequisite is often
not met due to limited sample sizes, high noise levels and small QTL effects. Here, we present a novel heuristic search
algorithm called the QTL+phenotype supervised orientation (QPSO) algorithm to infer causal directions for edges in
undirected phenotype networks. The two main advantages of this algorithm are: first, it does not require QTLs for each and
every trait; second, it takes into account associated phenotypic interactions in addition to detected QTLs when orienting
undirected edges between traits. We evaluate and compare the performance of QPSO with another state-of-the-art
approach, the QTL-directed dependency graph (QDG) algorithm. Simulation results show that our method has broader
applicability and leads to more accurate overall orientations. We also illustrate our method with a real-life example involving
24 metabolites and a few major QTLs measured on an association panel of 93 tomato cultivars. Matlab source code
implementing the proposed algorithm is freely available upon request.
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Introduction

In animal and plant breeding, selection of superior genotypes

for further crossing is an important objective. To achieve this

objective, identification of quantitative trait loci (QTLs) can be a

first step in the development of a breeding strategy; alternatively

nowadays, estimation of genomic breeding values can be

considered to form another initial step. Whether a breeding

strategy is based on QTLs or genomic breeding values, multi-trait

approaches offer clear advantages over single-trait approaches

[1,2]. In multi-trait models, correlations, or associations, between

traits have a symmetrical nature and are not supposed to convey

information about causal relationships. Nonetheless, causal

inference in correlated traits has been attracting growing research

interest since it allows predicting effects of external interventions,

where the effects of QTLs on phenotypic traits can be interpreted

to represent a specific class of interventions [3,4].

Causal inference in correlated traits, or equivalently, the

construction of directed phenotype networks was so far mainly

based upon logic that involves underlying QTLs [5]. For the

simplest system with two traits (T1, T2) and one QTL (Q), Schadt

et al. [6] and Li et al. [7] presented different implementations of

triad analysis to determine whether the three entities are

interconnected in, what they called, causal (QRT1RT2), reactive

(QRT2RT1) or independent (T1rQRT2) manner. Further

research efforts concerned the investigation of multi-locus and

multi-trait systems. Aten et al. [8] developed a network edge

orienting (NEO) method and software to 1) perform genetic

marker selection for each trait and 2) infer pairwise relationships

between traits, using local-structure edge orienting (LEO) scores.

Specifically, the LEO scores were calculated according to the

likelihoods of local structural equation models (SEMs), which

integrated two traits and the markers selected for each of them. Li

et al. [9] introduced another systematic method to first infer

genetic architecture of multiple traits and then iteratively assess

and refine the path model by means of covariance-based SEM.

Neto et al. [10] proposed a QTL-directed dependency graph

(QDG) approach that requires a priori estimation of QTLs for the

traits and executes the following two steps: 1) learn an undirected

network from phenotypic data; 2) infer causal direction for every

edge in the undirected phenotype network by conditioning on

detected QTLs. In the QDG algorithm, QTL mapping is treated

independently from the construction of phenotype network. In

contrast, a QTL-driven phenotype network (QTLnet) method was

introduced to jointly infer a directed phenotype network and the

associated genetic architecture for a set of correlated traits [11]. An

adaptive lasso (AL) based method was presented to infer a gene

regulatory network from gene expression and expression quanti-
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tative trait loci (eQTLs) data [12]. In their simulation studies,

Logsdon and Mezey [12] compared the performance of five

algorithms, i.e. the PC algorithm [13], the NEO algorithm, the

QDG algorithm, the QTLnet algorithm and the AL algorithm.

The results indicated that in the setting of tens of traits and QTLs,

the QDG and the AL algorithms exhibited comparable perfor-

mance but consistently outperformed the other three methods.

Logsdon and Mezey [12] also considered a couple of other

algorithms including the one proposed by Li et al. [9], but they

were deemed computationally expensive. Therefore, the QDG

and the AL algorithms will be regarded as two state-of-the-art

methods in this field.

In practice, it has become fashionable to map QTLs for

phenotypes of interest via genome-wide scans, since genotyping

has become cheaper and easier thanks to the advancement of

genome sequencing technologies. Contrariwise, phenotyping, and

especially metabolic profiling and sensory assessment, is still

expensive and time-consuming [14]. Thus, for phenotypic traits

such as metabolites and sensory attributes, it is hard to obtain large

sample sizes that provide sufficient power for detecting small to

medium sized QTLs. And it is often the case that, given high-

dimensional phenotypic and genetic data (i.e. large numbers of

traits and QTLs vs. small numbers of samples), significant QTLs

cannot be identified for each and every trait [15,16]. In such cases,

both the QDG and AL algorithms become inapplicable as they

require at least one unique QTL for each trait studied [10,12].

To construct directed phenotype networks, especially when

some traits come without QTLs, we present in this paper a QTL+
phenotype supervised orientation (QPSO) algorithm. Compared

with the benchmark QDG algorithm, our proposed method is

likewise based on a priori determination of an undirected

phenotype network and QTLs for the traits, where we recommend

estimation of initial QTLs using multi-trait QTL mapping

methods [1,17,18]. Our QPSO algorithm implements a heuristic

search different from that of the QDG algorithm and investigates a

more comprehensive local structure at each step. More specifical-

ly, the QPSO algorithm takes into account the related phenotypic

interactions in addition to QTLs when orienting an undirected

edge between two traits. As a result, it can orient multiple

undirected edges simultaneously. The performance of the QPSO

and the QDG algorithms is compared through a series of

simulations. The results show that our method has broader

applicability and produces more accurate overall orientations. To

demonstrate the QPSO algorithm empirically, we use it in

combination with the PC-skeleton [13] to build a partially directed

network that sheds light on causal relationships between 24

metabolites in ripe fruits of a tomato association panel.

Method

Causal inference in two correlated traits
Assume Y1 and Y2 are two correlated traits connected by an

undirected edge in a phenotype network. The causal direction of

Y1–Y2 should follow one of two scenarios: Y1RY2 or Y1rY2. The

two causal models are considered likelihood equivalent because

p(Y1)p(Y2|Y1) = p(Y1,Y2) = p(Y2)p(Y1|Y2). Thus, it is impossible to

distinguish between Y1RY2 and Y1rY2, i.e. to orient Y1–Y2, using

a maximum-likelihood criterion.

Neto et al. [10] presented a smart way to solve the problem of

causal inference in two correlated traits. They introduced QTLs to

Y1 and Y2 so as to get two expanded directed graphs as shown in

Figure 1. The two expanded directed graphs are not likelihood

equivalent since p(Q1)p(Y1|Q1)p(Q2)p(Y2|Y1,Q2)?p(Q2)-

Q1)p(Y1|Q1)p(Q2)p(Y2|Y1,Q2)?p(Q2)p(Y2|Q2)p(Q1)p(Y1|Y2,Q1),

which can be further simplified as p(Y1|Q1)p(Y2|Y1,Q2)?-
Y1|Q1)p(Y2|Y1,Q2)?p(Y2|Q2)p(Y1|Y2,Q1). In this context, it is

feasible to infer the causal direction of Y1–Y2 according to the

maximum-likelihood criterion. More specifically, Y1–Y2 should be

oriented in favor of the direction present in the model with higher

likelihood, i.e. Y1RY2 if p(Y1|Q1)p(Y2|Y1,Q2).p(Y2|Q2)-

Y2|Q2)p(Y1|Y2,Q1) while Y1rY2 if p(Y1|Q1)p(Y2|Y1,Q2),

p(Y2|Q2)p(Y1|Y2,Q1).

Causal inference in local generalized phenotype
networks

In the context of Figure 1, Y1–Y2 is oriented by introducing

parent nodes to Y1 and Y2, where the parent nodes are restricted to

earlier identified QTLs. However, it is known that many

molecular traits, such as metabolites and proteins, do interact

with one another. This means that in addition to QTLs, some

other traits may also have causal effects on Y1 and Y2. Therefore,

these traits should also be included in the parent nodes of Y1 and

Y2; or, at least, their potential effects on Y1 and Y2 should be taken

into account when one is attempting to orient Y1–Y2. To make a

comprehensive consideration of the local structure regarding Y1

and Y2, we present here the concept of local generalized

phenotype network (LGPN) (Figure 2A), in which we include 1)

QTLs identified for Y1 and Y2, 2) traits that have been determined

as parent nodes of Y1 and Y2, 3) traits that are directly connected to

Y1 and Y2 by undirected edges (these traits are hereinafter referred

to as neighbouring traits of Y1 and Y2).

It has been demonstrated that the maximum-likelihood criterion

can be employed to infer the direction of Y1–Y2 in the context of

Figure 1. Inspired by this, we find a feasible solution to the

problem of causal inference in LGPNs that meet the following two

conditions: 1) both Y1 and Y2 have parents nodes and at least one

of Y1 and Y2 has unique parent nodes; 2) each neighboring trait of

Y1 is nonadjacent to at least one of the parent nodes of Y1, and the

same is true of Y2. Assume in such a LGPN there are n undirected

edges including Y1–Y2. As every undirected edge has two optional

directions (i.e. either forward or backward), the total number of

candidate directed graphs derived from that LGPN is then 2n .

Verma and Pearl [19] have proved a theorem for the character-

ization of equivalent graphical models.

Theorem: Two directed acyclic graphs (DAGs) are likelihood

equivalent if and only if they have the same skeletons and the same

v-structures (A v-structure in a DAG G is an ordered triple of

nodes (X, Y, Z) such that G contains the directed edges XRY and

ZRY, and X and Z are not adjacent in G).

According to the theorem, we find that under the two

aforementioned conditions, each of the 2n candidate directed graphs

possesses a distinct set of v-structures (for detailed explanation please

refer to File S1) and thus returns a distinct log-likelihood scoreXN

i~ 1
log 10 f y1i D pa( y1i)ð Þf y2i D pa( y2i)ð Þð Þ , where N is

the sample size, pa(X) represents the parent nodes of trait X, and f() is

a conditional probability density function with parameters replaced

by the corresponding maximum-likelihood estimates. Accordingly,

the locally optimal directed graph (LODG) among the 2n candidates

should be the one with the highest log-likelihood score.

All undirected edges involving in a LGPN can be oriented

simultaneously in the light of the corresponding LODG. These

newly determined directed edges will then be employed to infer

directions of some remaining undirected edges in the entire

phenotype network. This leads to a heuristic search process, which

will be described in detail in the following section. In the process of

heuristic search, it might happen that some of the traits have never

been assigned parent nodes in all of the previous steps. In cases

Causal Inference in Correlated Phenotypes
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where only Y1 or Y2, say Y1, has been determined with parent

nodes, the maximum likelihood criterion is able to identify the

LODG for a reduced LGPN (Figure 2B), and the log-likelihood

score should be reformulated as
PN

i~ 1 log 10f y1i D pa( y1i)ð Þ .

In particular cases where neither Y1 nor Y2 has unique parent

nodes, the maximum likelihood criterion fails to infer direction of

Y1–Y2. This means that the consideration of LGPN regarding Y1

and Y2 becomes a bit pointless and should be skipped.

In this study, we restrict ourselves to quantitative phenotypic

traits and categorical QTL data, i.e., QTLs are represented by

closest markers that can take one of two or three genotypes at that

locus, depending on the type of population. Missing values in

phenotypic and marker data are assumed to be estimated or

imputed before that causal inference is applied. We also assume

that a LGPN is a conditional linear Gaussian (CLG) model, in

which discrete variables are not allowed to have continuous

parents, and the joint distribution of continuous variables for every

instantiation of discrete variables is multivariate Gaussian [20].

Causal inference in an entire undirected phenotype
network

A LODG may introduce new parent nodes to some of the traits.

As illustrated in Figure 3, Y1 is the newly determined parent node

of C1 and C4. This updated causal information might subsequently

enable or improve the orientation of the remaining undirected

edges connecting to C1 and C4. Therefore, iterative implementa-

tion of causal inference in sequential LGPNs can finally orient as

many edges as possible in an undirected phenotype network. This

is, however, a typical heuristic search technique that has to be

rerun from different starting points a number of times to avoid

getting stuck in local optima. To this end, we exploit the Bayesian

information criterion (BIC) score as a global evaluation metric to

find the most likely fully or partially directed phenotype network

obtained in multiple runs. The BIC score is a well-known

penalized likelihood criterion that is often used to prevent

overfitting the training data. It is formally defined as

LL DD Gð Þ { 0:5 | log Nð Þ | D GD , where D is the train-

ing data, G is the learnt network, LL DD Gð Þ is the maximum log-

likelihood, N is the sample size, and D GD denotes the dimension of

G [21].

In summary, our QPSO algorithm executes the following steps

to perform causal inference in an entire undirected phenotype

Figure 1. Candidate solutions to causal inference in two correlated traits. Y1 and Y2 are two traits correlated with each other;
Q1 = {Q11,…,Q1k} and Q2 = {Q21,…,Q2l} denote QTLs for Y1 and Y2, respectively.
doi:10.1371/journal.pone.0103997.g001

Figure 2. The general representations of resolvable LGPNs. Y1 and Y2 are two correlated traits; P1 = {P11,…,P1k} and P2 = {P21,…,P2l} are,
respectively, the unique parent nodes of Y1 and Y2; P12 = {P1,…,Ps} are the common parent nodes of Y1 and Y2; C1 = {C11,…,C1u} and C2 = {C21,…,C2v}
are the unique neighboring traits of Y1 and Y2; C12 = {C1,…,Ct} are the common neighboring traits of Y1 and Y2. Note that each of the neighboring
traits of Y1 is nonadjacent to at least one of the parent nodes of Y1, and the same is true of Y2. Also note that P1, P2 and P12 are allowed to have three
different compositions: (1) a pure set of QTLs, if only genetic factors have been identified for Y1 and/or Y2; (2) a mixed set of QTLs and traits, if some
traits in addition to QTLs have been determined to have causal effects on Y1 and/or Y2; (3) a pure set of traits, if only some traits have been found as
causal factors of Y1 and/or Y2; in contrast, C1, C2 and C12 only refer to those traits that are directly connected to Y1 and/or Y2 by an undirected edge.
(A) The general representation of LGPNs where both Y1 and Y2 have parent nodes, and at least one of them has unique parent nodes; (B) the general
representation of LGPNs where only Y1 has parent nodes.
doi:10.1371/journal.pone.0103997.g002
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network, where we assume that the QTLs have been identified

earlier by a multi-trait QTL mapping method like the ones

described in [17] and [18].

(1) Randomly choose a pair of traits that simultaneously satisfy

two conditions: first, they are connected by an undirected

edge; second, both of them have parent nodes and at least one

of them has unique parent nodes.

(2) Extract the LGPN (as illustrated in Figure 2A) with respect to

these two traits.

(3) Identify the LODG from all candidate directed graphs

derived from that LGPN; update the phenotype network

(i.e. orient all the corresponding undirected edges) according

to the LODG.

(4) Repeat steps (1), (2) and (3) until no more traits satisfying the

two conditions mentioned in step (1) remain.

(5) If the resulting phenotype network is partially directed,

randomly choose a pair of traits that simultaneously satisfies

two conditions: first, the traits are connected by an undirected

edge; second, only one of them has parent nodes.

(6) Extract the LGPN (as illustrated in Figure 2B) with respect to

these two traits.

(7) Identify the LODG from all candidate directed graphs

derived from that LGPN; update the phenotype network

according to the LODG.

(8) Repeat steps (5) (6) and (7) until no more undirected edges can

be oriented; store the overall orientation of the entire

phenotype network.

(9) Repeat steps (1) through (8) a number of times (this number is

hereinafter referred to as the number of iterations); use the

BIC score to evaluate each overall orientation and return the

one with the highest score.

An implementation of the QPSO algorithm has been realized in

Matlab. Thereinto, the probability density function of the CLG

distribution and the BIC score are computed by calling functions

in Bayes Net Toolbox (https://code.google.com/p/bnt/). Matlab

source code is available from the authors upon request.

Results

Synthetic phenotypic and QTL data
We followed the same protocol used in [10] to generate

synthetic data for a simulation study creating phenotypic and

marker data for an F2 population. A directed network composed

of 65 nodes and 74 edges (Figure 4) was created by the

randomDAG function in the R package ‘pcalg’ (http://cran.r-

project.org/web/packages/pcalg/index.html). In this network, 34

nodes denoted phenotypic traits while the other 31 nodes

represented QTLs. QTLs were randomly selected among 50

markers, with 5 markers unevenly distributed on each of 10

chromosomes. Observations of a trait were generated on the basis

of linear regression model y~ a T qz b T xz E , where q is a

vector of marker scores (QTLs), x is a vector of traits, a and b
are the regression coefficients corresponding to q and x, and E is

the residual. To simplify exposition, we assumed quantitative traits

and categorical QTL data, and allowed only additive genetic

effects with an increment of 0.1 per allele. Specifically, QTL

genotypes aa, Aa and AA were respectively encoded as 1, 2 and 3;

the regression coefficient for genotype aa was uniformly drawn

from [0.2, 0.4]; the coefficients for genotypes Aa and AA were

then given by adding 0.1 and 0.2, respectively. Besides, the

regression coefficient of a phenotype on one another was chosen

uniformly from [0.5, 1], and the standard deviation of � E was

randomly drawn from [0.1, 0.5]. A set of synthetic phenotype and

QTL data is given in File S2.

Simulation results
Our QPSO method is applicable to pre-learnt undirected or

partially directed phenotype networks. There are a number of

ways to learn undirected graphical models from data, including

marginal and partial correlation analyses, as well as conditional

independence tests. We consider the QDG algorithm still to

represent a benchmark algorithm with which to compare our

QPSO approach. The QDG algorithm uses an undirected

phenotype network as reconstructed by the PC-skeleton algorithm

as the starting configuration for edge orientation. For the

comparative simulations, we also took the PC-skeleton as the

method to arrive at an undirected phenotype network.

In a first set of 20 simulation runs, we evaluated the

performance of the PC-skeleton algorithm using two indicators,

recall and precision. Each simulation run was based on a distinct

phenotypic dataset. Recall, also called true positive rate or

sensitivity, measures the proportion of true edges that are retrieved

in relation to the full set of true edges. Precision, or positive

predictive value, measures the proportion of true (positive) edges in

the set of identified edges (true and false positives). The higher

recall and precision, the better the reconstruction of the network is.

The results of our first set of simulations are shown in Table 1,

where means and standard deviations for recall and precision are

given. With increasing sample size, both recall and precision

improved with respect to their means across simulation runs, while

their standard deviations remained at a low level. In particular,

given that in practice 100 individuals is a representative sample

size for biological data like metabolites, a recall of 0.86 and a

precision of 0.97 on average, is very encouraging. High mean

value and low standard deviation indicate that the PC-skeleton

algorithm can accurately and consistently recover an undirected

network, using a reasonable sample size.

Given an undirected phenotype network pre-learnt by the PC-

skeleton algorithm, our next step was to infer causal directions for

edges in the network by exploiting associated QTLs. Both the

QDG and QPSO algorithms are applicable to this problem when

Figure 3. An example of LODG. Y1 and Y2 are two correlated traits;
C2 and C3 are two traits that have been newly determined as parent
nodes of Y1; Y1, C3 and C5 are three traits newly determined as parent
nodes of Y2; Y1 is a newly determined parent node of traits C1 and C4; Y2

is a newly determined parent node of traits C4 and C6.
doi:10.1371/journal.pone.0103997.g003
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at least one QTL has been identified for each and every trait. In a

second set of simulations we then made a comparative evaluation

of the two edge orientation algorithms using the full set of QTL

data and the earlier reconstructed undirected phenotype network.

Results are presented in Table 2, where we give mean and

standard deviation of the proportion of true positive edges that

were correctly oriented for QDG using all QTLs and QPSO using

all QTLs over 20 independent simulation runs. To achieve

consistent results (i.e. small standard deviations) from multiple

runs, the QDG algorithm claimed 1000 iterations [10] while our

QPSO method required only about 10 iterations for each

individual run. Two conclusions regarding the effectiveness of

the two algorithms can be drawn from the comparative study.

First, along with the increase of samples, the overall orientations

obtained by both methods became increasingly accurate and

consistent. Second, given the same sample size, the QPSO

algorithm produced more accurate overall orientation than the

QDG method, since the former always possessed a higher mean

proportion of correctly oriented true edges combined with a

comparable or slightly lower standard deviation.

The major advantage of the QPSO algorithm lies in the ability

of inferring causal relationships between correlated traits when

some or more of the traits do not have QTLs. To demonstrate this,

in a third set of simulations, we blanked out a number of detected

QTLs and then investigated the performance of the QPSO

algorithm. We assumed that QTLs corresponding to the clear

rectangular nodes in Figure 4 were not available for the

reconstruction of the directed phenotype network, i.e., these

QTLs were removed from the input of the QPSO algorithm.

Results of this particular simulation study are summarized in the

Figure 4. A synthetic QTL-phenotype network. This network consists of 31 QTLs, 34 traits and 74 directed edges. Traits are ordered by
numerical numbers and QTLs are labelled in the form of ‘Cimj’ indicating the j-th marker on the i-th chromosome. Because only a part of QTLs were
used in a third set of simulations, the nodes are further classified as follows: shaded rectangular nodes–QTLs present in the third set of simulations;
clear rectangular nodes–QTLs absent in the third set of simulations; shaded circular nodes–traits provided with QTLs in the third set of simulations;
clear circular nodes–traits provided without QTLs in the third set of simulations.
doi:10.1371/journal.pone.0103997.g004

Table 1. Performance of the PC-skeleton algorithm in reconstructing the synthetic phenotype network across a series of 20
simulations.

Sample
size Recall Precision

mean sd mean sd

100 0.86 0.06 0.97 0.03

200 0.94 0.03 0.97 0.03

300 0.96 0.03 0.98 0.03

400 0.98 0.03 0.98 0.03

500 0.99 0.03 0.98 0.02

The significance level of conditional independent tests used in the PC-skeleton algorithm was set at 0.01.
doi:10.1371/journal.pone.0103997.t001
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PLOS ONE | www.plosone.org 5 August 2014 | Volume 9 | Issue 8 | e103997



columns of Table 2 that are labelled QPSO using partial QTLs. It

is obvious that QPSO still has reasonably good edge orientation

even when a substantial proportion of the traits come without

QTLs. Table 2 learns that given the same sample size, the overall

orientation obtained by the QPSO algorithm with partial QTLs is

getting refined when sample size increases, and is slightly inferior

to the one obtained by the same algorithm with full QTLs, but

nevertheless superior to the one obtained by the QDG algorithm

with full QTLs.

To demonstrate the robustness of the QPSO algorithm, we

elaborated on the results of the third set of simulations reported

above. We selected five edges from the simulated phenotype

network that differed with respect to the configuration of parent

nodes for two correlated traits: (1) between traits 2 and 18, with the

two traits having one common QTL (C8m1) and trait 2 having a

unique QTL (C3m5); (2) between traits 1 and 16, with each trait

having a unique QTL (C2m1 for trait 1 and C4m4 for trait 16); (3)

between traits 16 and 26, with trait 16 having a unique QTL

(C4m4) and trait 26 having no QTL; (4) between traits 13 and 26,

with trait 13 having a unique QTL (C6m1) and trait 26 having no

QTL; (5) between traits 26 and 31, with neither trait having QTL.

We investigated the accuracy of orientations obtained by the

QPSO algorithm for the five edges (Table 3). When sample size

increased from 100 to 500, the two edges 2–18 and 13–26 were

almost 100% correctly oriented, the average percentages of correct

orientations improved from 65 to 95% for the edge 1–16, from 25

to 70% for the edge 16–26 and from 35 to 100% for the edge 26–

31. The declining performance of our method on edge 16–26 than

1–16 was mainly due to error propagation in orientations. If an

incorrect direction has been assigned to edge 1–16 in a previous

step, it will affect the accuracy of orientation regarding edge 16–

26. Likewise, an incorrect direction inferred for edge 16–26 will

subsequently harm the orientation of edge 26–31. However,

results in Table 3 indicate that our QPSO algorithm possesses

higher accuracy in orientation of edge 26–31 than of 16–26. This

is because the algorithm makes a full consideration on the

neighborhood of trait 26 (i.e. the interactions between traits 13, 15,

16 and 26 were all taken into account) when orienting the edge

26–31, so that the negative impact of incorrect orientation of edge

16–26 can be counterbalanced, to some extent, by the positive

effect of correct orientation of edge 13–26.

Each run of the QPSO algorithm selects the best model

according to the maximum-likelihood criterion. Nonetheless, in

many cases, several models may have very close likelihoods,

meaning that they are all compatible with the data. Therefore, it is

critical to check the consistency of those competing models. Also

based on the third set of simulations, we compared the best two

models obtained by a single run of the QPSO algorithm for

different sample sizes. The results (Table 4) show that for a given

sample size, the best two models indeed possess very close BIC

scores; but, more importantly, they are substantially the same,

except for a handful of edges that are assigned with opposite

directions in the two models. In view of the high consistency that

exists between the best two models, we believe it will suffice to

return only the best model as final output. All simulations were

implemented in a 32 bit Intel(R) Core(TM) i5-2410 M 2.30 GHz 4

GB RAM machine. The computing time of a single run of the

QPSO algorithm for each sample size studied is also included in

Table 4.

As explained in the Method section, the QPSO method returns

fully or partially directed phenotype networks depending on the

number of available QTLs. The PC algorithm, which is a further

extension of the PC-skeleton algorithm, also returns partially

directed phenotype networks but without using QTLs. To
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demonstrate the advantage of our QPSO method over the PC

algorithm, in a final set of simulations we assessed the performance

of the PC algorithm in the reconstruction of the simulated

phenotype network. Results are shown in the last two columns of

Table 2. The last four columns of Table 2 support the conclusion

that for a given sample size and undirected phenotype network,

the QPSO algorithm with partial QTLs orients correctly far more

edges than the PC algorithm, which orients edges without using

QTL information.

Metabolic and QTL data collected in ripe tomato fruits
Metabolic data were collected from ripe fruits of 93 tomato

cultivars, an association panel provided by five breeding compa-

nies involved in the Centre for BioSystems Genomics tomato

quality program (http://www.cbsg.nl/tomato.aspx). According to

morphological characteristics of ripe tomato fruits, the 93 cultivars

were categorized into three groups, labelled as beef, cherry and

round. The three groups made up approximately 25%, 25% and

50% of the total collection. Metabolic profiling of cultivars was

based on pooled fruit samples, where the sample for each beef or

round cultivar mixed 12 fruits while the sample for each cherry

cultivar contained 18 fruits. Sugars and acids were measured using

the technique described in [22]. Volatiles were quantified using

the method presented in [23]. In this study, we investigated a

subset of 24 metabolites of special interest. The same set of

metabolic data was studied in [24], where a detailed description of

the measurements and the data can be found. Most of the

metabolites strongly discriminated between cherry and non-cherry

(i.e. beef and round) tomatoes, as was found by both principal

component analysis and discriminant analysis [24]. Application of

the PC-skeleton algorithm to reconstruct a phenotypic network

between the 24 metabolites led to a network with 17 edges

(Figure 5). The reconstruction was done choosing a rather strict

test level of 0.01 for the conditional independence tests to arrive at

a sparse but high confidence phenotypic network.

To find a list of QTLs driving the variation in the 24

metabolites, association analysis was performed using 600 SNPs

in a multi-trait mixed model association mapping procedure that

allowed for trait specific effects of pleiotropic QTLs. In addition,

this mixed model contained intercept terms for the cherry and

non-cherry groups to correct for this obvious type of population

structure. To investigate the susceptibility of the QPSO algorithm

to the amount of QTL information for orienting edges between

metabolites, we selected QTLs at three levels significance. The

more liberal the threshold, the greater the number of selected

QTLs is. We adopted three closely together thresholds for the

significance of the test for a QTL with an effect on any of the 24

metabolites at a given marker locus, corresponding to –log10 (p-

value) = 4.5, 5.0, 5.5. At the strictest level of –log10 (p-value) .5.5,

11 QTLs were identified for seven metabolites (Figure 5A), with

two QTLs that had pleiotropic effect on two metabolites. Of the

24 metabolites, 17 remained without QTL. Lowering the –log10

(p-value) for QTL detection to 5.0 led to four additional QTLs

and more QTLs with pleiotropic effects: eight metabolites came

with one or more QTLs, 16 stayed without QTLs (Figure 5B). At

a –log10 (p-value) threshold of 4.5, a total of 19 QTLs were

detected for 10 metabolites (Figure 5C). The metabolic and QTL

data for this study are available in the File S3.

Causal relationships among tomato metabolites
The QPSO algorithm was used to orient undirected edges

between the metabolites. The results corresponding to QTLs

selected at the three thresholds of –log10 (p-value) = 4.5, 5.0 and

5.5 are shown in Figures 5A, B and C, respectively. Comparison of

the three graphs indicates that when more QTLs with relatively

small effects enter the model, more traits tend to be associated with

at least one QTL, and accordingly more undirected edges between

traits can be oriented. The 11 QTLs for the seven metabolites in

Figure 5A allowed 11 of the 17 edges to be oriented. For the 15

QTLs and 8 metabolites in Figure 5B and the 19 QTLs and 10

metabolites in Figure 5C, 13 edges out of the 17 could be oriented.

Among the 17 undirected edges between metabolites, 11 were

oriented throughout the three graphs. We examined the consis-

tency of the inferred directions of the 11 edges and found that only

the edge connecting 1-penten-3-one and trans-2-hexenal came

varied in direction across the test levels for QTLs. The directions

of the other 10 edges were invariant to the changes in the amount

of QTL information. This invariance of edge orientation provides

a modest demonstration of the robustness of the QPSO algorithm.

After reconstruction of the directed network, an investigation of

pleiotropic QTLs is possible in a post hoc analysis of the network.

For example, in Figure 5C, initially the two QTLs rs4494 and

rs4715 were pleiotropic for 3-methylbutanol and 2-methylbutanol.

Simultaneously, 3-methylbutanol was identified to be a direct

upstream metabolite of 2-methylbutanol. Did the two QTLs have

pleiotropic effects on both traits, or, were their effects on 2-

methylbutanol mediated via 3-methylbutanol? To answer this

question, we used the BIC scoring metric to evaluate and compare

the two models shown in Figure 6A and B, where Q denotes

rs4494 or rs4715, Y1 and Y2 represent respectively 3-methylbuta-

nol and 2-methylbutanol. It turned out that with respect to either

of the two QTLs, the simplified model in Figure 6B possessed a

higher BIC score, thereby providing a better fit to the observed

data. Thus, we deleted from Figure 5C the two edges pointing

Table 3. Demonstration of the robustness of the QPSO algorithm.

Sample
size Proportions of correct orientations of five edges

2R18 1R16 16R26 13R26 26R31

100 1.00 0.75 0.45 1.00 0.45

200 1.00 0.75 0.50 1.00 0.80

300 1.00 0.80 0.60 1.00 0.95

400 1.00 0.85 0.65 1.00 1.00

500 1.00 0.95 0.70 1.00 1.00

Proportion of correct edge orientation across 20 simulations for edges with varying parent configurations. Node numbers refer to Figure 4. Decimal numbers were the
average values deduced from 20 independent runs in the third set of simulations.
doi:10.1371/journal.pone.0103997.t003
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from rs4494 and rs4715 to 2-methylbutanol. The same concern

can be raised with respect to the QTL effect of NSG1 on methyl

salicylate and 2-methoxyphenol. In this case, we failed to infer the

causal relationship between the two metabolites due to lack of

unique QTL. To this type of specific problems, Neto et al. [10]

suggested a possible solution by comparing the likelihoods of the

three models shown in Figure 6B, C and D. Here, we exploited

the BIC score again and let Q, Y1 and Y2 denote NSG1, methyl

salicylate and 2-methylbutanol, respectively. Comparative results

indicated that the data best supported the pleiotropic model in

Figure 6D, therefore the local structure of NSG1, methyl salicylate

and 2-methylbutanol in Figure 5C should remain the same. The

investigation to the reality of observed pleiotropic relations as

described for Figure 5C was equally applied to Figures 5A and B.

Given the structure of the network, we estimated effects of traits

on one another and of QTLs on traits. To that end, we regressed

metabolites on QTLs and adjacent upstream metabolites. We

discriminated between positive and negative associations among

the metabolites according to the signs of fitted regression

coefficients. The signs of QTL effects were not considered as they

are somewhat arbitrary in the context of association mapping and

binary markers such as SNPs.

The above directed network can be compared with undirected

networks constructed on the basis of marginal and partial

correlations, like a correlation network and a graphical Gaussian

model (GGM), see Figure 5 and 9 as presented in [24]. Both these

graphs look very dense despite the fact that only strongly

significant correlations were displayed (q,0.05, as a false discovery

rate procedure was chosen). From a dense graph with many

variables incorporated, it is hard to arrive at meaningful

interpretations. Compared with the results reported in [24], our

findings obtained by the PC-skeleton algorithm in combination

with the QPSO algorithm comprised a much sparser graph, with

the additional advantages of showing (partial) directedness

between traits and the influence of QTLs on traits. It should be

remarked that between the three graphs, a central backbone

coincided.

Although we reconstructed a directed network on a set of

metabolites, the resulting network cannot be interpreted as an

approximation to a metabolic network, a major reason being the

absence of time course data. The metabolic data we analysed

represented mean metabolite abundances obtained from grinding

a number of fruits for a set of tomato genotypes. To get insight in

biological pathways, we should measure series of chemical

reactions occurring over relative short time frames within a cell,

but the measurement and analysis of such time series still presents

large challenges [25]. The value of a directed network like that of

Figure 5 is that it allows to correctly quantifying the effects of QTL

allele substitutions, say genetic interventions or perturbations, at a

number of phenotypic traits simultaneously. For instance, changes

at locus rs7213 will have an effect on the concentration of 1-

penten-3-one, which will subsequently affect the concentration of

cis-3-hexenal. In contrast, variations in the concentration of 1-

penten-3-one will not influence the level of trans-2-hexenal, as

trans-2-hexenal is an upstream metabolite of 1-penten-3-one.

Another representative example is that if we attempt to control the

concentration of 2-methylbutanol, we should be cautious about

the allelic composition at loci rs4715, rs8396, rs8340, rs7143 and

rs8233, since any genetic perturbation leading to an alteration in

the concentration of 3-methylbutanol will then change the

concentration of 2-methylbutanol.

From a biological point of view, Figures 5A, B and C present

several interesting clusters. It is noteworthy that the major

carbohydrates glucose and fructose are linked to sucrose and

citric acid via myo-inositol. Whilst myo-inositol is synthesized from

glucose, the recovery of the indirect link is remarkable, also

considering that myo-inositol is linked to sucrose which can be

broken down into glucose and fructose or alternatively into UDP-

glucose and fructose. Another remarkable link is the one between

beta-damascenone and beta-ionone both of which are break-down

products of carotenoids [26]. Interestingly 6-methyl-5-hepten-2-

one was not linked to these, despite being a carotenoid class

volatile. This indicates that the latter open chained form likely

stems from lycopene [27], potentially explaining why it is not

linked to any of the former two metabolites. Furthermore, the

negative correlation between aspartic acid and glutamic acid

might be explained by the action of aspartate aminotransferase

converting glutamate oxaloacetate to 2-oxoglutarate and aspar-

tate. It is clear that the C5 and C6 volatiles were grouped together.

Whilst intriguing that these are likely produced from the same

precursors via lipoxygenases [28], one would speculate that the C5

and C6 volatiles should probably be disconnected, making the 1-

Figure 5. Three partially directed graphs describing the relationships among 24 metabolites in ripe tomato fruits. Clear nodes
represent metabolites; shaded nodes denote QTLs identified for the metabolites. QTLs in (A), (B) and (C) were selected on the basis of –log10 (p-value)
thresholds 5.5, 5.0 and 4.5, respectively. Grey edges link QTLs to the corresponding metabolites. Blue and red edges, without regard to their
directions, were learnt by the PC-skeleton algorithm; their directions, if any, were inferred by the QPSO algorithm. Blue edges occur consistently
throughout the three graphs representing different test levels for QTLs, while red edges do not. Solid and dashed edges indicate positive and
negative correlations, respectively; fishbone edges are removed by post hoc causal reasoning.
doi:10.1371/journal.pone.0103997.g005

Figure 6. Test models in triad analysis. (A) a QTL Q has pleiotropic effects on two traits Y1 and Y2, Y1 is also a causal factor of Y2; (B) Q is identified
for Y1, Y1 has a causal effect on Y2; (C) Q is identified for Y2, Y2 has a causal effect on Y1; (D) Q is identified for both Y1 and Y2, but the causal
relationship between Y1 and Y2 is unclear.
doi:10.1371/journal.pone.0103997.g006
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penten-3-one (C5) mini hub linked to many C6 volatiles worth

further investigation. Incidentally, both C5 and C6 volatiles were

also found in different clusters previously [29]. Regarding the

metabolites 3- and 2-methylbutanol, they both are likely leucine/

isoleucine derived compounds and they were found linked to 2-

isobutylthiazole before [29].

In summary, our partially directed network for the 24 tomato

metabolites is clearly more concise and informative than those of

conventional marginal and partial correlation analyses and

allowed discriminating between direct and indirect metabolic

responses to particular genetic perturbations in tomatoes. Follow-

ing Valente et al. [4], it is exactly this type of information that is

needed for predicting the effects of genetic interventions on sets of

correlated phenotypic traits.

Discussion

The QPSO algorithm is applied to pre-learnt undirected or

partially directed phenotype networks. Correlation networks and

GGMs are the most common models used to learn undirected

graphs from biological data [24,30,31]. Bayesian networks (BNs)

are considered a promising tool to recover partially directed

biological networks [32–34]. Formally, a BN is a DAG that

represents probabilistic conditional independence structures for a

set of interacting variables. Two mainstream approaches regarding

BN structure learning are the constraint-based and the score-based

methods. However, due to their inherent limitations, in many

cases the two approaches can only return partially directed graphs

rather than DAGs. Please refer to [35] and [36] for details. A

comparative evaluation of correlation networks, GGMs and BNs

has been made in the reconstruction of gene regulation networks

[37]. The results indicated that GGMs performed comparably to

BNs on general observations, and both GGMs and BNs

outperformed correlation networks on Gaussian observations.

Besides the construction of undirected or partially directed

phenotype networks, QTL mapping for the traits is also a

prerequisite for using the QPSO algorithm. Standard QTL

mapping methods, including association mapping and linkage

mapping, process phenotypic traits in a parallel fashion without

paying attention to the underlying dependence structure of traits.

Neto et al. [11] claimed that QTL mapping conditional on the

phenotype network should lead to a better estimated genetic

architecture, and a better genetic architecture should in turn result

in a better inferred phenotype network. Accordingly, they

developed a statistical framework, named QTLnet, to jointly infer

a causal phenotype network and the associated genetic architec-

ture for a set of correlated phenotypes. The QTLnet method is

actually a Metropolis–Hastings algorithm that integrates QTL

mapping and the sampling of directed phenotype networks at each

step. However, like many other Markov Chain Monte Carlo

approaches, this method shows slow mixing of the resulting

Markov chains and requires considerable computation time. Its

implementation in R can handle no more than 20 traits at this

point [11].

The QPSO algorithm treats QTL mapping independent from

phenotype network reconstruction and cannot correct misspecified

edges in undirected phenotype networks pre-learnt by the PC

algorithm. In this sense, it would be considered less robust than the

QTLnet method. We observed, however, that the QPSO

algorithm performed well in the reconstruction of directed

phenotype networks: 1) the results of our first set of simulations

and also the ones shown in [10] implied that given relatively

sufficient samples (say, $100 for a network composed of 34

phenotypes and 27 edges, or, $300 for a network composed of

100 phenotypes and 107 edges), the undirected phenotype

networks recovered by the PC-skeleton algorithm were fairly

reliable (with recall .0.85 and precision .0.90); 2) the simulation

results presented in [12] indicated that in small-scale phenotype

networks (to which the QTLnet method is only applicable), the

QTLnet method was outperformed by the QDG algorithm that

was used as benchmark in this study; 3) the results of our second

and third sets of simulations showed that compared with the

benchmark QDG algorithm, our proposed method was applicable

to more general cases and led to more accurate overall

orientations. In summary, we have confidence that the QPSO

algorithm is of great potential in practical applications.

In simulation experiments, the QPSO algorithm was applied to

a random network consisting of dozens of nodes and edges.

Theoretically, this method has no limit to the scale of either

random networks or scale-free networks, since it always decom-

poses a whole network into a finite number of LGPNs and makes

causal inferences in the LGPNs using a heuristic search strategy.

Scale-free networks show power-law degree distributions that are

very different from the Poisson degree distributions of random

networks. More specifically, in scale-free networks, most nodes

have relatively few links while only a few nodes (called hubs) have a

large number of links; contrariwise, in random networks nodes are

more evenly connected. Here we would like to point out that node

degree distribution is believed to have some effect on the efficiency

of the QPSO algorithm, but the extent of this impact is hard to

evaluate. Recall from the Method section that the LODG is

selected from 2n candidates, where n would be a big number if

either or both of Y1 and Y2 are hubs. A large n means that, on the

one hand, an enormous computational effort has to be made when

scanning for the LODG; on the other hand, the number of LGPNs

decomposed from the whole network is significantly reduced as a

great number of undirected edges are assigned to the same LGPN.

These two effects will counterbalance each other to some extent;

but on the whole, the overall efficiency of the algorithm will vary a

lot depending on the specific circumstances, including sample size,

the number of nodes, and the node degree distribution. In

addition, computer memory and processor speed are practical

factors that can also affect the scalability and efficiency of the

algorithm.

As explained previously, the QPSO algorithm returns fully or

partially directed phenotype networks depending on the number

of available QTLs. Its exhaustive search for LODGs is based on

the distinction between non-equivalent DAGs, each of which has a

unique set of v-structures. Thus, there is no directed cycle in a

LODG. However, the QPSO algorithm is overall a heuristic

method. It takes a random walk from one LODG to another. The

integration of all LODGs does not necessarily lead to a complete

DAG. That is, in some cases, it is possible that certain edges in two

or more LODGs form a directed cycle. Please note that the

benchmark QDG algorithm has substantially the same property.

We developed our methodology in the first place for data from

plant breeding experiments, in which advanced experimental

designs are common that include local control of error variation at

multiple levels and in multiple directions. As genotypes for

population types like doubled haploids and recombinant inbred

lines are replicated in such experiments, reconstruction of

networks take place at genotypic means obtained from mixed

model analyses of one or more experiments. These genotypic

means will have small standard errors and that will contribute to

the stability of reconstructed directed networks. For metabolic

assessments, usually pooled samples of fruits stemming from

multiple replicates in an experiment are used. Pooling is another

way of reducing measurement error. Therefore, it will beneficial to
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bring phenotypic traits to the aggregation level of genotypic means

before trying to reconstruct a phenotype network. The QPSO

algorithm is applicable to a complete data matrix of genotypes

(samples) by traits. Pre-processing of phenotypic data by convert-

ing them to genotypic means by mixed model analyses provides a

straightforward and accurate way of imputing missing phenotypic

values.

In conclusion, we have presented a novel heuristic search

algorithm, named QPSO, to infer causal relationships between

correlated traits. This algorithm allows some traits to come

without QTLs, and it takes into account associated phenotypic

interactions in addition to QTLs when orienting undirected edges

between traits. Thanks to these two properties, the QPSO

algorithm has much broader applicability and produces more

accurate overall orientations, compared to the benchmark QDG

algorithm.

Supporting Information

File S1 Detailed explanation of each candidate directed
graph of a LGPN possessing a distinct set of v-
structures.
(DOCX)

File S2 This sheet represents one of the 20 datasets
used in simulation experiments with respect to sample

size of 500. Each row corresponds to an individual. The first 34

columns correspond to phenotypic traits and the other 31 columns

correspond to markers coinciding with QTLs. In particular, the

last 16 columns data were not used in the third set of simulations.

(XLSX)

File S3 This sheet contains metabolic and QTL data
collected in ripe tomato fruits. Columns stand for metabo-

lites and markers close or in QTLs; rows represent a total of 93

tomato cultivars, including 20 beef tomatoes, 17 cherry tomatoes

and 56 round tomatoes.

(XLSX)
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