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Abstract

The accumulation of high-throughput data from different experiments has facilitated the extraction of condition-specific
networks over the same set of biological entities. Comparing and contrasting of such multiple biological networks is in the
center of differential network biology, aiming at determining general and condition-specific responses captured in the
network structure (i.e., included associations between the network components). We provide a novel way for comparison of
multiple networks based on determining network clustering (i.e., partition into communities) which is optimal across the set
of networks with respect to a given cluster quality measure. To this end, we formulate the optimization-based problem of
concurrent conditional clustering of multiple networks, termed COCONETS, based on the modularity. The solution to this
problem is a clustering which depends on all considered networks and pinpoints their preserved substructures. We present
theoretical results for special classes of networks to demonstrate the implications of conditionality captured by the
COCONETS formulation. As the problem can be shown to be intractable, we extend an existing efficient greedy heuristic and
applied it to determine concurrent conditional clusters on coexpression networks extracted from publically available time-
resolved transcriptomics data of Escherichia coli under five stresses as well as on metabolite correlation networks from
metabolomics data set from Arabidopsis thaliana exposed to eight environmental conditions. We demonstrate that the
investigation of the differences between the clustering based on all networks with that obtained from a subset of networks
can be used to quantify the specificity of biological responses. While a comparison of the Escherichia coli coexpression
networks based on seminal properties does not pinpoint biologically relevant differences, the common network
substructures extracted by COCONETS are supported by existing experimental evidence. Therefore, the comparison of
multiple networks based on concurrent conditional clustering offers a novel venue for detection and investigation of
preserved network substructures.
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Introduction

Network representations of biochemical system, extracted from

high-throughput data, accumulated knowledge, or combination

thereof, have become prominent in modern systems biology [1].

Biological networks consider the interconnections between com-

ponents (e.g., genes, proteins, metabolites), and may capture the

involvement in biochemical reactions, physical proximity (e.g., on

the DNA), or other types of interactions. Experimental evidence

has indicated that biochemical networks are plastic in the sense

that their functionality is altered under different internal and

external perturbations (e.g., due to genetic manipulations and

change in condition, respectively), manifested in the resulting

cellular behaviors [2]. Therefore, to reveal the changes in

biochemical networks underlying different perturbations, it is

necessary to develop methods for comparison of multiple

biological networks. This type of analysis is a part of differential
network biology, comprising computational methods for compar-

ison of biochemical networks based on: (1) alignment, in the case

of networks over different but evolutionary related components, or

(2) (weighted) difference, in the case of networks over the same set

of components [3].

Here we focus on comparison of multiple networks over the

same set of components, and explore a conceptually different way

for multiple network comparison based on differences between

their clusteredness, i.e., their network community structure. The

idea is based on the observation that classical network operations,

e.g., intersection and difference, stress the absolute (dis)agreement

between the edge-sets in two compared networks, although the

community structure of the two networks may not be drastically

altered with removal and/or addition of subset of edges. A

motivating example includes three networks, H1, H2, and H3:

although H1 and H2 share fewer edges in comparison to H2 and

H3, the given community structures of H1 and H2 are closer than

the community structures of H2 and H3 (Figure 1).

Comparison of clusterings has received considerable attention in

information theory, data mining, and statistics, and has resulted in

several indices, including: the Rand index, variation of informa-

tion, and the cluster homogeneity index, which can be readily

employed [4]. Moreover, in combination with biochemical

knowledge, structured in a form of ontologies, the resulting
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network clusters, popularly referred to as network communities,

can be analyzed for enrichment of concepts used in the annotation

of the interconnected biochemical components [5]. Therefore, our

novel approach for multiple network comparison relies on the

established observation that cellular networks encompass interact-

ing structural modules of different functional roles [6]. Moreover,

in the case of network extracted from data, such an approach

allows for unsupervised investigations of high-throughput data sets

[7,8].

Our approach relies on first determining a clustering of

components which is optimal across a set of networks with respect

to a given cluster quality measure. The resulting clustering will

depend on all networks and can, thus, pinpoint their preserved

substructures. Furthermore, this clustering can be readily com-

pared with the optimal (with respect to the used cluster quality

measure) from one of the investigated networks to determine the

specificity of structural differences, previously not undertaken in

other studies. The optimization-based formulation for the problem

of clustering multiple networks is based on the concept of

modularity [9], a widely-used cluster quality measure. We term

the proposed formulation Concurrent Conditional clustering of
multiple Networks or briefly COCONETS. Given a set of networks

over the same set of components (i.e., nodes), COCONETS involves

determining a clustering C such that the nodes in the same cluster

of C are more similar to each other than those in different clusters

of C over all networks. The concurrent clustering of multiple

networks is in fact also implicitly conditioned on the topology of

each of the considered networks. More precisely, COCONETS

encompasses clustering of multiple network with respect to a

given cluster quality index—here given by the modularity.

Therefore, like the problem of clustering single networks based

on maximizing the modularity, our approach also has the

advantage that it does not require specification of the number of

clusters as an input parameter.

As COCONETS is NP-hard, we investigate a greedy heuristics for

obtaining a solution, termed CoCo clustering. Moreover, we

obtain theoretical results for the optimal CoCo clustering for a

combination of complete graphs and cycles, which are used to

evaluate the heuristic used in the subsequent empirical analysis.

We show that the proposed greedy heuristics, applied on (time-

resolved) transcriptomics data sets from Escherichia coli under five

different conditions, can be effectively employed to identify

biological processes and molecular functions which are preserved

across the investigated conditions and are in line with the existing

biological knowledge. Moreover, the comparison of CoCo

clusterings from a subset of networks allows determining specificity

of transcriptional response of E. coli to the investigated stresses. In

addition, we applied COCONETS to a publically available

metabolomics data set including the time-resolved courses of 101

metabolites from Arabidopsis thaliana exposed to eight environ-

mental conditions differing in light intensity and/or temperature.

The investigation of clusterings from subsets of networks as well as

from all networks show to identify metabolites whose behavior is

similarly affected due to the different perturbations.

Figure 1. Illustration of network comparison based on community structure. Shown are three networks, H1 , H2, and H3 . Nodes belonging
to the same community in each network are marked by the same color. Networks H1 and H2 differ in 11 edges, while networks H2 and H3 do not
share 4 edges. Nevertheless, the community structures between H1 and H2 are equivalent, while this is not the case for the community structures in
H2 and H3 .
doi:10.1371/journal.pone.0103637.g001
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Approach

Preliminaries on networks
Throughout the paper, we will rely on the notation used in

[10,11]. We assume that there are r, r§1, undirected networks

(graphs), G~fG1, . . . ,Grg, over the same set of nodes, i.e.,
V (Gi)~V (Gj)~V , Vi, j, 1ƒi, jƒr. Moreover, let n~DV D denote

the number of nodes and m1~DE(G1)D, . . . ,mr~DE(Gr)D be the

numbers of edges in each of the r networks in G. Furthermore, let

Ci~fCi
1, . . . ,Ci

ki
g represent a partition of Vi, 1ƒiƒr, i.e., Vp,q,

p=q, 1ƒp, qƒki, Ci
p\Ci

q~6 0 and |ki

j~1Ci
j~V (Gi). We call Ci a

clustering of Gi, and Ci
j , with DCi

j Dw0, 1ƒjƒki denote the clusters

of Ci. We denote the set of all possible clusterings of Gi by A(Gi),
1ƒiƒr, and the set of all possible clusterings over all r graphs by

AG. Note that each cluster Ci
j , 1ƒjƒki, of Ci induces a

subnetwork in Gi, i.e., Gi½Ci
j �~(Ci

j ,Ei(C
i
j )), where Ei(C

i
j )~

f(u,v)[E(Gi)Du,v [ Ci
jg. Then Ei(Ci)~|ki

j~1Ei(C
i
j ) is the set of

intracluster edges, and E(Gi)=Ei(Ci) is the set of intercluster edges
in Gi.

Modularity
Modularity is a cluster quality index which has found numerous

applications in partitioning of networks into communities (i.e.,
clusters) without a priori specifying the number of clusters. Given a

network G and a clustering C of its nodes, the modularity of the

clustering C given a network G, denoted by QG(C), is defined as

follows [9]:

QG(C)~
X
C[C

DEG(C)D
m

{

P
u[C dG(u)

2m

� �2
" #

, ð1Þ

where dG(u) denotes the degree of node u in G and m is the

number of edges in G.

The MODULARITY problem refers to that of determining a

clustering C of maximum modularity in G. It has been shown that

the MODULARITY problem is strongly NP-hard, and that the K-

MODULARITY problem, whereby one is to determine the clustering

into K clusters of maximum modularity, is also strongly NP-hard

even when K~2 [11]. Multiple heuristics have been proposed to

determine a clustering which approximates the optimal value of

modularity for a given graph G. These are based on different

clustering approaches, including: agglomerative clustering [12,13]

and spectral division [14,15], as well some techniques from

optimization, including: simulated annealing [16,17] and extremal

optimization [18]. It has also been shown that there exists a class of

graphs on which the agglomerative clustering heuristic, proposed

in [12], does not have a finite approximation factor [11].

Enrichment analysis and adjusted Rand index for cluster
comparison

Given two clusterings, A and B, over the same set of n
components, the Rand index is the proportion of pairs which

agree with respect to their placement in same or different clusters

in A and B [19]. Thus, it quantifies the similarity between two

clusterings. Since the expected value for the Rand index is non-

zero and may inflate the similarity which could arise by chance,

the original formulation of the Rand index has been modified,

yielding the adjusted index Radj~
R{E½R�

maxfRg{E½R�, where E

denotes the expected value under the hypergeometric null model.

Values of Radj closer to zero, indicate that the value for the

original Rand index is close to that expected by chance; hence, the

compared clusterings are deemed non-significantly similar. A

value closer to 1 indicates highly similar clusterings. For a given

clustering and a set of annotation terms from an ontology, the

hypergeometric distribution is employed to determine the set of

terms enriched in each of the clusters at a chosen significance level.

Approach formulation
In this section, we provide an optimization-based formulation

for COCONETS.

Definition 1. A clustering C of r networks G~fG1, . . . ,Grg
over the same set of nodes is said to be optimal concurrent
conditional clustering if it maximizes

Pr
l~1 QGl

(C).
By restriction to the case when r~1, i.e., there is only one

network to be clustered, the COCONETS problem is NP-hard due

to the NP-hardness of MODULARITY [11]. The optimal clusterings

per Definition 1 can be divided into those which are also optimal

in each of the networks and those which are suboptimal in at least

one of the networks. In fact, the conditional clustering of networks

stems from considering those clusterings which are suboptimal in

at least one of the networks, but satisfy the optimality of the

clustering across all networks, as required by Definition 1.

For instance, consider the case of three networks: G1, a cycle on

n~5 nodes, G2, a star on the same number of nodes with the node

labeled 1 as its center, and G3, a cycle with permuted labels. It can

readily be checked that the clustering of maximum modularity for

G1 contains two clusters: one containing two neighboring nodes,

and the other the rest of the nodes, yielding a value of 0.08. The

same argument holds for G3 (accounting for the permutation). The

optimal clustering for G2 includes all nodes, yielding a value of 0

for the modularity. The clustering maximizing the sum of

modularities for G1 and G2 coincides with the clustering for G2,

yielding also a value of 0; this clustering is suboptimal for G1, but

optimal in G2. The clustering maximizing the sum of modularities

for G1 and G3 includes all nodes, resulting in a value of 0;

moreover, it is suboptimal in both G1 and G3, exhibiting value

greater than 0 for the respective optimal clusterings (Figure 2).

COCONETS vs. other clustering alternatives. While the

concurrent conditional clustering of multiple networks has not

received much research attention, there have been numerous

solutions proposed for the similar but more specific problem

variants, including that of consensus clustering and simultaneous
clustering of different data sets (i.e., not necessarily networks).

COCONETS is more general than the consensus clustering [20],

whereby one determines the clustering (partition) C with respect to

an objective function operating on a given set of clusterings P as

its domain. For instance, clustering of clusterings based on the co-

association value [21] and the notion of median partition [22]

have been investigated as objectives. The generality of COCONETS

follows from the fact that C is to be determined from the set of all

possible partitionsAG over the set of networks G, and not only with

respect to the clusterings in the given set P. A similar problem has

been analyzed with the idea of determining common temporal

gene expression profiles across experimental conditions [23],

whereby clustering based on polynomial models is first extracted

from each condition and the resulting collection of clusterings is

subjected to the same clustering method but only in order to

merge them (i.e., without considering concurrency in the process

of clustering).

In addition, COCONETS differs from simultaneous clustering of
multiple networks, whereby one is to find a clustering C which

satisfies a set of a priori given constraints, seen as parameters,

which may be network-specific. For instance, given a set G of r
networks, the most recently proposed JointCluster approach [24]

Concurrent Conditional Clustering of Multiple Networks: COCONETS
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relies on the attractive properties of spectral clustering and

relations to the well-established cluster quality index called

conductance [25]. JointCluster consists of finding a clustering C
where the conductance of each cluster Cj , 1ƒjƒk is at least ai in

Gi, 1ƒiƒr and the total number of intercluster edges

E(C)~
Pr

i~1 Ei(Gi) satisfies the following inequality

E(C)ƒ E
2

Xr

i~1
mi, where E is a given parameter. However, we

stress that JointCluster requires the number of clusters as input and

relies on recursive bisection of the network. To overcome these

drawbacks, JointCluster learns the parameters particular to a given

data sets based on yet another cluster quality measure (therein,

modularity).

Furthermore, our approach differs from clustering of multislice,
multiscale, or multilayer networks [26,27]. In this extension to the

classical (single-layer) network concept, like in our setting, there

are several networks over the same set of nodes; however, the

corresponding nodes from two levels may be connected with inter-

layer edges of prespecified weight. The influence of considering

such edges in a generalization of the modularity yields a clustering

which is conditioned on the structure of all networks, but also

depends on the used weight of the included inter-layer edges.

Moreover, approaches based on network alignment are not

suitable for comparison of multiple networks over the same set

of nodes, since the one-to-one correspondence between the nodes

from different networks is given by definition.

Figure 2. Illustration of CoCoNets. Given are three networks in the top row. The clusters in the optimal clustering for each network are marked in
different colors (red and blue). The optimal concurrent conditional clustering of the two networks given in the middle row is of value 0 and is
suboptimal for the network to the left. The optimal clusterings for any of the two networks shown in the bottom row are suboptimal concurrent
conditional clustering; the shown clustering yields a value of 20.24, while the optimal clustering is of value 0, whereby all nodes form a single cluster
(not shown).
doi:10.1371/journal.pone.0103637.g002
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Special cases for COCONETS

We then have the following proposition based on Proposition

6.5 and Lemma 6.6 in [11]:

Proposition 1. The optimal concurrent conditional clustering C
of r copies of G, r§1 consists of:

1. a single cluster, if G~Kn, i.e., the complete graph on n nodes,

2. k[
nffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nz
ffiffiffi
n
pp {1,

1

2
z

ffiffiffiffiffiffiffiffiffiffiffi
1

4
zn

r" #
clusters of almost equal sizes, if

G~Dn, i.e., the cycle on n nodes.

The following corollary shows that the optimal concurrent

conditional clustering of r graphs of which A are complete graphs

and B~r{A are cycles on n nodes, exhibits threshold property

based on the value of r{Bn. Therefore, the Corollary 2

establishes the existence of a threshold in the composition of the

multiple networks at which switching appears between the 1-

clustering and the finer partition containing clusters of almost

equal sizes. This provides sound results for the intuitive

understanding about the conditional aspects of the considered

formulation of maximizing the sum of network modularities,

whereby the clustering transforms as additional networks of

particular structure are included.

Corollary 2. Given r graphs of which A are complete graphs
and B~r{A are cycles on the same set of n nodes, the optimal
concurrent conditional clustering with minimum number of clusters
C depends on the value of r{Bn as follows:

(i) if r{Bn§0, then C is the clustering of optimal modularity for
Kn,

(ii) if r{Bnv0, then C has a factor of

ffiffiffiffiffiffiffiffiffiffiffiffi
n{

r

B

r
more clusters than

the clustering of optimal modularity for Dn.

Proof. First, we have the following observations for a clustering C

with k clusters: (1) if G~Kn, then QKn
(C)~

Pk
i~1 DCi D2{n2

n2(n{1)
and

(2) if G~Dn, then QDn
(C)~ n(n{k){

Pk
i~1 DCi D2

n2
. For a cluster-

ing of A complete graphs and B cycles on n nodes, AzB~r, we

then have:

Xr

l~1

QGl
(C)~ ð2Þ

AQKn (C)zBQDn (C)~ ð3Þ

A{B(n{1)ð Þ
P

k
i~1DCi D2{n2(A{B(n{1)){Bn(n{1)k

n2(n{1)
~ ð4Þ

A{B(n{1)ð Þ
P

k
i~1DCi D2{n2

� �
{Bn(n{1)k

n2(n{1)
~ ð5Þ

r{Bnð Þ
P

k
i~1DCi D2{n2

� �
{Bn(n{1)k

n2(n{1)
: ð6Þ

We note that for any k, 1ƒkƒn,
Pk

i~1 DCi D2ƒ
Pk

i~1 DCi D
� �2

~n2, i.e.,
Pk

i~1 DCi D2{n2
ƒ0. There are two cases to consider: (I)

r{Bn§0 and (II) r{Bnv0.

Case (I):
Pr

l~1 QGl
(C) is maximized for k and clustering C

which simultaneously maximizes
Pk

i~1 DCi D2{n2 and minimizes

Bn(n{1)k. This is the case for k~1, for which
Pk

i~1 DCi D2{

n2~0 and, thus,
Pr

l~1 QGl
(C)~{

B

n
.

Case (II): For a fixed k,
Pr

l~1 QGl
(C) is maximized for

clustering C which minimizes
Pk

i~1 DCi D2. It is easy to show thatPk
i~1 DCi D2 is minimized for clusters of almost equal sizes, so that

DCi D~t
n

k
s, 1ƒiƒk{r, DCi D~q

n

k
r, k{rz1ƒiƒk,

r:n mod k. Treating the cluster sizes in C as real numbers,

one obtains that
Pk

i~1 DCi D2~
n2

k
. Treating k as a real number,

and considering the continuous function

f (k)~(r{Bn)
n2

k
{n2

� �
{Bn(n{1)k, one obtains that f (k) is

maximized at k�~
ffiffiffi
n
p ffiffiffiffiffiffiffiffiffiffiffiffi

n{
r

B

r
, since it is a fixed point for which

the second derivative is negative (as r{Bnv0). % %

Extension of the greedy heuristic for modularity. Since

COCONETS is NP-hard, here we propose a heuristic to find

clusterings approximating the optimal, as defined in Definition 1.

To this end, we need to define the score which will be used in

combination with the clustering strategy. Since the greedy

agglomerative heuristic for approximating the modularity of a

single graph is a widely used solution [11,28], here we propose and

analyze the performance of an extension to the greedy agglom-

erative strategy for COCONETS.

Similarly to the case with a single network, the greedy heuristic

starts with a clusterings of singletons in each of the r given

networks. The extension is that it iteratively merges those two

clusters that yield a clustering of the largest increase (the smallest

decrease) in the sum of modularities over all networks (ties are

arbitrarily broken). After n{1 merges, the clustering that achieved

the largest modularity over all networks and all merges is returned.

More formally, this greedy heuristic uses a symmetric matrix

Di,j~
Pr

l~1 QGl
(Ci,j){QGl

(C), where C is the current clustering

and Ci,j is obtained from C by merging clusters Ci and Cj from C.
The rule for agglomeration then states that the clusters i�, j� are

merged if maxDi,j is achieved for the clusters i� and j�. If there is

more than one pair of clusters satisfying this condition, an

arbitrary pair is selected.

Applications

Analysis of E. coli transcriptional response to stresses
The responses of E. coli to stress conditions have already been

well investigated, resulting in characterization of the general and

condition-specific components that regulate transcriptional chang-

es underlying the adjustment to changing environments. There-

fore, this setting represents an excellent test case for testing the

power of the proposed approach. For networks extracted from

transcriptomics data sets obtained under a given set of stresses, it

would be expected that the clustering resulting from COCONETS

captures adjustments of gene expression common to these stresses.

Moreover, since the claims are based on clusterings obtained from

networks modeling gene co-expression, COCONETS in fact

facilitates quantification of the similarity of the concerted

transcriptional response.

Concurrent Conditional Clustering of Multiple Networks: COCONETS
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The time-resolved transcriptomics data set was obtained from

[29], where changes in gene expression were monitored under

four stress conditions, including: non-lethal temperature shifts, i.e.,
heat and cold treatment, oxidative stress (by adding hydrogen

peroxide), lactose-diauxic shift (i.e., change of primary carbon

source) and the entry in stationary phase (transition from late

exponential growth to growth-arrest) relative to cultures grown

under optimal conditions, referred to as control. The sampling was

carried out from time points 10–50 min post-perturbation (at

10 min intervals) and two control time points before each

perturbation for all conditions, except for stationary phase, where

60, 120, 145, 170 and 210 min post-perturbation were used for

transcript profiling. Altogether, expression levels of 4,400 genes

were monitored over seven time points in three replicates in each

condition.

To identify the general and condition-specific responses, we first

determined the differentially expressed genes for each of the

conditions with respect to control. Differential expressed genes

were identified by application of multiple moderated F -tests for

two consecutive time-points, available in the limma R package, for

each experimental condition separately on the log2-transformed

expression levels using a hierarchical model [30]. Furthermore,

differential expression of genes in stationary phase was derived

using the grouping of time-points suggested in [29]. Finally, based

on the obtained F -statistic (FDR-corrected p-value v 0.05), for

each condition, genes were ranked and the top 122 genes (Table

S1) which were annotated with either biological process (BP) or

metabolic function (MF) terms from the GO ontology were

selected. The latter ensures that the enrichment analysis is

conducted only on well-characterized genes.

In total, for all five conditions, this resulted in 497 unique genes

on which we then created five condition-specific relevance

networks. For a given condition ci, 1ƒiƒ5, an edge is established

between genes u and v in the condition-specific network if their

corresponding profiles (given by the means of the three replicates

for each time point) are correlated above a statistically robust

threshold ti specific to condition ci. The condition-specific

threshold ti is determined to guarantee FDR of 0.05. The

employed threshold values are: 0.98, 0.94, 0.95, 0.98, and 0.96 for

stationary, heat, cold, oxidative stresses, and laxtose diauxie shift,

respectively (Table 1). As a result, the condition-specific networks

are all created on the same set of 497 nodes, but they contain

1415, 6750, 5563, 2199, and 5139 edges for stationary, heat, cold,

oxidative stresses, and lactose diauxie, respectively. It is notable

that although the network specific to heat stress is the densest (i.e.,
with largest number of edges and average degree), it has a

comparable average path length to that of the network specific to

the stationary phase which is, incidentally, the sparsest. Moreover,

while the networks from cold stress and lactose diauxie data are of

comparable density, the former has the largest, while the latter the

smallest diameter among the investigated networks (Table 1). In

addition, the higher threshold values are not necessarily associated

with smaller densities, since we found a weak correlation of 20.38

between the threshold and densities over the five networks. The

discordance between the conclusions about similarities and

differences between networks based on individual network

properties led to the question of comparing the networks directly

based on their edge sets.

To this end, we first determined the Jaccard similarity between

the edge sets for each pair of networks to identify which stresses

induce the most divergent set of co-expressions (represented by the

edges). It was shown that, on the level of metabolism, the

stationary phase is the most divergent from the other investigated

conditions [29]. Our results, Table 1, show that this is the case on

the level of coexpression of the investigated genes, with an average

Jaccard similarity of 0.10 for the stationary phase, followed by

oxidative stress (0.16) and lactose diauxie (0.18). Considering all

individual pairwise similarities of networks, cold and heat stresses

are the closest, with Jaccard similarity of 0.83, followed by

oxidative stress and lactose diauxie shift (0.43), Table 1. While

these findings quantify the differences between networks, they do

not reveal potential similarities with respect to finer sub-networks

corresponding to network communities, which would support the

similarities observed with respect to the other network properties

examined above.

Next we apply the greedy heuristic for COCONETS with all five

networks at once, each of the 10 pairs of networks as well as with

the 5 individual networks. The similarity between the resulting 16

clusterings is examined by determining the adjusted Rand index,

given in Table S2 (referred to in the following paragraphs). The

most similar networks, with respect to the determined clusterings

from individual stresses, are observed under heat and cold (0.83).

The next most similar clusterings are observed for the lactose

diauxie and oxidative stress experiments (0.44). The smallest

average similarity is observed for the stationary condition, which

implies that it is also deemed the most divergent with respect to the

induced clustering. These observations are in line with the low

Jaccard similarity of the respective pairs of networks based on their

edge-sets.

It would be expected that the similar clusterings in the

individual condition-specific networks would have comparable

contributions to the CoCo clustering from the five condition-

specific networks analyzed at once. This criterion is used as a

validation for the greedy heuristic. The smallest contribution to the

CoCo clustering over the five networks is indeed observed for the

stationary phase (0.06), which was already determined to induce

the most divergent transcriptional response. Moreover, the

contributions of the pairs of cold and heat stress (0.32) as well as

oxidative stress and lactose diauxie (0.39) are comparable (Table

S2).

Analogously, another criterion to validate the usage of the

heuristic is the following: CoCo clusterings based on networks

from a pair of conditions are expected to be the most similar to the

clusterings induced by the individual conditions participating in

the pair than to those induced by any other condition alone. As

shown in Figure 3, this is indeed the case for all pairs of conditions.

In addition, the CoCo clustering based on the pairs of networks

from oxidative stress and stationary growth was the most similar to

the CoCo clustering with all five networks (0.50), followed by heat

stress and lactose diauxie (0.44), cold and oxidative stress (0.41), as

well as lactose diauxie and stationary condition (0.39). Therefore,

these three pairs of conditions have the largest influence on the

CoCo clustering with all networks. Interestingly, while the

similarity of the individual clustering from the stationary phase

to the CoCo clustering with all five networks is the smallest (0.06),

conditioned on the data from oxidative stress, it obtains the highest

contribution (0.50) (see Table S2 for values).

By investigating the combination of pairs of networks, we can

further confirm the validity of the approach: The largest similarity

between CoCo clusterings for two pairs of networks, from

conditions c1, c2 and c3, c4, with c1=c4, is expected when

c2~c3, i.e., when one of the conditions is shared. Moreover, the

ordering of the similarities between c1, c2 and c2, c4 follows the

ordering of the similarities between the clusterings for the

individual conditions c1 and c4. For instance, when the condition

c2 is lactose diauxie, the largest similarity is indeed determined for

CoCo clusterings from lactose diauxie, cold stress and lactose

diauxie, heat stress, as the clusterings from heat and cold stress are

Concurrent Conditional Clustering of Multiple Networks: COCONETS
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the most similar; the same holds if the condition c2 is oxidative

stress and the stationary phase (Table S2).

While these findings illustrate the structure-driven validity of the

obtained network clusterings, they do not on their own provide

biological insights apart from the similarity between stress

conditions. To obtain biological insights, we determine the GO

terms (MF and BP) for which the determined network commu-

nities are enriched. It is expected that with increasing number of

networks, the enriched MF and BP terms in the corresponding

CoCo clustering would correspond to molecular functions and

biological processes preserved in a more general response

corresponding to the larger number of conditions. With the five

networks, the CoCo clustering contains six clusters of which three

are enriched for MF and BP terms at significance level of 0.05: (i)

metabolism of sulfur amino acids, pyrimidine nucleotides, and

amines as well as sulfur utilization, (ii) oxidoreduction-driven

active transmembrane transporter activity and macromolecule and

protein metabolic processes, and (iii) structural constituent of

ribosome, (r)RNA binding, and translation.

Analysis of our data sets for transcripts indicative for anaero-

biosis demonstrated the absence of any oxygen shortage under

optimal growth conditions. In contrast, there was a slight

induction of genes associated with aerobic respiration, e.g.,
ubiquinone oxidoreductase (nuoH, nuoL, nuoN), generating

transmembrane proton gradient. Induction of expression of genes

associated with hypoxia was, however, observed after lactose-

diauxie shift, oxidative stress, and more pronounced during heat

and stationary phase [29]. Other biological processes that depend

on proton gradient are ATP synthesis and transmembrane

transport. However, in contrast to genes involved in ATP

synthesis, which decrease after all perturbations, genes encoding

general transport increase during lactose diauxic shift and

oxidative stress [31]. Therefore, the clustering results are also in

line with the observed similarity between lactose diauxic shift and

oxidative stress (Table 1). In addition, general stress responses aim

at reducing energy expenditure through repression of genes

involved in growth, cell division, and protein synthesis [32]. It has

already been shown that the stringent response involves the down-

regulation of genes involved in transcription and translation [33].

Altogether, these support the results from the enrichment analysis

on the CoCo clustering over five networks.

The most similar CoCo clustering with pairs of conditions results

from the networks under oxidative stress and stationary phase (0.50)

(Figure 3). In addition to the already mentioned GO terms enriched

in the clustering over all networks, the following terms are

specifically enriched under oxidative stress and stationary phase:

(i) post-translational protein modifications (phosphorylation), che-

motaxis, cell communication, signal transduction, two-component

sensor activity and protein kinase activity, and (ii) disaccharide

(lactose) metabolic processes. The first group of enriched terms

corresponds to the most prominent effects of oxidative stress,

affecting protein kinases and signaling. The second group matches

well the fact that E. coli preferably metabolizes glucose, while other

sugars, such as lactose, are only consumed after depletion of glucose

resulting in temporary growth arrest.

Therefore, the findings from the comparison of clusterings,

extracted from the networks by combining 497 genes which are

not differentially expressed over all stresses, demonstrate that

COCONETS can identify both the general as well as specific

responses. Most notably, this was not achieved by investigating the

intersection of differentially expressed genes in a given subset of

stresses, but rather by joined investigation of condition-specific

networks with respect to shared community structure maximizing

the sum of modularities over all networks.

Analysis of Arabiodpsis thaliana metabolic response to
changing environmental conditions

In addition, we applied COCONETS to a publically available

metabolomics data set from Arabidopsis thaliana plants exposed to

eight environmental conditions differing in light intensity and/or

temperature [34]. Six-week-old Arabidopsis thaliana plants, grown

in soil at 210 C and 150mE m{2 sec{1 (control), were either kept in

the control condition or were transferred to seven different

environments reflecting a light gradient ranging from darkness to

high-light stress and a temperature gradient from 40 C over 210 C

Table 1. Condition-specific network properties and pairwise network similarities.

property c h ld o s

threshold 0.95 0.94 0.96 0.98 0.98

number of edges 5563 6750 5139 2199 1415

isolated nodes 59 48 56 117 166

average degree 22.25 27.00 20.56 8.8 5.66

maximum degree 96 102 90 50 37

average path length 8.25 6.55 3.91 4.31 5.21

diameter 29 20 16 16 21

transitivity 0.71 0.72 0.62 0.58 0.58

c 0.83 0.12 0.07 0.14

h 0.83 0.13 0.07 0.13

ld 0.12 0.13 0.43 0.06

o 0.07 0.07 0.43 0.07

s 0.14 0.13 0.06 0.07

average Jaccard similarity 0.29 0.29 0.18 0.16 0.10

The upper part of the table includes seven seminal network properties together with the thresholds used to establish the edges in the coexpression networks under five
investigated stresses: cold (c), heat (h), lactose diauxie (ld), oxidative stress (o), and stationary phase (s). The lower part of the table includes the Jaccard similarity
between the edge-sets of the condition-specific networks.
doi:10.1371/journal.pone.0103637.t001
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to 320 C. For each condition 23 time points (including the zero

time point, before stress application) are taken to follow the stress

response, ranging from 5 to 1280 min after exposure to the

different conditions. To identify similarities and differences

between these conditions, either one (light intensity or tempera-

ture) or both environmental parameters were changed. This

resulted in the following eight environmental conditions: (i) 40 C

and darkness (abbreviated as 4-D), (ii) 210 C and darkness (21-D),

(iii) 320 C and darkness (32-D), (iv) 40 C and 85mE m{2 sec{1

(light; 4-L), (v) 210 C and 75mE m{2 sec{1 (low light; 21-LL), (vi)

210 C and 300mE m{2 sec{1 (high light; 21-HL), (vii) 320 C and

150mE m{2 sec{1 (light; 32-L), and plants kept at the original

conditions (210 C and 150mE; 21-L). Metabolites were measured in

six replicates from single Arabidopsis rosettes. In total, metabolite

levels are available for 101 metabolites across conditions and time

points.

Figure 3. Clustering tree based on the adjusted Rand index values for the investigated CoCo clusterings. The clusterings from single
networks are based on the greedy heuristic for approximating the MODULARITY problem. All other clusterings are based on the greedy heuristic for
COCONETS. The tree is derived by agglomerative clustering with a distance matrix derived from the adjusted Rand index values for all pairwise
comparisons of the obtained CoCo clusterings. The stress conditions are denoted as follows: cold (c), heat (h), lactose diauxie (ld), oxidative (o), and
stationary phase (s); their pairwise combinations are marked with ‘/’, and the clustering over all five stresses, by ‘all’. The number of clusters in each
CoCo clustering is included next to the abbreviations for the stresses.
doi:10.1371/journal.pone.0103637.g003
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For each condition we then created a relevance network based

on the Pearson correlation coefficients between the time-resolved

metabolite levels by using the median of the six biological

replicates for each metabolite [35]. An edge between metabolites is

established in a similar way as for the gene-expression network by

only considering edges which pass a statistically robust threshold ti

specific to an individual condition ci. The condition-specific

threshold ti is determined to guarantee FDR of 0.01. The

employed threshold values are: 0.665, 0.630, 0.625, 0.670, 0.635,

0.615, 0.650, and 0.640 for 21-L, 4-D, 21-D, 32-D, 4-L, 21-LL,

21-HL, and 32-L, respectively (Table 2). The condition-specific

networks all contain the same set of nodes corresponding to the

101 metabolites but show a varying number of edges connecting

them and range from 132 for 21-L to 502 for 32-D (see Table 2 for

other network properties).

By determining the Jaccard similarity between the edge-sets of

the condition-specific network (Table 2) we observe that the

network at 4-D differs the most from the other networks (average

Jaccard similarity 0.18), followed by that at 4-L (Jaccard similarity

of 0.19); moreover, the networks from 21-D and 32-D are closest

to each other (Jaccard similarity 0.40). To analyze potential

similarities in network communities we applied the greedy

heuristic for COCONETS with each condition-specific separately

as well as all eight networks at once. Furthermore, we investigated

a combination of networks from conditions with a temperature of

40 C (4-L and 4-D) and 320 C (32-L and 32-D) as well as for

darkness treatment (4-D, 21-D, and 32-D). In total, 12 clusterings

are obtained which are examined by the pairwise adjusted Rand

index of the clusterings (Table S3, Figure 4). The most similar

clusterings for individual environmental conditions are observed

Figure 4. Clustering tree based on the adjusted Rand index values for the investigated CoCo clusterings. The clusterings from single
networks are based on the greedy heuristic for approximating the MODULARITY problem. All other clusterings are based on the greedy heuristic for
COCONETS. The tree is derived by agglomerative clustering with a distance matrix derived from the adjusted Rand index values for all pairwise
comparisons of the obtained CoCo clusterings. The stress conditions are denoted as follows: 40 C and darkness (4 D), 210 C and darkness (21 D), 320 C
and darkness (32 D), 40 C and light (4 L), 210 C and low-light (21 LL), 210 C and high light (21 HL), 320 C and light (32 L), and 210 C and light (21 L,
control); their pairwise combinations are marked with ‘/’, and the clustering over all five stresses, by ‘all’. The number of clusters in each CoCo
clustering is included next to the abbreviations for the stresses.
doi:10.1371/journal.pone.0103637.g004
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for 21-D and 32-D (0.58) indicating a similar response to the

different treatments which was already shown in the analysis of

Caldana et al. [34]. They also noted that the third darkness

condition with the temperature kept at 40 C (4-D) only showed a

small overlap with the 21-D and 32-D responses, which is further

supported by the similarities of condition-specific clusterings as

well as between individual darkness conditions and the overall

clustering (21-D/4-D/32-D) (Table S3, Figure 4). Based on all 12

clusterings the highest similarity (0.73) is observed between 32-D

and combinations of 320 C conditions (32-L/32-D) indicating that

the clustering of 32-D highly represents the general effect of high

temperature. The CoCo clustering from the eight condition-

specific networks analyzed at once has the highest similarity to 32-

L (0.31), but generally a low similarity to the clusterings of

individual networks. The low similarity may largely be due to the

high range of different simultaneosly investigated conditions.

Therefore, the findings from the CoCo clustering of metabolite-

correlation networks show another example of possible application

for the proposed approach to get further insights not only from

condition-specific clusterings but also clustering of different

conditions at once highlighting the response similarities.

Conclusions

Based on the analysis of coexpression and metabolic correlation

networks extracted from transcriptomics and metabolomics data

obtained from multi-stress experiments with E. coli and A.
thaliana, respectively, we demonstrated that the proposed

approach COCONETS can be used to dissect the subtle similarities

and differences between conditions. In addition, our findings

indicated that in combination with enrichment analysis, COC-

ONETS offers a novel means to identify molecular processes

underpinning the general as well as condition-specific responses of

different levels of biological organization in various organisms.
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