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Abstract

Given a perfect superposition of 2n states on a quantum system of n qubits. We propose a fast quantum algorithm for
collapsing the perfect superposition to a chosen quantum state DxsT without applying any measurements. The basic idea is
to use a phase destruction mechanism. Two operators are used, the first operator applies a phase shift and a temporary
entanglement to mark DxsT in the superposition, and the second operator applies selective phase shifts on the states in the
superposition according to their Hamming distance with DxsT. The generated state can be used as an excellent input state
for testing quantum memories and linear optics quantum computers. We make no assumptions about the used operators
and applied quantum gates, but our result implies that for this purpose the number of qubits in the quantum register offers
no advantage, in principle, over the obvious measurement-based feedback protocol.
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Introduction

Generation of non-classical states of light compatible with

atomic quantum memory has been an outstanding challenge

driven by various applications in quantum information processing

[1]. Various approaches to generation of single photon states

compatible with atoms have been pursued [2]: single atoms in free

space [3] and in high-finesse cavities [4] and atomic ensembles [5],

and non-classical features such as photon antibunching and

violation of classical inequalities have been demonstrated.

On the other hand, several specific quantum algorithms have

been discovered (see [6] and references therein), providing

‘‘quantum speedup’’ with respect to their fastest classical

counterparts. A quantum analog of the computational complexity

theory has been developed [7]–[8], with the introduction of

complexity classes of easy and hard problems, the notion of

difficulty being now with respect to the number of required

operations on a quantum, instead of classical, computer. A new

formulation of monotonically convergent algorithms which allows

to optimize both the control duration and the field influence has

been presented [9]. They apply this algorithm to the control of

spin systems in Nuclear Magnetic Resonance and show how to

implement CNOT gates in systems of two and four coupled spins.

Also, a new formulation of quantum algorithm which allows to

distribute amplitudes over two copies of small quantum subsystems

has been proposed [10], where a standard algorithm designs a new

method of a fixed number of copies and applied to the control of

multi-qubit system.

The problem of how to perform quantum operations on a

perfect superposition state containing a multi-qubit plays a

fundamental role in obtaining a certain quantum state without

applying any measurements. Our approach for detecting quantum

state is based on the possibility of applying the phase shifts

operators which based on Hamming Distance. Here we provide

new tools for the building-up of unitary transformations from

simple gates. To do that, we consider a given quantum system DYT
of n qubits in a perfect superposition,

DYT~
1ffiffiffiffiffi
2n
p

X2n{1

x~0

DxT, ð1Þ

such that Sx D xT~
1

2n
VDxT[DYT, i.e. applying measurement on

DYT gives any DxT[DYT with equal probability
1

2n
. It is required to

make DYT~eiwDxsT, where eiw is some global phase shift, for a

certain chosen DxsT[DYT such that SxsD xsT~1, i.e. the probability

of DxsT is certainty instead of
1

2n
without applying any measure-

ments.

We begin in Sec. 2, by showing that it is possible to obtain an

improvement for the simple case by presenting the elementary

operations, i.e. the basic gates used in the proposed algorithm,

gates acting on a the qubits. In Sec. 3 we show that, if we allow the

application of some phase operators on a superposition of multi-

qubit state, rather than an incoherent mixture, it is possible to

obtain a perfect quantum state. Then, in Sec. 4, we show that

there are deep connections between the proposed algorithm and

quantum unsolved problems for post-processing and we conclude

in Sec. 5. See Table 1 for a list of symbols and their definitions.
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Discussion

In this section, the basic gates used in the proposed algorithm

will be defined [11]. Some gates are acting on a single qubit of the

system. Some gates are acting on the n qubit register and other

gates are acting on the nz1 qubit register.

Three gates acting on single qubits will be used, negation gate

(X ), phase shift gate (Z), and a square root of not with a global

phase shift gate (Q). The first quantum gate X that performs

similarly to the classical NOT gate, i.e. it inverts D0T to D1T and D1T
to D0T. The phase shift operator Z is used to apply a phase shift of

-1 on the amplitude of the state D1T and leaves the amplitude of

D0T with no change.

Such operation will be used to apply a phase shift of {1 on a

subspace of the system entangled with state D1T as follows,

I6n
6Z

� �
a0Dy0T6D0Tza1Dy1T6D1Tð Þ

~ a0Dy0T6D0T{a1Dy1T6D1Tð Þ,
ð2Þ

where I is the identity operator, Dy0T and Dy1T are sub-systems

entangled with D0T and D1T respectively.

The Q gate is a quantum gate that performs a square root of not

with a global phase shift. Applying the Q gate on a qubit in state

D0T or D1T will produce a qubit in a perfect superposition with some

phase shift. Applying Q gate twice produces the negation of the

original input with some global phase shift. The effect of applying

Q gate on a single qubit can be understood as follows,

QDxT~
1ffiffiffi
2
p

X
y[f0,1g

e
ip
2

�xx+yð Þ DyT, ð3Þ

where x+y is the bitwise-XOR of x and y, and �xx~x+1.

Applying Q twice gives the following,

Q
1ffiffiffi
2
p

X
y[f0,1g

e
ip
2

�xx+yð Þ DyT

0
@

1
A~e

ip
2 D�xxT: ð4Þ

In general, the effect of applying Q gate on n-qubit quantum

register can be understood as follows,

Q6nDxT~
1ffiffiffiffiffi
2n
p

X2n{1

y~0

e
ip
2

�xx+yð Þ DyT, ð5Þ

where x+y~
Pn{1

j~0

xj+yj is the summation of the bitwise-XOR of

xj and yj . Applying Q6n twice gives,

Q6n 1ffiffiffiffiffi
2n
p

X2n{1

y~0

e
ip
2

�xx+yð Þ DyT

 !
~e

ip
2

nD�xxT: ð6Þ

In the literature, there are two ways used to mark certain states

in a superposition. One way is to conditionally apply certain phase

shifts on the marked states [12] and the other way is to entangle

the required states with certain state of an extra working qubit

[13]. An operator Ufxs
is used in both cases to recognize the state(s)

to be marked, where fxs
is a Boolean function evaluates according

to the following,

fxs xð Þ~
1, if x~xs

0, if x=xs

�
, ð7Þ

For short, fxs
will be written as f in the following sections. To

mark a state using a phase shift of a, an operator Ufa
of the

Table 1. List of symbols and their definitions.

Symbol Definition

DYT quantum system of n qubits

DxT,DyT quantum states such that DxT,DyT[DYT

Dy0T,Dy1T quantum sub-systems such that Dy0T,Dy1T5DYT

x,y bitwise representation of DxT and DyT

DxsT chosen quantum state such that DxsT[DYT

D0T,D1T a single qubit state

SxsT binary representation of DxsT

X a single qubit negation gate

Z a single qubit phase shift gate

Q a single qubit square root of NOT with global phase shift gate

I a single qubit Identity gate

fxs
,f a Boolean function that evaluates to 1 for xs

Uf an operator that marks quantum states by entanglement according to f

Ufa
an operator that marks quantum states by phase shift according to f

U DxsT
c

an operator that applies specific phase shifts according to DxsT

D(x,xs) Hamming distance between x and xs

doi:10.1371/journal.pone.0103612.t001
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following effect has been used,

Ufa DxT~eiaf (x)DxT, ð8Þ

and to mark a state by entanglement, an operator Uf of the

following effect has been used,

Uf Dx,yT~Dx,y+f (x)T: ð9Þ

In the proposed algorithm, a combination of both methods will

be used where an operator of the form exp (iaUf ) is used, where

Uf has the following effect,

Uf Dx,0T~Dx,f (x)T: ð10Þ

Using Taylor’s expansion, exp (iaUf ) can be re-written as [14],

e
iaUf ~ cos (a):Izi sin (a):Uf : ð11Þ

The effect of applying the operator exp (iaUf ) on a superpo-

sition of nz1 qubit register can be understood as follows,

e
iaUf

1ffiffiffiffiffi
2n
p

X2n{1

x~0

xj T6 0j T

 !

~ cos (a):Izi sin (a):Uf

� � 1ffiffiffiffiffi
2n
p

X2n{1

x~0

xj T6 0j T

 !

~
cos að Þffiffiffiffiffi

2n
p

X2n{1

x~0

xj T6 0j Tz
i sin (a)ffiffiffiffiffi

2n
p

X2n{1

x~0

xj T6 f (x)j T:

ð12Þ

The operator U DxsT
c is an operator used to apply specific phase

shifts on the states included in the superposition based on the

Hamming distance between these states and a given state DxsT.

The operator U DxsT
c applies phase shifts according to the following

rule,

U DxsT
c DxT~

ei:0DxT, if D(x,xs)~0 or 4n{3,

e
ip
2 DxT, if D(x,xs)~4n{2,

eipDxT, if D(x,xs)~4n{1,

e
i3p

2 DxT, if D(x,xs)~4n,

8>>>><
>>>>:

ð13Þ

where n~1,2,3,::: and D(x,xs) is the Hamming distance between

x and xs where x and xs are vectors of length 2n.

To construct U DxsT
c , for a given xs, choose the corresponding

row/column for that state from Table 2 and insert these values as

the diagonal in a zero elements matrix. For example, if xs~111,

then the corresponding matrix is,

U D111T
c ~

{1 0 0 0 0 0 0 0

0 i 0 0 0 0 0 0

0 0 i 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 i 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

2
66666666666664

3
77777777777775

ð14Þ

To simplify the construction of U DxsT
c , instead of choosing the

appropriate row/column from Table 2. The same construction

can be done as follows,

U DxsT
c ~X6:SxsTU D1T6n

c X6:SxsT, ð15Þ

where SxsT is the bit representation of xs, and : is the bitwise

negation operator. For example, if xs~101, then,

U D101T
c ~ I6X6Ið ÞU D111T

c I6X6Ið Þ: ð16Þ

Method and Algorithm

Given a superposition of n qubits and a state DxsT. It is required

to make the superposition collapse to DxsT without applying any

measurement. The operations of the algorithm is applied as

follows,

Table 2. Table of phase shifts based on Hamming Distance for 3-qubit states.

D000T D001T D010T D011T D100T D101T D110T D111T

D000T 1 1 1 i 1 i i 21

D001T 1 1 i 1 i 1 21 i

D010T 1 i 1 1 i 21 1 i

D011T i 1 1 1 21 i i 1

D100T 1 i i 21 1 1 1 i

D101T i 1 21 i 1 1 i 1

D110T i 21 1 i 1 i 1 1

D111T 21 i i 1 i 1 1 1

doi:10.1371/journal.pone.0103612.t002
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Q6n
6I

� �
U DxsT

c 6I
� �

e
ip
4

Uf I6n
6Z

� �
e

ip
4

Uf
1ffiffiffiffiffi
2n
p

X2n{1

x~0

DxT6D0T

 !
:ð17Þ

Let DY1T be a quantum register of nz1 qubits, where the first n

qubits are in a superposition and the last qubit is initialized to state

D0T,

DY1T~
1ffiffiffiffiffi
2n
p

X2n{1

x~0

DxT6D0T: ð18Þ

The steps of the algorithm are as follows:

1-Apply exp (iaUf ) taking a~
p

4
.

DY2T~ exp (i
p

4
Uf )DY1T

~
1ffiffiffi
2
p :Iz

iffiffiffi
2
p :Uf

� �
1ffiffiffiffiffi
2n
p

X2n{1

x~0

DxT6D0T

~
1ffiffiffiffiffiffiffiffiffiffi

2nz1
p

X2n{1

x~0

DxT6D0Tð Þzi
X2n{1

x~0

DxT6Df (x)Tð Þ
 !

,

ð19Þ

where f (x)~1 if x~xs and f (x)~0 otherwise. Then the system

can be re-written as follows,

Y2j T~
1ffiffiffiffiffiffiffiffiffiffi

2nz1
p

X2n{1

x~0

xj T6 0j Tð Þzi
X2n{1

x~0x=xs

xj T6 0j Tð Þzi xsj T6 1j T

 !

~
iz1ffiffiffiffiffiffiffiffiffiffi
2nz1
p

X2n{1

x~0x=xs

xj T6 0j Tð Þz 1ffiffiffiffiffiffiffiffiffiffi
2nz1
p xsj T6 0j Tzi 1j Tð Þ:

ð20Þ

2- Apply I6n
6Zð Þ.

Y3j T~ I6n
6Zð Þ Y2j T

~
iz1ffiffiffiffiffiffiffiffiffiffi
2nz1
p

X
fx~0

x=x2n{1
s xj T6 0j Tð Þ

z
1ffiffiffiffiffiffiffiffiffiffi

2nz1
p xsj T6 0j T{i 1j Tð Þ:

ð21Þ

3- Apply exp (iaUf ) taking a~
p

4
.

DY4T~ exp (i
p

4
Uf )DY3T

~
iffiffiffiffiffi
2n
p

X2n{1

x~0x=xs

DxT6D0Tð Þz 1ffiffiffiffiffi
2n
p DxsT6D0T:

ð22Þ

4- Apply U DxsT
c 6I

� �
.

DY5T~ U DxsT
c 6I

� �
DY4T

~
1ffiffiffiffiffi
2n
p

X2n{1

x~0x=xs

e
imp

2 DxT6D0Tð Þz 1ffiffiffiffiffi
2n
p DxsT6D0T, ð23Þ

where m~xs+x~
Pn{1

j~0

xsj
+xj~1,2,3, . . .. The system can be

re-written as,

DY5T ~
1ffiffiffiffiffi
2n
p

X2n{1

x~0

e
i
msp

2 DxT6D0Tð Þ, ms~0,1,2,3,::: ð24Þ

5- Apply Q gate on each of the first n qubits as shown in Eqn. 6.

DY6T~ Q6n
6I

� �
DY5T~e

inp
2 DxsT6D0T: ð25Þ

Results

The above algorithm can be used in quantum storage protocols

based on photon echo techniques which rely on the reversible

absorption of a single photon pulse in an inhomogeneously

broadened media [15]. After absorption, the single photon state is

mapped onto a single collective atomic excitation at the optical

transition,

DYT~
X

i

eidi te{ikzi D 1T6DeiT:::::6DeNT: ð26Þ

In Eq. (26), we denote by di the detuning of atom i with respect to

the central frequency of the photon and zi the position of atom i.
This collective state rapidly dephases, since each term acquires a

phase eidi t. The goal of the quantum memory protocols is to

engineer the atomic system such that this inhomogeneous dephasing

can be reversed. If this rephasing can be implemented, the light is

re-emitted in a well defined spatio-temporal mode when the atoms

are all in phase again, as a result of a collective interference between

all the emitters. The rephasing of the dipoles can be triggered by

optical pulses, as it is the case in traditional photon echo techniques.

These techniques, while very successful to store classical light [16]

and as a tool for high resolution spectroscopy [17], suffer from

strong limitations for the storage of single photons.

Conclusion

We want to end with a summary and a discussion of a number

of open questions related to the proposed algorithm and its

possible applications to problems beyond the quantum memory.

The underlying idea of the proposed algorithm is very general and

consists of employing Hamming distance to transform the

superposition state into a specific quantum state. The crucial

advantage is that any required quantum state can now be exactly

created using these simple operations. Novel type of applications

can be formed in quantum storage protocols based on photon

echo techniques. Also, because the dynamical model used here can

be equally realized in multi-qubit models, an exponential

propagation of quantum excitation along a large number of

qubits is in principle possible.
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