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Abstract

The epithelium plays an active role in the response to inhaled pathogens in part by responding to signals from the immune
system. Epithelial responses may include changes in chemokine expression, increased mucin production and antimicrobial
peptide secretion, and changes in ion transport. We previously demonstrated that interleukin-17A (IL-17A), which is critical
for lung host defense against extracellular bacteria, significantly raised airway surface pH in vitro, a finding that is common
to a number of inflammatory diseases. Using microarray analysis of normal human bronchial epithelial (HBE) cells treated
with IL-17A, we identified the electroneutral chloride-bicarbonate exchanger Pendrin (SLC26A4) as a potential mediator of
this effect. These data were verified by real-time, quantitative PCR that demonstrated a time-dependent increase in Pendrin
mRNA expression in HBE cells treated with IL-17A up to 48 h. Using immunoblotting and immunofluorescence, we
confirmed that Pendrin protein expression is increased in IL-17 treated HBE cells and that it is primarily localized to the
mucosal surface of the cells. Functional studies using live-cell fluorescence to measure intracellular pH demonstrated that IL-
17A induced chloride-bicarbonate exchange in HBE cells that was not present in the absence of IL-17A. Furthermore, HBE
cells treated with short interfering RNA against Pendrin showed substantially reduced chloride-bicarbonate exchange. These
data suggest that Pendrin is part of IL-17A-dependent epithelial changes and that Pendrin may therefore be a therapeutic
target in IL-17A-dependent lung disease.
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Introduction

IL-17A plays a central role in multiple facets of the immune

response of the lung. Its activity is critical for host defense against

extracellular bacteria including Haemophilus influenzae [1,2] and

Staphylococcus aureus [3,4,5]. For example, in patients with

Hyper-IgE syndrome, who lack ThIL-17 cells, Sa skin and lung

infections are common [5]. In mice, loss of ThIL-17-mediated

immunity after influenza infection predisposes to Sa pneumonia

[6]. Notably, ThIL-17 cells, the main producers of IL-17A, are

found in airways submucosa early in the course of cystic fibrosis

(CF) [7], and IL-17A levels are increased in sputum during

pulmonary exacerbations of CF and return to normal only after

treatment [1,8]. In addition to a role in host defense, IL-17A and

its related family members have a role in the pathophysiology of

asthma. In particular, IL-17A is thought to contribute to the

neutrophilic airways inflammation seen in severe asthmatics [9].

Therefore, IL-17A-mediated immune functions are potential

targets for therapeutic manipulation in a number of respiratory

diseases.

Because of the importance of IL-17A in lung host defense,

several studies have investigated its effects on airway epithelial

cells. The IL-17 receptor is highly expressed on human bronchial

epithelial (HBE) cells [8,10], in which IL-17A induces transcrip-

tion of airway mucins [11], antimicrobial peptides [12], and pro-

inflammatory cytokines and chemokines that favor production and

influx of neutrophils into the lung [13,14]. Epithelial ion transport

is closely linked to mucin biology [15,16], antimicrobial peptide

function [17], and inflammation [18,19]. Therefore, we hypoth-

esized that IL-17A may alter epithelial ion transport properties.

We previously found that IL-17A induced CFTR-dependent

HCO3
2 secretion in HBE cells [20]. We also made the

observation that IL-17A increased apical surface pH (pHASL) in
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the absence of exogenous stimuli and without affecting baseline

short-circuit current, suggesting that it promoted an electroneutral

mechanism that changed surface pH [20].

The simplest explanation for the observed increase in pHASL in

IL-17A-stimulated HBE cells would be either decreased H+

secretion or increased HCO3
2 secretion across the apical

membrane of the cells. Microarray analysis had shown that IL-

17A strongly upregulated Pendrin expression in HBE cells (data

from this array were previously published [1]). Pendrin (SLC26A4)

is an electroneutral, HCO3
2-secreting protein, and, thus, a good

candidate to mediate the observed effect on pHASL. Pendrin is a

member of the SLC26A family of Cl2-dependent anion

transporters that are found at the apical plasma membrane of

many epithelia. The SLC26A family of integral membrane

proteins share common signal transduction and anti-sigma factor

(STAS) domains that can interact with and regulate CFTR [21].

SLC26A6 (PAT1) mediates CFTR-regulated HCO3
2 secretion in

the pancreas [22]. SLC26A9 is expressed in human airways, but

appears to primarily act as a Cl2 channel rather than a Cl2/

HCO3
2 exchanger [23]. While SLC26A3, which we do identify in

HBE cells at the mRNA level, is reported to mediate CFTR-

dependent Cl2/HCO3
2 exchange in immortalized tracheal cells

[24], others did not detect SLC26A3 mRNA outside of the

gastrointestinal tract in ribonuclease protection assays [25].

Furthermore, our data suggest that IL-17A reduces SLC26A3

expression, which would be expected to cause a decrease in net

HCO3
2 transport. Therefore, SLC26A3 is not a good candidate

to mediate the effects that we observed.

Pendrin is an electroneutral, Cl2/anion exchanger that can

transport HCO3
2 [26,27], iodide (I2) [28,29], and thiocyanate

(SCN2) [30]. Within the Cl2/HCO3
2 exchangers of the SLC26A

family Pendrin is unique in its lack of a c-terminal PDZ domain

[31], the absence of which may explain its CFTR independence.

Pendrin is expressed in many epithelia, including those from lung,

thyroid, inner ear, and kidney. Genetic mutations in Pendrin cause

Pendred syndrome (OMIM #274600), a disease characterized by

congenital deafness, goiter, and thyroid hormone abnormalities

[28]. The role of Pendrin in human lung physiology or

pathophysiology is not yet known. To date, lung disease has not

been described in Pendred syndrome patients.

Therefore, we tested the hypothesis that IL-17A specifically

increased the expression and function of Pendrin in HBE cells.

Materials and Methods

Cell culture
Normal HBE cells purchased from Lonza (Walkersville, MD)

were cultured to maturity at air-liquid interface as previously

described (14) (17, 28, 59–60).

Epithelial cells were isolated from airways of CF patients at the

time of transplant following protocols (Function and Differentia-

tion of the Airway Epithelium) approved by the University of

Miami Institutional Review Board. Written informed consent was

obtained prior to the collection of the samples.

Real-time PCR
RNA was isolated using Qiagen’s RNeasy Kit. cDNA was

generated with Applied Biosystems High Capacity Reverse

Transcription cDNA Kit. Real-time PCR was performed using

pre-designed primer-probe combinations with Taqman reagents

(both Applied Biosystems). Data were analyzed by comparative

threshold cycle (CT) analysis using GAPDH as the control and

normalizing all values to the mean of the control group [32].

RNA-seq sample preparation. Total RNA from HBE cells

(1–4 ug) that had or had not been stimulated with cytokines was

used as starting material for deep sequencing using the Illumina

TruSeq RNA Sample Preparation v2 Guide. Briefly, mRNA was

purified with oligo-dT beads, fragmented with magnesium and

heat-cataylzed hyrdolysis, and used as a template for first- and

second-strand cDNA synthesis with random primers. The cDNA

39 ends were adenylated, followed by adaptor ligation and a 15-

cycle PCR to enrich DNA fragments. Quantification of cDNA

libraries was performed by using Kapa Biosystems primer premix

kit with Illumina-compatible DNA primers. For cluster generation,

the TruSeq SR Cluster Kit v2-cBot-GA was used, and cDNA

libraries were loaded onto the flow cell at a final concentration of

6pM. Single-read sequencing was performed on the Illumina

Genome Analyzer II.

Immunoblotting
Vehicle or IL-17A stimulated HBE cells were lysed with RIPA

buffer plus 10 mM Na Orthovandate, 1 mM PMSF, and protease

inhibitors (Roche). Lysates were sonicated on ice and centrifuged

for clarification. 30 mg total protein were separated by PAGE then

transferred to PVDF membranes. Immunoblotting was performed

with the anti-Pendrin antibody H-195 (1:500, Santa Cruz)

followed by a HRP-linked goat anti-rabbit antibody (Santa Cruz).

After detection of Pendrin, membranes were stripped and actin

detected as a loading control.

Immunofluorescence
HBE cells were fixed with 4% paraformaldehyde and

permeabilized with 0.3% Triton-X100 prior to blocking (1%

BSA/5% normal goat). Primary antibody was applied overnight at

4uC (1:500 Pendrin; 1:1000 Type IV Tubulin: Abcam). Secondary

antibody was applied for 1 h at RT (1:500 goat anti-rabbit IgG

Alexa fluor 594 (Pendrin) plus 1:750 goat anti-mouse IgG Alexa

fluor 488 (Type IV Tubulin). Nuclei were counterstained with

Hoechst at 1:1000.

Fluorescence microscopy
HBE cells loaded with the pH-sensitive dye SNARF-5/6

(Invitrogen, Carlsbad, CA) [20] were mounted in a specially

designed holder (Bioptechs, Butler, PA) on the stage of an inverted

fluorescence microscope. Cells were bathed on the serosal side and

perfused on the mucosal side. Mucosal solution changes were

made using a pinch-valve system (Warner Instruments, Hamden,

CT). Intracellular dye was excited with light from a xenon lamp

filtered with a 480/20 nm band-pass filter. The ratio of

fluorescence emissions at 640 nm and 580 nm was captured every

10 or 20 s using a Hamamatsu ORCA-ER camera and SlideBook

software (Intelligent Imaging Innovations, Inc.). Data were stored

on a computer hard drive and analyzed using Prism 5 (GraphPad

Software, San Diego, CA). Conversion from F640/F580 was

performed after calibration of intracellular pH (pHi) at 6.8, 7.2,

and 7.6.

siRNA inhibition of Pendrin expression: siRNA duplexes were

introduced into epithelial cells using a modification of previously

published methods [30].

Chemicals
Recombinant human IL-17A (R&D Systems) was dissolved in

4 mM HCl and used at 50 ng/ml. DIDS (Invitrogen) and niflumic

acid (Sigma) were dissolved in DMSO as 10006 stocks and added

to the mucosal, chloride-free solution at 100 mM each. NF-kB

IL-17 Induces Pendrin in HBE Cells
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inhibitor II (JSH-23) was dissolved as a 10006 stock in DMSO

and used at 20 mM.

Statistical analysis
Values are mean 6 S.E.M. Statistical were analyzed with Prism

5, using Student’s t-test, two-way ANOVA with Bonferroni

posttests, or repeated measures ANOVA as appropriate. Signif-

icance was defined as a p#0.05.

Data from Gene Expression Omnibus microarray accession

code, GSE10240, are referenced in the results section.

Results

IL-17A directly and specifically induces Pendrin mRNA
expression

Our microarray data strongly suggested that IL-17A increased

Pendrin expression in normal HBE cells. To verify this by

quantitative PCR, we stimulated HBE cells with IL-17A at 50 ng/

ml for 48 h, which were the conditions used in the microarray and

in our previously published data [20]. Following stimulation, real-

time PCR was performed to quantify the relative change in

Pendrin expression in IL-17A-treated cells compared with vehicle

controls using GAPDH as the reference gene. These data

confirmed that IL-17A significantly increased Pendrin mRNA

expression (Figure 1a) in a time-dependent manner, with increases

appearing by 6 h and maximal at 48 h, the longest time point

measured (Figure 1b).

Previous data demonstrated that IL-17A can signal through

autocrine/paracrine mechanisms to regulate mucin transcription

[33]. To test if this mechanism was necessary for IL-17A-mediated

Pendrin expression we performed an experiment in which naı̈ve

HBE cells were treated with conditioned medium from cells

treated with IL-17A for 48 h. Conditioned media were treated

either with an IL-17A neutralizing antibody (317-ILB, R&D

Systems) or with an isotype control antibody. Naı̈ve cells fed with

conditioned medium treated with control (non-neutralizing)

antibody demonstrated significant increases in Pendrin expression

after 24 h. Conversely, cells treated with IL-17A neutralized

conditioned medium did not show significant increases in Pendrin

expression (Figure 1c). Multiplex cytokine analysis of conditioned

media confirmed that IL-17A induced G-CSF production [8], but

failed to show increased IL-6 production in IL-17A-treated HBE

cells (data not shown). Together, these data support the conclusion

that IL-17A alone is sufficient for increased Pendrin expression

under our experimental conditions. Although IL-17A is sufficient

to promote Pendrin expression in HBE cells, other cytokines

including interferon-c and IL-13 also appear to increase Pendrin

RNA expression (Figure S1).

Pendrin is a member of the SLC26A family of anion exchangers

[34]. Therefore, we wanted to investigate whether IL-17A

increased the expression of other SLC26A Cl2/HCO3
2 exchang-

ers that are expressed in HBE cells. In cells treated with IL-17A for

48 h there was a significant decrease in SLC26A3 (DRA)

expression and no significant change in SLC26A6 expression

(Figure 1d), suggesting that the effect of IL-17A on Pendrin

expression is not a non-specific effect seen across SLC26A family

members. Additionally, because some members of the SLC26

family interact with the cystic fibrosis transmembrane conductance

regulator (CFTR), we measured changes in CFTR mRNA after

48 h of IL-17A stimulation (50 ng/ml). CFTR expression

increased by an average of 1.8-fold (range 0.97–2.5) in IL-17A-

treated cells relative to vehicle controls (n = 7 inserts, representing

2 donors; data not shown).

IL-17A induces Pendrin protein expression at the apical
membrane of normal HBE cells

To demonstrate that the observed increases in Pendrin mRNA

correlated with increased protein expression, we performed

immunoblotting using a commercially available anti-Pendrin

antibody. Consistent with its effect on Pendrin transcription, IL-

17A significantly increased Pendrin protein expression in a time-

dependent fashion with Pendrin protein expression appearing to

be greater at 48 h compared to 24 h (Figure 2a). Because the

antibody we used identified a dominant band at the expected size

for Pendrin [27], we performed immunofluorescence on mature,

differentiated HBE cells treated with either vehicle or IL-17A.

Confocal imaging confirmed greater Pendrin expression in IL-

17A-treated cells and revealed that Pendrin is expressed at the

mucosal surface of the cells (Figure 2b, right panel). This is best

appreciated in the main XY image where Pendrin staining is

present in the same 0.5 micron section as discreet cilia that are

stained with Type IV Tubulin. This is also demonstrated in the

XZ sections, though it is more difficult to appreciate because these

cell preparations were only about 10 microns thick. Pendrin

appeared to be expressed primarily in non-ciliated cells, i.e. those

cells in Figure 2b that do not have Type IV Tubulin staining,

which identifies cilia. Notably, vehicle controls did not demon-

strate any immunofluorescence signal even in the presence of

primary antibody (Figure 2b, left panel), nor did IL-17A-treated

cells exposed only to secondary antibody (Figure S2, panel g).

Similar results were obtained with two different, commercially

available Pendrin antibodies (Figure S2, panels a–c and d–f). For

these antibodies, synthetic antigenic peptide was available, and co-

incubation of the primary antibody with the peptide reduced

immunofluorescence signal (Figure S2, panels c and f).

IL-17A induces CFTR-independent Cl2/HCO3
2 exchange

at the mucosal surface of HBE cells
The finding of increased Pendrin expression at the apical

membrane of HBE cells prompted us to look for functional

evidence of its expression. To accomplish this goal, we loaded

HBE cells with the pH-sensitive dye SNARF-5/6 and mounted

them in a specially-designed perfusion apparatus that allowed for

differential perfusion of the mucosal and serosal surfaces of the

cells. This apparatus was placed on the stage of an inverted

fluorescence microscope for live-cell imaging. To probe the

HCO3
2 exit pathway across the apical membrane, we established

a Cl2 gradient that promoted movement of Cl2 out of the cell

across the apical membrane. To accomplish this, the apical

membrane was initially perfused with solution containing both

Cl2 and HCO3
2 (described in Methods S1). After a 2–3 minute

period of stabilization during which fluorescence readings were

made, the mucosal solution was changed to one in which Cl2 salts

were replaced with equimolar gluconate salts. In IL-17A-treated

cells this resulted in a rapid increase in pHi (Figure 3b) that was

not seen in controls. By two-way ANOVA with Bonferroni post-

test correction, there were no statistically significant differences at

individual time points when comparing IL-17A-treated cells and

controls. However, when the change in pHi from baseline was

examined by subtracting the average pHi from time 0–2 minutes

from that of the average pHi from time 5–6 minutes, there was a

statistically greater change in the IL-17A-treated cells (0.1360.02

pH units) than in controls (0.00160.02 pH units).

This change was dependent on the presence of HCO3
2 in the

bath solutions (Figure 3c), supporting the notion that the pH

change was due to Cl2/HCO3
2 exchange as opposed to changes

in H+ transport, though we note in these experiments that the

IL-17 Induces Pendrin in HBE Cells
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starting intracellular pH was significantly higher than in the

presence of CO2. In fact, the baseline pH was close to the upper

limit of linearity in our assay (Figure 3a), which may have limited

our ability to detect a rise in pHi in the absence of HCO3
2. There

was a small decrease in pHi when Cl2 was replaced in the apical

bath solution, consistent with loss of intracellular base equivalents.

Pendrin, which we hypothesize is responsible for IL-17A-

induced Cl2/HCO3
2 exchange, is a CFTR-independent ex-

changer [30,35], as opposed to SLC26A3 and SLC26A6, which

are CFTR-dependent [21]. To explore whether IL-17A-induced

Cl2/HCO3
2 exchange was CFTR-dependent or independent, we

stimulated CF HBE cells with IL-17A (50 ng/ml, 48 h) and

evaluated for both Pendrin expression and Cl2/HCO3
2 ex-

change. Similar to results in normal HBE cells, IL-17A induced

Pendrin expression (Figure 4a) and induced Cl2/HCO3
2 ex-

change (Figure 4b) in CF HBE cells.

siRNA inhibition of Pendrin expression reduces IL-17A-
induced Cl2/HCO3

2 exchange
In order to test more directly the hypothesis that Pendrin

expression is required for IL-17A-induced Cl2/HCO3
2 ex-

change, normal HBE cells were transfected with one of two

siRNA molecules directed against Pendrin or with a non-targeting

control siRNA. Each of the two siRNA sequences was tested in

two tissue donors. Individually, siRNA treatment resulted in

decreased Cl2/HCO3
2 exchange in IL-17A-treated cells (Fig-

ure 5a and 5b) when compared to controls. Differences in baseline

pHi between the two experiments made combining the raw data

difficult. Therefore, pHi was normalized to the average of the pHi

readings over the first minute. Data from the two experiments

were then combined, and show a consistent and robust diminution

of Cl2/HCO3
2 exchange in siRNA-treated cells when compared

with controls (Figure 5c). Real-time PCR (Figure 5d) and immu-

noblotting (Figure 5e) confirmed that siRNA treatment decreased

Pendrin expression compared to controls.

IL-17A induces Pendrin expression via NF-kB
IL-17A signals to HBE cells through a number of pathways,

including canonical NF-kB signaling and through JAK signaling

[36]. Because the IL-17A-induced epithelial changes in antimi-

crobial peptide production and mucin transcription are driven by

NF-kB [12,37], we hypothesized that airway epithelial Pendrin

Figure 1. IL-17A-dependent induction of Pendrin mRNA. A. Mature, well-differentiated HBE cells were stimulated with IL-17A (50 ng/ml, 48 h)
prior to collection of total RNA, reverse-transcription, and analysis of Pendrin mRNA expression by quantitative PCR (n = 5 inserts, ** p,0.01). B. IL-
17A increases Pendrin mRNA in a time-dependent fashion (Note logarithmic scale, n = 2 inserts per time point, one from each of 2 donors compared
to its own control). C. HBE cells were stimulated with IL-17A (50 ng/ml, 48 h) or vehicle (PBS) after which conditioned media were collected and used
to stimulate naı̈ve cells. Conditioned media were treated with either an IL-17A neutralizing antibody (NA) or an isotype control IgG (IgG) (n = 2 inserts
per condition, one from each of two donors compared to its own vehicle control). D. Quantitative PCR for SLC26A3 (DRA) and SLC26A6 (PAT1) in the
presence and absence of IL-17A (n = 3 inserts per condition).
doi:10.1371/journal.pone.0103263.g001
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expression would also be dependent on NF-kB signaling.

Therefore, we pre-treated HBE cells with vehicle (DMSO) or

NF-kB inhibitor II (20 mM, JSH-23, Calbiochem) for 1 h prior to

stimulation with IL-17A. DMSO-treated cells stimulated with IL-

17A showed robust increases in Pendrin mRNA (Figure 6A) and

protein (Figure 6B) expression, whereas NF-kB inhibitor II-treated

cells stimulated with IL-17A were not different from unstimulated

controls.

Discussion

IL-17A has numerous effects on the biology and physiology of

airway epithelial cells, including effects on ion transport. Previ-

ously, we demonstrated that IL-17A stimulated CFTR-dependent

HCO3
2 secretion [20]. As part of those studies, we measured

resting airway surface pH (pHASL) and observed that IL-17A

increased pHASL in an electroneutral, CFTR-independent fashion.

The current studies were undertaken to explore the mechanism by

which IL-17A might have this effect. We hypothesized that a rise

in pHASL would reflect a change in net ion transport rather than

changes in other buffering systems. This hypothesis was consistent

with microarray data comparing vehicle-treated HBE cells with

cells that were stimulated with IL-17A, IL-22, or a combination of

the two that suggested IL-17A-stimulated HBE cells expressed

more Pendrin, a HCO3
2 secreting Cl2/HCO3

2 exchanger,

mRNA than did vehicle controls [1].

We first confirmed our microarray observations using quanti-

tative PCR, demonstrating that there is a time-dependent increase

in Pendrin mRNA expression in IL-17A stimulated HBE cells

without increases in mRNA expression of other SLC26A Cl2/

HCO3
2 exchangers expressed in HBE cells. These findings are in

Figure 2. IL-17A induces Pendrin protein expression at the
apical plasma membrane of normal HBE cells. A. Immunoblot of
Pendrin from total cell lysates at 24 h and 48 h of IL-17A stimulation. B.
Confocal immunofluorescence images of vehicle and IL-17A stimulated
HBE cells. Note that Pendrin (red) is only detected in IL-17A stimulated
cells and is primarily localized to non-ciliated cells, which lack of Type IV
Tubulin (green). Images are z-stacks with 0.5 micron sections from the
Transwell support to the tips of the cilia. For each set of images, the
main image is a single slice from the z-stack. Below is an x–z projection
and to the right is a y–z projection. The yellow lines indicate the
location from which the projections are taken.
doi:10.1371/journal.pone.0103263.g002

Figure 3. IL-17A induces Cl2/HCO3
2 exchange at the apical

membrane of normal HBE cells. A. Calibration curve of pHi versus
F640/580. An insert of HBE cells was loaded with SNARF-5/6-AM and
then incubated in high-potassium buffer (pH 6.8, 7.2, or 7.6) containing

IL-17 Induces Pendrin in HBE Cells
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agreement with others who have found that Th2 cytokines induce

Pendrin expression, but not other SLC26A family members [30].

Associated with the increase in Pendrin mRNA that we observed,

IL-17A stimulated HBE cells demonstrate a time-dependent

increase in Pendrin protein expression. Moreover, Pendrin protein

expression can be localized by immunofluorescence to the apical

domain of the cells. Although the Pendrin antibody used was not

monospecific and, therefore, immunofluorescence results may

represent nonspecific binding, we do not favor this interpretation

because the dominant band detected in immunoblots was of the

anticipated molecular weight and because multiple Pendrin

antibodies produced similar results (Figure S2). Therefore, we

concluded that IL-17A increased Pendrin expression at the apical

membrane in normal HBE cells, and we undertook experiments to

test the hypothesis that IL-17A would also increase Cl2/HCO3
2

exchange in these cells.

The experimental system we chose to investigate apical Cl2/

HCO3
2 exchange was one in which Cl2 is rapidly replaced in the

mucosal solution by gluconate, an impermeant anion. Cl2

removal from the mucosal bath creates a large concentration

gradient for Cl2 from serosal (120 mM Cl) to mucosal (0 mM Cl)

across the epithelium. Therefore, in the presence of an apical

membrane Cl2/HCO3
2 exchanger one will see a rise in pHi as

HCO3
2 enters the cell in exchange for Cl2. In the absence of a

Cl2/HCO3
2 exchanger, one would expect to see little or no

change in pHi with mucosal Cl2 removal because there is no

HCO3
2 transport pathway. Our data confirm that IL-17A

induces a Cl2/HCO3
2 exchange mechanism at the apical

membrane of normal HBE cells that is not present in untreated

cells as IL-17A-treated cells but not controls respond to removal of

mucosal Cl2 with a rise in pHi (Figure 3b). As predicted, this

change is reversible with replacement of mucosal Cl2.

To test the hypothesis that this pathway required HCO3
2, we

performed the same experiment in the absence of CO2/HCO3
2

with solutions buffered to pH 7.4 using HEPES. In these

experiments, there was no rise in pHi with Cl2 removal,

suggesting that HCO3
2 entry was responsible for the observed

rise in pHi. Nonetheless, we observed a small decrease in pHi with

Cl2 replacement. One possible explanation for this change in pHi

is that the IL-17A-induced Cl2/HCO3
2 exchange pathway can

also exchange Cl2 for OH2, as has been shown for Pendrin [27].

We note that baseline pH in the CO2/HCO3
2-free conditions was

higher than that in cells in the presence of CO2/HCO3
2,

presumably because lack of CO2 entry into the cells resulted in less

H+ generation from carbonic anhydrase. It is also possible,

therefore, that we did not see a rise in pHi with Cl2 removal from

the mucosal solution because the resistance to HCO3
2 entry in the

presence of elevated pHi was greater than the driving force for Cl2

exit from the cell. A second possibility is that the assay itself failed

to detect a rise in pHi because the starting pHi was close to the top

of the linear range of detection according to our calibration.

However, we note that SNARF dyes demonstrate fluorescence

changes at up to pH 9 according to the support material (http://

tools.lifetechnologies.com/content/sfs/manuals/mp01270.pdf).In

either case above, our data would underestimate Cl2/HCO3
2

exchange with Cl2 removal and replacement. Because of these

limitations, our data taken together are strongly suggestive of Cl2/

HCO3
2 exchange, but do not establish an absolute dependence

on the presence of HCO3
2.

To test the hypothesis that the IL-17A-induced Cl2/HCO3
2

exchange pathway was Pendrin, we adapted a previously

published method for siRNA inhibition of Pendrin expression

[30]. We were successful at reducing, but not completely

eliminating Pendrin mRNA and protein expression in anti-

Pendrin siRNA-treated cells. This residual expression is likely

correlated with the small residual response in pHi to Cl2 removal

from the mucosal solution seen in the treated cells (Figure 5).

Despite our experimental paradigm, in which we manipulate

the direction of Pendrin exchange to transport HCO3
2 into the

20 mM each valinomycin and nigericin for 40 minutes. Five serial
measurements over 2 minutes were taken for each filter and the
average used to calculate a single calibration point for each pH. Linear
fit was performed in Microsoft Excel. B. Intracellular pH changes in
response to chloride removal from the apical perfusate (open circles:
vehicle, n = 6 inserts; shaded circles: IL-17A (50 ng/ml for 48 h, n = 5
inserts). C. Intracellular pH changes in response to chloride removal
from the apical perfusate in the absence of soluble HCO3

2 and CO2

(only IL-17A treated cells are shown). Please see the results section in
the text for a complete discussion of two-way ANOVA applied to 3b.
doi:10.1371/journal.pone.0103263.g003

Figure 4. IL-17A increases Pendrin and Cl2/HCO3
2 exchange in

CF HBE cells. A. Pendrin mRNA is increased in CF HBE cells treated
with IL-17A (shaded bar) (n = 9 inserts from 2 donors, *** p,0.01
compared to vehicle controls (open bar)). B. Consistent with the
increase in Pendrin expression, apical membrane Cl2/HCO3

2 is also
increased in CF HBE cells treated with IL-17A (closed circles, n = 3
inserts).
doi:10.1371/journal.pone.0103263.g004
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Figure 5. Inhibition of Pendrin expression by siRNA reduces IL-17A-induced Cl2/HCO3
2 exchange. A. and B. Normal HBE cells from two

different donors were transfected with either non-targeting (scrambled) siRNA (closed circles) or one of two Pendrin-targeting siRNA from Invitrogen:
HSS 107794 (siRNA 1, closed squares) and HSS 107796 (siRNA 2, open triangles). After 14 days, cells were tested for Cl2/HCO3

2 exchange. Panels A
and B represent data from the individual donor. C. To account for differences in baseline pHi, pH was normalized to the mean of the first minute
(pHt0) and data were then combined. Normalized mean data encompassing both donors are shown in panel C. D. Quantitative PCR measuring
Pendrin mRNA expression in targeting siRNA-treated cells compared with scrambled control siRNA-treated cells. E. Immunoblot comparing Pendrin
protein expression in targeting siRNA-treated cells compared with scrambled control siRNA-treated cells.
doi:10.1371/journal.pone.0103263.g005
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cell, we hypothesize that under physiological conditions in the

airway Pendrin mediates HCO3
2 secretion. This is supported by

our previous measurements of surface pH in IL-17A treated HBE

cells [20] and by microelectrode impalement studies performed

under physiological ionic conditions in which the resting

membrane potential of HBE cells is close to the equilibrium

potential for Cl2 and more negative than that for HCO3
2 [38].

Therefore, under physiological conditions one would anticipate

that there would be a greater driving force for HCO3
2 secretion

compared with Cl2 secretion and Pendrin would facilitate net

HCO3
2 secretion across the apical membrane. This conclusion is

also supported by the finding that pHASL is elevated during

pathophysiological states where Pendrin has been found to be

elevated, including chronic bronchitis and during viral infections

[39].

Our data suggest that Pendrin is part of the airway epithelial

response to IL-17A. Previously, Pendrin was shown to be part of

the airway epithelial response to IL-13 [30]. More recently it has

been demonstrated that Th17 and Th2 skewed cytokine profiles

are found in stable CF patients preceding the detection of

Pseudomonas aeruginosa infection [40]. It remains to be seen

whether Th17 and Th2 cytokines have a synergistic effect on

Pendrin expression. Our RNA sequencing data suggest little

difference in the ability of IL-13 and IL-17 to promote Pendrin

RNA expression in HBE cells. While such studies may provide

further insight into the role of Pendrin under different inflamma-

tory conditions, drawing conclusions with respect to relative

potency may be quite difficult to control because of the multiple

variables such as expression and density of receptors signaling

machinery that would need to be accounted for, even while the

system itself may be changing (see below).

Heterologous expression of Pendrin in fisher rat thyroid (FRT)

cells confers cAMP-independent SCN2 transport [30]. Such

SCN2 transport is linked to innate immunity through the activity

of lactoperoxidase (LPO) that catalyzes the formation of the

antibacterial compound hypothiocyanite (OSCN2) from SCN2

and hydrogen peroxide (H2O2) [41]. Similarly, IL-4 increases

SCN2 transport in HBE cells [30]. Moreover, at least 2 different

laboratories have established a direct link between HCO3
2 and

antibacterial defenses. In particular, Sa grown in the presence of

HCO3
2 is significantly more susceptible to antimicrobial peptides

than Sa grown in medium of the same pH that lacks HCO3
2 [17].

Similarly, in rat prostate, HCO3
2 secretion, but not pH, is critical

for bacterial killing [42]. Taken together, these findings suggest

that Pendrin may have a role in airways host defense.

Others have suggested that HCO3
2 secretion is critical for the

normal secretion and/or unfolding of secreted mucins [43,44].

This raises the hypothesis that Pendrin expression may be linked to

mucin or mucus biology in airway epithelial cells, a hypothesis

supported by data demonstrating the role of Pendrin in HCO3
2

secretion from Calu-3 cells, a model of submucosal gland serous

cells [45]. Others have shown in mice that virally-mediated over-

expression of Pendrin in lung is sufficient for airways mucin

production [46]. Our immunofluorescence data raise the possibil-

ity that in IL-17A treated cells Pendrin is predominantly, if not

exclusively, expressed in non-ciliated cells. Moreover, there appear

to be fewer ciliated cells in IL-17A treated monolayers, though we

did not undertake statistical analysis to determine if this is

definitively the case. Such an effect has been demonstrated

previously for IL-13 [47]. Taken together, these data are

consistent with a role for Pendrin in the pathophysiology of

mucus hyperplasia and metaplasia seen in chronic inflammatory

disorders [48]. There is growing evidence that Pendrin plays a role

in the host response to infection and inflammation. However,

many of the investigations have taken place in cultured epithelial

cells. And while differentiated epithelial cells are a good

representation of the native epithelium, one must use caution

when extending in vitro findings to whole tissue, organ, and

animal physiology.

Figure 6. IL-17A-induced Pendrin expression is dependent on
NF-kB. Cells were incubated with NF-kB inhibitor II (20 mM) for 6 hours
and then with NF-kB inhibitor II and IL-17A (10 ng/ml) for 24 h prior to
analysis. Quantitative PCR (A) and immunoblotting (B) from normal HBE
cells demonstrating that inhibition of NF-kB prevents IL-17A induced
Pendrin expression.
doi:10.1371/journal.pone.0103263.g006

IL-17 Induces Pendrin in HBE Cells

PLOS ONE | www.plosone.org 8 August 2014 | Volume 9 | Issue 8 | e103263



An example for why such caution is warranted is the apparent

lack of lung disease in Pendred syndrome patients. This may

reflect either relatively low levels of Pendrin in the lung in the

absence of inflammation, or the ability of other HCO3
2

transporters, such as CFTR or other SLC26A family members,

to compensate for lack of Pendrin in the airways. This may also

reflect that absence of Pendrin is protective against some forms of

pulmonary disease, a suggestion for which there is evidence in the

literature. For example, Pendrin null mice demonstrate attenuated

inflammatory responses and reduced airways reactivity in an

allergen-induced model of asthma [49]. This response was

attributable to increased ASL depth in response to IL-13

stimulation of Pendrin-deficient airway epithelial cells. The precise

mechanism of Pendrin regulation of ASL remains unknown and

may be directly related to Pendrin, indirectly related to Pendrin

through other ion transporters, or to some other effect of Pendrin

deficiency not yet identified [49]. Further investigation in

physiologically relevant Pendrin null model systems is warranted

to determine what role, if any, Pendrin has in airways physiology

or pathophysiology and the mechanisms by which it affects cell

biology.

Supporting Information

Figure S1 Relative potency of interferon-c (Ifnc), IL-13,
and IL-17A to induce Pendrin in HBE cells. We note that

each condition represents n = 2 donors, so statistical analysis is not

appropriate. In these donors, IL-17 and IL-13 appear to induce

Pendrin to a greater extent than does Ifn-c.

(TIF)

Figure S2 Immunofluorescence detection of Pendrin in
IL-17A-treated HBE cells (50 ng/ml, 48 h). All images:

Pendrin is pseudocolored red; Type IV Tubulin marking cilia is

pseudocolored green. Top row: Pendrin antibody, clone E-20

(Santa Cruz): A. Vehicle controls, B. IL-17A-treated cells, C. IL-

17A-treated cells in the presence of blocking peptide (Santa Cruz,

specific for clone). Middle row: Pendrin antibody, clone G-19

(Santa Cruz): D. Vehicle controls, E. IL-17A-treated cells, F. IL-

17A-treated cells in the presence of blocking peptide (Santa Cruz,

specific for clone). Bottom row: No Pendrin antibody: G.
Secondary antibodies used alone (note: same secondary antibodies

were used for immunofluorescence experiments).

(TIF)

Methods S1 This section provides details on real-time
PCR calculations, microscopy solutions and siRNA
transfections.
(DOCX)
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