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Abstract

Background: Confident identification of microRNA-target interactions is significant for studying the function of microRNA
(miRNA). Although some computational miRNA target prediction methods have been proposed for plants, results of various
methods tend to be inconsistent and usually lead to more false positive. To address these issues, we developed an
integrated model for identifying plant miRNA–target interactions.

Results: Three online miRNA target prediction toolkits and machine learning algorithms were integrated to identify and
analyze Arabidopsis thaliana miRNA-target interactions. Principle component analysis (PCA) feature extraction and self-
training technology were introduced to improve the performance. Results showed that the proposed model outperformed
the previously existing methods. The results were validated by using degradome sequencing supported Arabidopsis
thaliana miRNA-target interactions. The proposed model constructed on Arabidopsis thaliana was run over Oryza sativa and
Vitis vinifera to demonstrate that our model is effective for other plant species.

Conclusions: The integrated model of online predictors and local PCA-SVM classifier gained credible and high quality
miRNA-target interactions. The supervised learning algorithm of PCA-SVM classifier was employed in plant miRNA target
identification for the first time. Its performance can be substantially improved if more experimentally proved training
samples are provided.
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Introduction

MicroRNAs (miRNAs) are a large family of small endogenous

noncoding RNAs with a length of 20–24 nucleotides (nt). They

have significant regulatory functions in plants and animals [1].

Unlike other small RNAs, miRNAs undergo a distinctive

biogenesis containing a transcript folding back step to constitute

a characteristic stem-loop structure [2]. Pre-miRNAs are pro-

cessed from the stem-loop transcripts mainly by RNase III

endonucleases enzyme Drosha or Dicer-like 1 (DCL1) [3,4].

Then, another Dicer or DCL1 enzyme participates in cutting pre-

miRNAs into miRNA:miRNA* double strands. Finally, helicase

enzymes in cytoplasm separate the double strand into two single

strands. One of them combines with an Argonaute protein and

forms the RNA-induced silencing complex (RISC) [5]. Since the

first miRNA was discovered in C. elegans at the end of last century

[6], thousands of miRNAs have been identified by using

computational and molecular approaches.

The regulation of miRNAs is exerted by complementary base-

pairing to the target mRNA, based on which the identification of

miRNA-target interactions has been widely performed. It is most

likely that miRNA targets play an indispensable role in many

aspects involved in the development or response to the environ-

ment [7]. By studying the location and certain time of the

regulation of a target from miRNA, we can further understand

both the regulation of gene and system biology. Usually, miRNAs

regulate posttranslational repression of mRNAs via two different

mechanisms. Firstly, the miRNAs induce mRNA translational

repression, sometimes coupled with accelerated mRNA decay, by

the inhibition of the translation initiation or poly(A) shortening

[1,8]. Secondly, with high complementarity between miRNAs and

targets, the miRNAs induce mRNA cleavage under the help of

Argonaute protein [1,9]. Unlike animals, the complementarity

between plant miRNA and target tends to be near-perfect and

therefore improves the effectiveness and reliability of computa-

tional predictions [10].

Currently, a large amount of plant miRNAs have been

discovered and reported with the development of high throughput

screening techniques. Besides, the machine leaning technique also

makes great contribution to the prediction of probable mature

miRNAs [11,12]. Meanwhile, lots of efforts have been made to

identify miRNA-target interactions. For example, a latest study
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has successfully identified 119 targets in Solanum lycopersicum,

106 of which appeared to be new [13]. However, although a

certain amount of miRNA targets have been identified and

experimentally validated, this issue is far from settled. Firstly, more

efficient and reliable prediction tools are required to solve the

challenge caused by the rapidly increasing scale of miRNAs.

Secondly, the reported miRNA targets are far less than the

existing. Besides, a mass of miRNA targets still remain to be

deliberated.

Computational prediction approaches have made a great

contribution to identify miRNA-target interactions [14]. Here

we divide the existing target prediction methods into two

categories: statistical prediction and machine learning approaches.

Features used in the first category can be summarized as

followings: (i) binding site evolutionary conservation, (ii) comple-

mentarity between miRNA and target site, and (iii) target site

accessibility. Methods based on these features are widely applied in

both animals and plants. Outcomes of these predictors are credible

to some extent with acceptable computational complexity.

Representative programs of this category for plants are miRU

[15], psRNATarget [16], UEA toolkit [17], TargetFinder [18],

TAPIR [19], et al. Although these predictors have been widely

employed, it is still unclear to date how these factors could

influence the recognition mechanism. Programs belonging to the

first category, considering parts or all of the three features, lack

comprehensive consideration which may lead to more false

positive or negative predictions [14]. Furthermore, targets may

be missed due to the undue dependence on conservation

information. To integrate these multiple factors and reduce false

positive rate effectively, the second category of prediction methods

introduce machine learning algorithms. Unlike statistical predic-

tion approaches, algorithms of this category use known miRNA-

target interactions and incorporate the degradome and transcrip-

tome data in an efficient way. Usually, a classifier model is trained

using these known miRNA-target interactions to predict suspected

ones. Machine learning approaches have already been employed

in animal miRNA targets prediction successfully, such as miTarget

[20], GenMiR++ [21], mirTar [22] and RNA22 [23]. P-TAREF

[24] is a successful tool implementing Support Vector Regression

(SVR) approach for the identification of plant miRNA targets.

However, machine learning techniques have not been used in this

field maturely.

An integrated model is presented to identify the miRNA-target

interactions of Arabidopsis thaliana, the most studied plant species,

using both categories of methods aforementioned. It contains three

credible online predictors which provide preliminary miRNA

targets as candidates. In order to reduce the false positive

candidates, a self-training based PCA-SVM classifier is applied

using a priori knowledge. The integrated model takes advantage of

the two categories of technologies and thus produces higher

quality of miRNA-target interactions. Meanwhile, degradome

data is employed to confirm the reliability of our predicting

outcomes. Results show that our integrated approach gains more

credible miRNA-target interactions. Furthermore, the proposed

approach is performed over Oryza sativa and Vitis vinifera to

prove the applicability of our approach. The tool of our research is

available in our supporting website: http://pan.baidu.com/s/

1pJLR1nt.

Methods

Three widely used prediction methods were integrated with a

SVM-based local classifier, aiming to obtain high quality miRNA

targets. The whole process is shown in Figure 1. The first step is to

predict target candidates using online predictors. miRNAs and

transcript sequences are uploaded to online predictors respectively

for target searching. Results are locally stored and processed into

unified format as a primary candidate set. Secondly, semi-

supervised learning algorithm, PCA-SVM, is adopted to classify

the primary candidate set to separate more credible candidates

from the false positives. During the training of SVM model,

experimentally validated miRNA-target interactions are applied to

act as positives. A same number of negatives are randomly picked

from the result sets supported by the three single predictors, which

represent less credible ones gained by only one predictor. This part

contributes to the reducing of false positive rate and ensures the

reliability of miRNA-target interactions gained by our approach.

Besides, the used SVM outdoes other classification model, e.g.

Naive Bayesian Model and Random Forest Model. Finally, a

validation experiment with degradome-seq data is implemented to

confirm the reliability of the output miRNA-target interactions

information.

Dataset
The transcript sequences (59UTR, CDS and 39UTR) of

Arabidopsis thaliana were downloaded from the central database

TAIR [25] (http://www.arabidopsis.org/, Release 9). And 338

Arabidopsis thaliana mature miRNAs arising from 299 pre-

miRNAs were obtained from the miRNA database miRBase [26]

(http://www.mirbase.org/, Release 19). The Oryza RNA se-

quences came from Ensembl Genomes (http://plants.ensembl.

org/, Release 15) and RNA sequences for Vitis vinifera were

downloaded from FTP site of JGI genomic project (http://

genome.jgi-psf.org/, version 9). All miRNAs for Oryza sativa and

Vitis vinifera also came from miRBase.

The Arabidopsis thaliana training data set of positives and

negatives in our SVM model were gained by different ways. The

positives comprise experimentally validated miRNA-target inter-

actions, which have precise identification information of the

binding sites. A total of 99 positives reported in previous studies

[27–30] were collected. We defined the candidates predicted by

only one online predictor only. This means that these targets are

not supported by other predictors, as the negatives. The reasons

and methods will be introduced in detail later.

Degradome-seq [27] and CLIP-Seq [31] are two effective

methods employed for miRNA-target identifications. To evaluate

the performance of our approach, we downloaded 1618

Arabidopsis thaliana miRNA-target interactions data supported

by degradome sequencing from starBase [32] (http://starbase.

sysu.edu.cn/, Release 2.1). The results are generated via Cleave-

Land (version 2.0) software [33] with a default Penalty Score of

4.5. These sequences are only used in the validation step for

lacking of precise binding information.

Online predictors
We analyzed the results of widely used predictors profoundly

and found that there are usually inconsistences between different

results sets. This is mainly because of various rules and strategies

used in the predictors. In order to gain a more comprehensive

result set, the combination of different predictors were used.

psRNATarget, TAPIR and UEA were chosen to predict miRNA

target candidates in the first step showed in Table 1. They are

widely used statistical prediction tools in integrated prediction

approaches [34,35] which relying on different combinations of

seed pairing, central pairing, and hybridization energy of target

site. Detailed rules and strategies used in these predictors are

inconsistent to some degree.
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psRNATarget [16] is a plant sRNA (miRNA/siRNA) target

analysis server, which features two analysis functions: reverse

complementary matching and target-site accessibility evaluation.

The scoring scheme used in this tool is originally applied by miRU

[15]. Instead of using the NCBI BLAST program, psRNATarget

employed SSEARCH (Version 36.x), a Smith-Waterman [36]

based implementation. Moreover, the server runs on a Linux

cluster with an efficient distributed computing back-end pipeline.

Therefore, it can be used to analyze high-throughput and next-

generation data rapidly.

TAPIR [19] offers the possibility to search for plant miRNA

targets using a fast (FASTA) search engine and a precise

Figure 1. The pipeline of the whole approach. Our approach is mainly divided into two steps: Online prediction and local classification.
PsRNATarget, TAPIR, UEA_sRNA were chosen to predict original miRNA target candidates in the first step. 99 experimentally validated miRNA target
interactions are employed to serve as SVM positives in the second step. Moreover, 1618 degradome sequencing supported miRNA target interactions
are collected for validation experiment.
doi:10.1371/journal.pone.0103181.g001

Table 1. Information of three online predictors for plant miRNA targets.

Method link AUTSa Limitb Spec

psRNATarget http://plantgrn.noble.org/psRNATarget/?function = 3 Y 20M/200M , = 5 min

TAPIR http://bioinformatics.psb.ugent.be/webtools/tapir/ Y 50 kb/40M 5–30 min

UEA_sRNA http://srna-tools.cmp.uea.ac.uk/plant/cgi-bin/srna-tools.
cgi?rm = input_form&tool = target

N 50miRs/None . = 1 hour

aAccepttion of user-supplied transcripts.
bLimitation for miRNA/transcript input.
cApproximate running time.
doi:10.1371/journal.pone.0103181.t001
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(RNAhybrid) search engine. Users can choose the precise option to

guarantee more imperfectly paired miRNA target duplexes,

gained with a much slower speed. The score calculated for each

miRNA target duplex came from previous studies [28]. Mis-

matches, gaps, bulges and GU wobbles are considered here and

the weights of them vary inside and outside the core region.

Considering the speed, we prefer the fast FASTA search engine.

UEA_sRNA is a method included in the UEA toolkit [17]

aiming to identify sRNA targeted transcripts. According to

previous studies [28,37], it focuses on mismatches belonging to

different areas of the miRNA target duplex including GU wobbles

and adjacent mismatches. MFE (minimum free energy) was

computed as an evaluation criterion instead of traditional optimal

energy. Comparing with Targetfinder, which uses similar rules, we

give preference to UEA_sRNA to search miRNA-target interac-

tions on genome-wide.

The proposed approach used the combination of three

predictors. For psRNATarget and TAPIR, 338 Arabidopsis
thaliana mature miRNAs and transcipts in TAIR9 were uploaded.

In the prediction of UEA_sRNA, miRNAs and selected TAIR9

dataset is provided. To keep the balance between the number of

candidates and false positive percentage, these predictions were

executed via default score cutoff. Detailed values of the parameters

are given in Figure S1. The primary miRNA target candidate set

was composed of the results from all three preceptors. In the

candidates processing module, the result of UEA_sRNA was

double checked. Some detailed information was corrected because

the transcripts offered by UEA_sRNA had some slight inconsis-

tency with what we used. Moreover, redundant information was

removed and elements of the candidate set were simply marked

with their origin and stored locally for further use and analysis.

To facilitate the analysis, we defined and considered the

following subsets:

(1) Outside Subset (OS): Containing parts of candidate set

supported by single predictor.

(2) Middle Subset (MS): Containing parts of candidate set

supported by only two predictors.

(3) Inside Subset (IS): Containing parts of candidate set supported

by all three predictors.

(4) Whole Subset (WS): The whole candidate set supported

consisting of the union of OS, MS and IS.

SVM classifier
Support vector machine. SVM [38] is used to build a

classifier discriminating miRNA targets interactions with high

quality. SVM is a supervised machine learning algorithm, aiming

to solve linear and nonlinear classification and regression

problems. It affords a mapping of the sample vectors into a non-

linear, high-dimensional feature space, in which the samples may

be separated by an optimal hyperplane. The similarity function

between pairs of samples is called a kernel. In our study, a radial

basis function (RBF) kernel is chosen for its higher reliability in

finding optimal classification solutions over the other three kernels

[39]. Let us denote S~(x1,x2,:::,xn) as a set of miRNA target data

to be trained, each xi is an element of all possible miRNA target X.

To form a SVM model, the data set S is represented as the set of

features, Q(S)~(Q(x1),Q(x2),:::,Q(xn)), where Q(xi) can be defined

as a real-valued vector. Then SVM is designed to process a set of

pairwise comparisons ki,j~k(Q(xi),Q(xj)), which is represented by

an n6n matrix, used as input data of the RBF kernel:

k(Q(xi),Q(xj))~exp({cDDQ(xi){Q(xj)DD2),

where the parameter c determines the similarity level of the

features so that an optimal classifier can be constructed. The whole

SVM approach is implemented with the Libsvm library [40].

Biologically relevant data set. Proposed classification

system identifies real miRNA-target interactions from false positive

candidates predicted by online predictors. Therefore, the positives

of training dataset should be composed of experimentally verified

Arabidopsis thaliana miRNA-target interactions. We retrieved 99

non-repetitive Arabidopsis thaliana positives from previous studies,

which contain particular information of target site (Table S1). All

of them work as positive training dataset.

To gain negative training dataset (including feature similarity

with real miRNA-target interactions but tends to be false

positives), a method proposed in previous study [34] was

employed. miRNA targets predicted by the single method, which

are not supported by other predictors, are frequently less credible

than those identified by multiple methods. This paradigm was also

analyzed in detail and proved in our results. Thus, miRNA targets

supported by no more than one predictor were collected and 99 of

them were randomly selected as negative training dataset. The

ratio of positives to negatives is set to 1:1 in order to maintain the

balance of the classifier. We recognized that the selection method

of negative training dataset may decrease the classifier accuracy

slightly to some extent. This is because some positive elements may

be included in the negative training dataset, while the performance

of the classifier is commendable as discussed in the results.

SVM features. It is a great challenge to extract a suitable

feature set on which the classifier can be trained to identify both

positives and negatives effectively. Features extracted from the

proposed approach can be categorized into three classes: position-

based features, structural features and thermodynamic features.

The general features of 48 miRNA-target interaction is shown in

Figure 2. All values were normalized to the interval (0, 1).

Position-based features are vital in the seed region in

Arabidopsis thaliana [41]. Some special cases show that a single

point mutation could affect miRNA target pairing and inhibit the

miRNA’s function, although these changes cause only a small

variation in the interaction free energy. Besides the seed region,

some other peculiar sites are reported to have influence on target

recognition, e.g. position 16 and position 19 [14]. In order to

figure out the complexity of recognition mechanism between

miRNAs and targets, position-based features were extracted from

positions 1 to 20. The rest were discarded if existed. Four types of

cases were considered here including an A:U match, a G:C match,

a G:U match, and a mismatch, given a value from 1 to

4.Structural features are another significant part in miRNA-target

interactions [20]. In our research, the miRNA target alignment

was divided into four parts including seed part, central part, other

part and total alignment. Moreover, the number of the four basic

match types mentioned above was counted in each part. Among

them, the central part is the main difference between animal and

plant miRNA target. In plants, central matches usually lead to the

cleavage of the target gene and exclude translational repression.

Central mismatches lead to translational repression because they

prevent slicing [42]. However, this factor is not considered in

animals. Besides, the number of total matches and mismatches

from all the four regions was calculated. In this case, 24 features

were obtained.

Some of the thermodynamic features used in our approach were

calculated by the RNAfold program from the Vienna RNA

Package [43]. A linker sequence ‘‘GGGAAALLLLLLUUUCCC’’

Plant MTI Identification and Integration
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was used to connect subsequences from miRNA and mRNA to

calculate the free energy in 59 part, 39 part and total miRNA:

mRNA alignment structure. In the linker sequence, ‘‘L’’ does not

match with any nucleotide and is used to prevent miRNA and

mRNA nucleotides from sequence-specific linker sequences [44].

Furthermore, the other characters are designed to prevent

unexpected alignment of short matches. In addition, the target

site accessibility is proved to be another determinant for the

prediction of miRNA targets [45,46]. Our approach has also

considered the secondary structure, calculated by the RNAup

program in Vienna package, near the targets site. A larger

sequence containing the target site, 70 nt upstream and down-

stream, totally 140 nt, from both sides was extracted. The reason

for choosing 70 nt was that base-pairing interaction between

nucleotides of secondary structure is unlikely to happen when it is

separated by .70 nt [47]. We set the first nucleotide of transcripts

as the start of the larger sequence if the first nucleotide of the target

site is located closer than 70 nt from it. The same rule was used to

obtain the end of the larger sequence under some special

circumstance. Then the energy needed for miRNA binding to

open the site area DGopen was calculated by RNAfold [48]. Thus,

we gained 4 features.

Semi-Supervised Self-Training. Semi-supervised self-train-

ing is a method which trains the model with a small number

labeled data and an additional set of unlabeled data. It reduces the

effort needed to prepare the training set and maintains the stability

of model in one sense. A previous study [49] has demonstrated

that a model trained in self-training manner achieves results

comparable to a model trained using a much larger set of fully

labeled data. Our research meets this limitation as to study plants

miRNA target interactions are not mature and we only got 198

samples in our training set.

Figure 2. Three categories of SVM features. A total of 48 features belonging to 3 categories are extracted to classify high quality miRNA target
interactions from false positive ones. All features mentioned are widely accepted to predict miRNA-target interactions and discriminate creditable
targets from false positive ones.
doi:10.1371/journal.pone.0103181.g002
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As described in the previous study, miRNA target interactions

from the IS set of prediction results have higher reliability to be

real ones and miRNA target interactions from the OS set tend to

be false positives. Firstly, weak labels +1, 0 and 21 are given to

miRNA target candidates from the IS, MS and OS sets

respectively. And results from them tend to be credible, suspicious

and false positive. Samples with original label 0 are discarded

during the set expansion step of self-training for the higher

uncertainty in the training set. Then, the expansion rules of

training set are defined as the following:

(1) If samples with original weak label +1 are predicted to be

positive, they can be used to expand the positive training

dataset.

(2) If samples with original weak label 21 are predicted to be

negative, they can be used to expand the negative training

dataset.

By this way, we take advantage of priori knowledge of results

from the predictors. Consequently, satisfied stability and reliability

of the classifier can be achieved.

Figure 3 shows the process of semi-supervised self-training used

in our approach. During the process, a candidate set is used to

store samples needed to expand the training set and is initially set

to empty. Firstly, a classifier model is trained in terms of the

original training set, 198 samples in our research. Secondly, a

sample from the test set is examined by the trained model and is

assigned for a label 1 or 21. Further, the newly labeled sample is

added to the candidate set if it satisfies the first condition, which

tells if the sample confirms to the expansion rules mentioned

above. Then we check the second condition. If all samples from

the test set are labeled, the process enters the end state and output

final results. Otherwise we go on to next condition. If the

candidate set contains at least one positive sample and one

negative sample, two samples with different labels are picked and

added to the training set for expansion and removed from the

candidates. This strategy ensures the balance of training set by

adding samples with a ratio of 1:1. No matter whether this

condition is met, the process will move to the first step.

The whole method is an iterative for training the SVM model

and expanding the training set. The model trained by the limited

number of labeled samples will be more and more stable during

the process and influence of small training set will be reduced

simultaneously.

Feature subset selection. For pattern recognition, feature

compression or extraction usually plays an important role. We

employed principal component analysis (PCA) and constructed a

PCA-SVM model to solve the problem caused by dependent or

noisy features which lead to slower convergence and loss of

accuracy of the classifier.

PCA is an unsupervised linear analysis method used for

information extraction and dimension reduction [50]. It allows

reducing the dimensionality of the problem through a linear

transformation and producing a new set of variables/features,

which is called ‘‘principal components’’ (PCs). PCs constitute a set

of linear combinations of variables which preserves maximal

amount of information with minimal redundancy. Here, ‘‘maxi-

mal amount of information’’ means the best lease-squares fit, or

maximal ability to expound the variance of the original data. It

can be expressed as below:

V~X :PT

where V~½v1,v2,:::,vn�T is the translated PCs; X~½x1,x2,:::,xn�T

represents the set of original variables and P is the covariance

matrix.

Furthermore, the column vectors (Pi) of the coefficient matrix P
are the eigenvectors of the covariance matrix (S), which is gained

after normalization (X̂X ).

To obtain the data matrix X̂X for a data set which has N
observations and n variables, the observed sample matrix Z is

normalized as bellow:

x̂xi,j~
zi,j{Mj

sj

where zi,j represents an element of Z; Mj denotes the mean value

of jth variable and sj is the standard deviation of jth variable.

Then the covariance matrix S is obtained as bellow:

S~
X̂X T X̂X

N{1

Usually, any column of P meets the following requirement, liwlj

(li is the eigenvalue of the ith PC and i,j). When the cumulative

percent variance of the first b eigenvalues (CPVb) reaches or

crosses a threshold and the usage of PCA reduced dataset reaches

the optimal performance, the first b PCs are kept as the new

feature space (i.e., the signal subspace):

CPVb~

Pb
i~1 li

PN
i~1 li

:100%

SVM Training. The performance of the SVM classifier was

evaluated using 5-fold cross-validation performance. Accuracy is

employed here as the evaluation criteria given below:

Accuracy~
TNzTP

TPzFPzFNzTN

Where TN is the number of the predicted true negatives, TP is the

number of the predicted true positives, FP is the number of the

predicted false positives and FN is the number of the predicted

false negatives.

The grid selection approach from the LIBSVM library was used

to get the best parameters, C and c. Then, a new SVM model was

trained. Moreover, we sealed the whole data set in the interval

(0, 1).

Results

Performance of online predictors
The statistical result of predictors used in the proposed model

running on 338 Arabidopsis thaliana mature miRNAs and TAIR9

are shown in Figure 4, and detailed information is given in Table

S2. Among them, psRNATarget provides the largest set (3564

candidate targets) because of its relatively less attention to the seed

region and looser rules used within it, while TAPIR predicts the

least (1772 candidate targets).

99 experimentally validated miRNA-target interactions are

employed as reference set to evaluate the performance of online

predictor. Results are shown in Table 2. OS has a large candidate

set (3283/4999) as the fact of the various factors focused by

different methods, and IS identifies the least (631/4999).

Inconsistency between different predictors has been widely

Plant MTI Identification and Integration
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acknowledged and it is obviously greater in our approach

according to the statistics. We studied current tools and picked

the ones with less similarity in order to cover more candidates

when online predictors were used. Then the results can be readily

accepted. Assuming that the reference set we used covers all the

true miRNA-target pairs, the true positive percentage in WS is

bigger than any of the three predictors as we expected.

Moreover, true positive percentages in OS, MS and IS turn out

to be an ascending sort order, to the opposite, they decrease in the

column of false positive percentage. At the same time, true positive

gaps between each two subsets are extremely large (7.1% versus

21.2% and 21.2% versus 42.4%). It is obvious that miRNA-target

interactions identified by multiple predictors are more credible

than single predictor did. This shows the superior of our proposed

method for the negative training dataset used for SVM model.

The low percentage (7.1%) of true positive in OS makes it much

unreliable for identifying miRNA targets. So, miRNA-target

interactions identified by a single predictor can be approximately

regarded as ones with negative features.

Among three predictors, TAPIR and psRNATarget identify

more true targets (63/90); whereas UEA_sRNA identifies a little

less (49/90), probably due to the stringent parameters and special

Figure 3. The process of semi-supervised self-training. The whole approach can be generalized into an iteration process of training and
predicting. Condition 1 tells if the sample confirms to the expansion rules. Condition 2 tells if all unlabeled data in test set are labeled by the classifier.
Condition 3 tells if the candidate set contains samples with positive label and negative label at the same time.
doi:10.1371/journal.pone.0103181.g003
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hybridize energy ratio used in it. Anyway, these results demon-

strate the reliability of traditional methods based on statistics.

However, most targets are not experimentally validated. For one

reason, the high false positive percentage is not avoided by

traditional prediction methods of statistics. The other reason might

be less of reference targets set used in this analysis. This is the

primary reason why we introduced machine learning method to

face the challenge of searching more qualified miRNA-target

interactions in plants.

Moreover, a chi-square testing was conducted in light of IS. As

can be seen from the p-values, all subsets have large difference to

IS with p-values close to 0, which reflects significant difference

with IS. Thus, we conclude that IS is much better than any other

sets.

PCA Feature Extraction
For the proposed miRNA-target interactions prediction system,

48 features, including 20 position-based, 24 structural and 4

thermodynamic features described in the ‘‘SVM features’’ section,

were extracted. The whole training set with 99 positive samples

and 99 negative samples were used for PCA for further feature

extraction. Optimum diagnostic accuracy results due to PCA

reduced dimension are given in Figure 5. The coefficient matrix C
is shown in Table S3.

The optimal performance was researched using the first 25 PCs.

Therefore, the original 48 features were reduced into 25 new ones

which are uncorrelated. Next, the data with 25 PCs were used to

train the SVM classifier model, replacing the original 48 features.

The remaining 23 components were discarded, which contribute

least to classifier.

Kernel Selection
Using SVM, it is necessary to find the optimal kernel over a

given set of kernels. A leave-one-out cross-validation approach was

conducted on our training set using four different kernels including

linear kernel (linear), polynomial kernel (polynomial), radial basis

function kernel (RBF) and sigmoid kernel (sigmoid). A leave-one-

out cross-validation involves using a single observation from the

training set as the validation data, and the remaining observations

as the training data. This is repeated so that each observation in

the sample is used once as the validation data. Results are shown

in Figure 6. RBF was selected for the accuracy of 89.9%, more

than one percentage over the other three kernels.

Figure 4. Statistical result of predictors in the proposed model.
In order to analyze the performance of predictors chosen in our
approach, we show the candidate set separately including overlaps
between two predictors or among three predictors.
doi:10.1371/journal.pone.0103181.g004

Table 2. Performance of predictors.

Method or Subset Totala Pos.b P (%)c p-valued

psRNATarget 3564 63 63.6 4.31E-13

TAPIR 1772 63 63.6 1.068E-3

UEA_sRNA 2010 49 49.5 4.02E-07

OS 3283 7 7.1 1.53E-40

MS 1085 21 21.2 5.33E-07

IS 631 42 42.4 1.00E+00

WS 4999 70 70.7 5.13E-19

aTotal number of predicted candidates in each subset.
bNumber of experimentally validated miRNA-target interactions identified in each subset.
cTrue positive percentage.
dp-value calculated with IS.
doi:10.1371/journal.pone.0103181.t002

Figure 5. Diagnostic accuracy due to reduced dataset dimen-
sion using PCA. A 5-fold cross-validation approach is repeated for 48
times from 1PC to 48 PCs to view the change of accuracy and get the
optimal dimension.
doi:10.1371/journal.pone.0103181.g005
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Negative Training Set Evaluation
A contrast test was conducted to further prove the rationality of

our method to pick the negative training dataset. Four SVM

models were built using different negative training datasets

randomly selected from different sets of IS, MS, OS and WS of

candidate miRNA targets. They were predicted by three

predictors. Then, a leave-one-out cross-validation approach is

conducted using four training datasets separately. Results are

shown in Table 3. The cross-validation with negatives from OS

gains the highest accurate of 89.9%. This means that negatives

from OS tends to have false positive features and can be better

classified by the SVM model. While the cross-validation with

negatives from IS was the lowest 57.1%, indicating that negatives

from IS have features similar to the real ones and can be hardly

separated. Besides, the results of WS and MS respectively are

73.2% and 66.7%. This further supports the point that miRNA

targets predicted by the single method are frequently less credible

than those identified by multiple methods.

Classifier performance
SVM classifier is implemented to filter the false positive miRNA

target candidates, so that more credible information is kept.

Samples processed by PCA were classified by SVM. To conduct a

performance evaluation, 5-fold cross-validation method was

performed. Firstly, SVM model was trained using four-fifth of

the complete dataset. And the remaining one-fifth of the dataset

was used to evaluate its performance. Then different combinations

of training and testing datasets were repeated five times and the

average of these five results was recorded as final result. We also

repeated this process using samples with 48 original features to

compare PCA-SVM with SVM model. Meanwhile, a simulative

semi-supervised 5-fold cross-validation approach was conducted to

show the contribution of semi-supervised self-training method. All

candidates with weakly labels from the candidate set were

randomly picked to expand the training set in each iteration

process of 5-fold cross-validation. ROC curve, generated by the

average FP and TP through Libsvm package, is hired to

determine the cutoff value and performance of our classification

model. Results are shown in Figure 7.

The area under the ROC curve of PCA-SVM model is

94.40%.It is almost the same as that of SVM (94.00%). Both of

these two models have satisfied prediction capability. Whereas, the

accuracy rate of PCA-SVM model has an increase of 2 percentage

points over the SVM model shown in Table 4. Moreover, the

accuracy of self-training model also increased by 2.5 percentage

points over the SVM model. This indicates the positive influence

of semi-supervised method to our classifier.

Parameter optimization
Before the PCA-SVM model was trained to classify all test sets

containing both credible miRNA-target interactions and false

positive ones, a grid search approach was conducted to obtain

optimal parameters C and c. Result shows that the accuracy of

classification model reaches the maximum within the area C = 221

and c= 221.

Filter results
The prediction results for credible miRNA-target interactions

are given in Table S4. We input all 4999 miRNA targets

candidates into the classifier, 1942 of which were predicted to be

positive. By analyzing the results set with prediction label 1. We

found that 2573 out of 3283 candidates in OS are filtered with a

Figure 6. Leave-one-out cross-validation on four kernels. The
cross-validation approaches for different kernels were run on our
training set including 198 samples. The accuracy was used to evaluate
the performance.
doi:10.1371/journal.pone.0103181.g006

Table 3. Leave-one-out cross-validation using different negative training sets.

IS MS OS WS

Accuracy(%) 57.1 66.7 89.9 73.2

doi:10.1371/journal.pone.0103181.t003

Figure 7. ROC curves of SVM and PCA-SVM. The ROC curves of
classifiers created on 48 original features (the blue solid line) and 25
features after PCA (the red dotted line).
doi:10.1371/journal.pone.0103181.g007
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ratio of 78.4%; 411 out of 1085 candidates in MS are filtered with

a ratio of 37.9%; while only 73 out of 631 are filtered in IS with a

ratio of 11.6%. All these consequences indirectly prove that

miRNA targets predicted by single method are frequently less

credible than those identified by multiple methods.

An interactive network was formed according to the outcome of

PCA-SVM classifier in our approach. It describes credible

interactions between Arabidopsis thaliana miRNAs and targets.

A small portion of the network is shown in Figure 8. According to

the results, 4 miRNAs from ath-miR167 family and 18 miRNA-

target interactions were screened. Among them, the interaction

with AT1G30330 and AT5G37020 are positive samples in our

experiment. All these results are high quality interactions to ath-

miR167 family gained by our integrated approach.

Validation with degradome sequences
High-throughput sequencing-based methods have been widely

used to detect RNAs containing miRNA-mediated cleavage of

targets. This provides decent evidence for the prediction of

miRNA-target interactions. Data from degradome sequencing

cannot be used as training samples in our classifier. Because the

specific binding sites of each miRNA are not strictly verified by

experiments. However, they can serve as a large set of miRNA-

target interactions to verify the prediction results for our approach.

We first retrieved 1618 Arabidopsis thaliana miRNA-target

interactions supported by degradome sequencing from starBase.

Then two sets of miRNA-target interactions are predicted. One is

obtained by using three online predictors respectively, and the

other is obtained by using the combination of online predictors

and local PCA-SVM classifier. We aim to match the two sets of

miRNA target genes to those genes from degradome sequencing

experiment.

We calculated the reliability values (R-value) of the candidate

set, the final set as well as the true positive rate (TP) of the

classification filter statistically to prove the good performance

gained in our approach using the following formulas:

R{value1~
DA1\CD

DA1D
~

881

4999
~17:62%

R{value2~
DA2\CD

DA2D
~

765

1942
~39:39%

TP~
DA2\CD
DA1\CD

~
765

881
~86:83%

where R-value1 and R-value2 reflect the reliability of outcome sets

predicted by online predictors and the whole approach, TP
represents the true positive ratio of our PCA-SVM classifier; A1

and A2 denote the outcome sets from online predictors and the

whole approach, in other words, A1 represents the aforementioned

WS and A2 is a subset of A1 filtered by the PCA-SVM classifier;

C denotes the set of 1618 Arabidopsis thaliana miRNA-target

interactions data supported by degradome sequencing; DAi\CD is

the number of miRNA targets predicted which is supported by

degradome sequencing data. In order to reduce the influence of

one degradome data matching with multiple miRNA-target

Table 4. Detailed information of SVM model and PCA-SVM model.

Method Dimension AUC (%) Classification Accuracy (%)

SVM 48 94.00 88.50

PCA-SVM 24 94.40 90.50

Self-Training 48 91.00

doi:10.1371/journal.pone.0103181.t004

Figure 8. Partial interactive network of miRNA and targets. This partial network consists of 4 miRNAs from ath-miR167 family and 18 miRNA-
target interactions. Diamond and circular nodes represent miRNAs and target genes respectively. An edge represents a targeted relation.
doi:10.1371/journal.pone.0103181.g008
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interactions, we ensure that each degradome data can only

support zero or one miRNA-target interaction.

The R-value has an increasing number from 17.62% to

39.39%, almost 22 percentage points after PCA-SVM classifier

was used. For R-value2, although our classification model is

correct around 90%, it gets a value less than a half. On one hand,

there is not an entirely accurate method in the miRNA-target

interactions identification, even the degradome sequencing. On

the other hand, computational prediction tools do produce false

positive results which can be reduced, not completely removed, by

our PCA-SVM model. Assuming that all 881 miRNA-target

interactions represented by DA1\CD were real ones with clear

function in Arabidopsis thaliana, our local filter approach only

mistook 116 real targets, which represents by D(A1\C){
(A2\C)D, within the 3057 targets filtered, which represents by

DA1{A2D. The error rate of 3.79% is low enough for the prediction

approach. Meanwhile, TP proves satisfied performance of our

classification filter from another perspective with a value of

86.83%. Moreover, throwing off this assuming, some of miRNA-

target interactions from degradome sequencing experiment may

be questionable. Thus, although we cannot accurately measure it,

the sensitivity of our approach may be better than signed here.

miRNA-target interactions from the outcome of our approach

supported by degradome sequencing data have proved the perfect

performance, meanwhile, the other 1177 targets may be the

advantage of our integration approach. The experimental results

of our approach are worth of a deeper analysis and further

biological study.

Performance on other plant species
Many plant species have not been extensively studied so far.

This means that the training data set of experimentally validated

miRNA targets can be hardly found. Because of the similarity of

miRNA target interactions between different plant species, we

tend to filter miRNA-target interactions of other plant species

using the proposed model constructed on Arabidopsis thaliana
training set. The whole approach was carried out on Oryza sativa
and Vitis vinifera to prove the usability of the proposed model.

Additionally, similar validation with degradome sequences of

Oryza sativa and Vitis vinifera is conducted. TargetFinder was

adopted instead of UEA_sRNA for transcripts uploading permis-

sion. The contrast information is shown in Table 5 and detailed

results are given as Table S5, Table S6.

From the detailed information we conclude that the proposed

approach also gains good effects over Oryza sativa and Vitis
vinifera with the fact that more than half candidates filtered out

and nearly doubled R-value according to the validation with

degradome sequences. TP value over 85% proves good adapt-

ability of the PCA-SVM model used in other plant species.

Besides, our method will behave better if more experimentally

proved training samples are given.

Discussion and Conclusions

High-throughput sequencing technologies have developed

rapidly and led to massive genetic data. Many miRNAs and

miRNA targets have been identified under this circumstance.

Computational prediction methods have made great attributions

to this issue and machine learning algorithms are either developed

or introduced to face this challenge. However, existing methods of

miRNA targets prediction usually has inconsistent results and the

reliability is not ideal enough. Therefore, three widely used tools

and a PCA-SVM classifier with self-training strategy were

integrated successfully to cover as many target candidates as

possible and ensure the reliability of them at the same time. The

validation experiment with degradome sequences showed that

miRNA-target interactions predicted by proposed approach had

huge increase in credibility, and thus worth to be further studied.

PCA-SVM machine learning method with self-training strategy

was introduced in the prediction of plant miRNA-target interac-

tions for the first time and 1942 credible miRNA-target

interactions were identified for Arabidopsis thaliana. However,

machine learning methods used in the prediction of plant miRNA

targets are still immature as expected. Further work is still needed

to find more compatible methods to solve the problem of lacking

training samples.

Supporting Information

Figure S1 Detailed values of the parameters used in
online predictors.

(DOCX)

Table S1 99 Arabidopsis thaliana positives gathered
from previous studies.

(XLSX)

Table S2 Arabidopsis thaliana miRNA target candi-
dates predicted by psRNATarget, TAPIR and UEA_sRNA.

(XLSX)

Table S3 Coefficient matrix C used in our PCA analysis.

(XLSX)

Table S4 Credible Arabidopsis thaliana miRNA target
interactions gained by our classification filter.

(XLSX)

Table S5 Credible miRNA target interactions of Oryza
sativa.

(XLSX)

Table S6 Credible miRNA target interactions of Vitis
vinifera.

(XLSX)

Table 5. Contrast information between Arabidopsis thaliana and other plant species.

Species miRNAa Result1
b Result2

c R-value1 % R-value2 % TP %

Arabidopsis thaliana 338 4999 1942 17.6 39.4 86.8

Oryza sativa 708 9833 4087 10.4 20.9 83.9

Vitis vinifera 186 1372 651 18.2 33.9 88.4

aTotal number of miRNA.
bmiRNA target interactions gained by predictors.
cmiRNA target interactions predicted to be positives by PCA-SVM model.
doi:10.1371/journal.pone.0103181.t005
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