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Abstract

How does reciprocal links affect the function of real social network? Does reciprocal link and non-reciprocal link play the
same role? Previous researches haven’t displayed a clear picture to us until now according to the best of our knowledge.
Motivated by this, in this paper, we empirically study the influence of reciprocal links in two representative real datasets,
Sina Weibo and Douban. Our results demonstrate that the reciprocal links play a more important role than non-reciprocal
ones in information diffusion process. In particular, not only coverage but also the speed of the information diffusion can be
significantly enhanced by considering the reciprocal effect. We give some possible explanations from the perspectives of
network connectivity and efficiency. This work may shed some light on the in-depth understanding and application of the
reciprocal effect in directed online social networks.
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Introduction

Nowadays, the emergence of social networks and affiliated

applications have triggered an increasing attention from various

disciplines, ranging from studying the social interactions and

spreading patterns in social sciences [1] to uncovering the

underlying structure and dynamics in mathematics and physics

[2]. Generally, social networks can be classified into two typical

classes according to the edge properties: undirected and directed.

Undirected social networks, such as Flick and Okut, do not allow

two users to be connected unless the relation is mutually

confirmed, hence, they are normally regarded as equivalent

individuals in graph theory. Comparatively, directed social

networks, such as Twitter and Epinions, contain both unidirec-
tional and bidirectional links, which consequently build up a so-

called follower/followee structure [3]. An online user is considered

as a follower once he/she collects some other users as friends

(followees), and puts close attention to them via automatically

receiving their real-time information, as well as online activities

[4]. A considerable fraction of those followees would also give

positive feedback and add some of their followers with similar

interests as online neighbors. Subsequently, such intermediate

directed structure property, namely reciprocity [5], facilitates a

great deal of attention from the scientific community. Nowak and

Sigmund discussed that the indirect reciprocity would help in

building reputation systems, judging morality and eventually

promote the cooperation level [6] and benefit the evolution of

natural selection [7] in both social environment [8] and supply

networks [9]. Pereira et al. experimentally discussed that negative

reciprocity, because of lower cost and less effort, was somehow

more favored than the positive reciprocity [10]. Moreover, the

power of reciprocity [11] does not only play a vital role in social

economic systems [12] and human social organizations [13,14],

but also has been found wide applications in characterizing the

property [15,16], maintaining the structure [17], and uncovering

the underlying function of directed social networks [18,19]. Most

recently, the network reciprocity has received outstanding

attention in the realm of (co)evolutionary games [20–23] and the

evolution of cooperation [24–26].

Typically, the simplest definition of reciprocity, r, can be

quantified as the ratio of the number of bidirectional links, L<, to

the total number of links L [27] (one bidirectional link is counted

as two separate directed links),

r~
L<

L
: ð1Þ

For the extreme cases, r~0 represents an absolute directed

network where all links are unidirectional, and r~1 stands for a

complete undirected network where all links are reciprocal.

However, Garlaschelli and Loffredo [15] argued that Eq. (1)

failed to precisely describe the full network information, For

example, the network density and self-loops can significantly affect

the final measurement of mutual connections. Alternatively, they

proposed a new measure of reciprocity considering the ordering of

different networks according to their actual degree of reciprocity,

denoted as
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r~

L<

L
{�aa

1{�aa
~

r{�aa

1{�aa
, ð2Þ

where �aa~L=N(N{1) measures the ratio of observed links to all

possible directed links (namely link density). Based on this

improved measure, Zlatić et al. [16] reported that the reciprocity

of Wikipedia could be very similar to other directed networks, but

having a stronger reciprocity than the networks of associations and

dictionary terms, and smaller than that of World Wide Web.

Besides that, they found that such a measure is quite stable for

different scales of Wikipedia networks, hence is very important for

describing the structure and evolution of wiki-based networks.

Boguñá et al. [28] found that reciprocal connections played a

crucial role in constructing the giant connected component and

possibly affecting the Web navigability. Futhermore, Serrano et al.
[29] provided an in-depth study of the effect of reciprocal links on

degree-degree correlations and clustering. They found that

reciprocal links indeed organized the local subgraphs of the World

Wide Web network by forming start-like structures, as well as

cliques and communities, which contained highly interconnected

pages. What’s more, Gorka et al. [30] argued that the reciprocity

was largely dependent on degree-degree correlation, which,

consequently could partially reveal the underlying hierarchical

structure of networks. Zlatić and Štefančić [31] discussed the

influence of reciprocity on vertex degree distribution and degree

correlations. They found that networks driven by reciprocal

mechanisms are significantly different from static networks.

Recently, one revelent work tried to study the effect of

reciprocal links in artificial networks [32]. While in this paper,

we aim to provide a specific empirical study of the reciprocity

influence on the function of real social networks. In particular, we

apply a widely used epidemic spreading model [33,34] to observe

the effect of reciprocity on information spreading. Numerical

results show that reciprocal links can noticeably enhance both the

speed and coverage of information spreading compared with non-

reciprocal links. In addition, we try to explain such phenomena by

Figure 1. Out-degree(#followers) and in-degree (#followees) distributions of the two observed data sets. Most users are ordinary
beings who have relative small number of followers and keep only a small fraction of celebrities.
doi:10.1371/journal.pone.0103007.g001

Table 1. Basic statistics of the two observed data sets.

Data sets N L r �aa

Sina Weibo 10,608 71,272 0.316 6.3|10{4

Douban 12,209 35,871 0.683 2.4|10{4

N~DV D and L~DED are the total number of nodes and links, respectively, r is the network reciprocity denoted by Eq. (2), and �aa~L=N(N{1) denotes the network
sparsity.
doi:10.1371/journal.pone.0103007.t001
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studying how reciprocal links affect the structure robustness as

percolation catalysts in maintaining the global connectivity by

investigating the avalanche of giant components, the network

susceptibility and the network distance [35,36].

Data and Analysis

In this paper, we consider two representative directed social

networks (datasets are free to download as Data S1): (i) Sina
Weibo: the largest Chinese microblogging website, where a user

(follower) can add others as his/her friends (followee) and

automatically receive their posts and events. In addition, users

can forward, comment or share their followees’ news on their own

post walls; The dataset was crawled through public APIs in March

2010. We start crawling with serval popular user, iteratively

expanded to users who follow the crawled ones. (ii) Douban: the

largest Chinese website for reviewing online movies, books, and

music. Besides users’ generally proactive contribution, Douban
also provides services via its recommendation mechanism, which

can suggest items of users’ potential interests by mining their

personalized preferences. Similar with Sina Weibo, users in

Douban can also build follower-followee relationship with each

other. The data analyzed was crawled through public APIs in Aug

2010, with starting crawl member lists of several hottest discussion

Table 2. Comparisons of the average number of common followees (NCI ) and followers (NCF ) for reciprocal and non-reciprocal
node pairs, respectively.

Sina Weibo Douban

NCI NCF NCI NCF

Reciprocal 1.111 1.215 0.170 0.172

Non-reciprocal 0.664 0.616 0.093 0.089

doi:10.1371/journal.pone.0103007.t002

Figure 2. The fraction of influenced nodes as the function of the fraction of removed links f . p is transmission probability.
In each subgraph, the red and green curves correspond to results of removing reciprocal and non-reciprocal links, respectively. Compared
with removing non-reciprocal links, the fraction of influenced nodes r Idecays much faster when we remove the same amount of reciprocal
links.
doi:10.1371/journal.pone.0103007.g002
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groups, and iteratively expanded to users who follow or followed

by the crawled ones [37,38].

Consequently, such relationship can be represented by a

directed network G(V ,E), where V is the set of nodes and E is

the set of edges. Each node represents a user, and one link from

user i to user j indicates i is followed by j, that is to say, i is the

followee of j, and j is one of i’s follower. The two datasets both

contain the followship information of almost hundred thousands of

users. As previous work [39] demonstrated that 15% sampling is

usually suitable to match the properties of the real graph, for the

sake of balancing the integrity and computation complexity, we

alternatively sample one manageable size to do analysis in this

work. Table 1 summarizes the basic statistics of the largest

connected component of sampled datasets. In addition, Fig. 1

shows the out-degree (# of followers) and in-degree (# of

followees) distributions, respectively. This common feature sug-

gests that most users are ordinary beings who have relative small

number of followers and keep only a small fraction of celebrities.

Comparatively, the in-degree (# of followees) distribution of the

two datasets does not exhibit the same phenomenon, which might

suggest the different mechanisms driving the growth of two sites:

information diffusing automatically in microblogging system of

Sina Weibo, comparing with the information filtering by

recommendation-related technique in Douban. Similar difference

between passive and automatic patterns was also empirically

reported in bipartite and hypergraph networks [40,41]. In

addition, we further investigate the average number of common

follower and followees (see Table 2). Compared to non-reciprocal

node pairs, reciprocal ones tend to have more common followers

and followees, which is in accordance with previous work [19].

Methods and Results

Effect on Information Spreading
Information spreading [42] is one of the most important

functions of social networks, where the information (messages,

tweets, comments, etc.) can distribute at a remarkably fast speed

through the whole online society via frequent interactions among

users, although its structure is not designed on purpose for

spreading news [43]. Up to now, there is a considerable number of

theoretical models to study information diffusion on social

networks [44–50]. Recently, one work showed that it’s the fruitful

interaction between hubs with many connections and average

users with few friends, that make social networks are observed to

Figure 3. The fraction of influenced nodes as the function of observed time-step t, where f is the fraction of removed links and
p is transmission probability. The red and green curves correspond to results of removing reciprocal links and non-reciprocal links, respectively.
Compared with removing non-reciprocal links, the diffusion speed is also affected much remarkably when removing reciprocal links.
doi:10.1371/journal.pone.0103007.g003
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spread information quickly. [51]. While in this paper, in order to

understand the underlying mechanisms and possible factors that

would result in the information outbreaks, we adopt one variant of

the classic epidemic spreading model, Susceptive-Infected (SI)

model [33], to evaluate the effect of reciprocal links in the two

aforementioned social networks. We call this variant as Directed
Susceptive-Infected (DSI) model. The diffusion process is described

as following,

N Initially, user i publishes an information item, I, in the

corresponding social network. I could be about a piece of

news, a photo, a comment, etc;

N All i’s followers will automatically receive I according to the

follower-followee directed network structure. Then an arbitrary

fraction of those followers might notice I, and forward it on

their own homepages if they find it interesting. We consider

this forwarding willingness as the transmission probability,

denoted by p;

N The above step will be repeated to the followers of i’s followers,

and eventually diffuses to the all achievable network nodes.

Note that, the main difference between the DSI and classical SI
model is that the link direction is taken into account. In the

proposed DSI model, the information only can be transmitted

from the followee to its own followers along with the direction of

edges. Therefore, the final fraction of influenced nodes, rI , is

determined by such a structure. In order to observe the effects of

reciprocal links on information diffusion, we quantify the influence

according to an edge percolation process [36,52–54]. Obviously, if

two reciprocal link (a<b) is more important than two separate

non-reciprocal links (c/d and e/f ), the information diffusion

results will be affected significantly when we remove the same

fraction of reciprocal and non-reciprocal links. That is to say, we

seek to compare their differences via respectively removing an

arbitrary amount of reciprocal links and the same number of non-

reciprocal links (e.g., one reciprocal link is counted as two non-

reciprocal links). Fig. 2 compares the information coverage of

removing the two types of links. Compared with removing non-

reciprocal links, rI decays much faster when we remove the same

amount of reciprocal links. Analogously, it also can be seen from

Fig. 3 that the diffusion speed is affected much remarkably when

removing reciprocal links. Therefore, it demonstrates that

reciprocal links indeed play a more important role in the

information diffusion process on directed social networks.

Figure 4. The fraction of giant component size (RGSCC ) and the susceptibility (S) as the function of the fraction of removed links
(f ) on the two observed datasets, (A) Sina Weibo and (B) Douban. In each subgraph, the red and green curves correspond to the results of
reciprocal and non-reciprocal links, respectively. The size of strongly connected giant component (R GSCC ) decreases more sharply when removing
reciprocal links than deleting non-reciprocal ones. Accordingly, the network susceptibility (S) increase quicker when removing reciprocal links than
that of deleting non-reciprocal links. That is to say, reciprocal links play a more important role in maintaining the connectivity of directed networks
than non-reciprocal links.
doi:10.1371/journal.pone.0103007.g004
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Effect on Structural Robustness
As we all known, the famous weak tie theory shows that most

people found job from acquaintance but not a friend [55]. While

our results above indicate that reciprocal links (usually be strong

ties) may play more important role in promoting the spreading of

information than non-reciprocal links, which is inconsistent with

weak tie theory. Why are reciprocal links more important for

promoting the spreading of important? In conventional complex

network theory, it is wildly agreed that the network function is

largely influenced by its specific structure [56]. Therefore, to give

solid and comprehensive understanding of the aforementioned

results, we adopt the a dynamical removing process to measure the

effects of reciprocal links on maintaining the structural robustness

of networks [36]. For comparison, we apply three metrics to

quantify the corresponding performance. (i) RGSCC : the size of the

strongly connected giant component GSCC (the biggest commu-

nity within which all nodes can be reached along with the link

direction from any other node that is also in the same community).

A sudden decline of RGSCC will be observed if the network

disintegrates after deleting a certain fraction of edges; (ii) the

network susceptibility (S): defined as

S~
X

svsmax

nss
2

N
, ð3Þ

where ns is the number of components with s nodes, N is the size

of the network, and the sum runs over all the components except

the largest one (smax). Note that, different with the definition in

undirected networks, in Eq. (3), we only consider the strongly

connected component in directed networks. Considering S as the

function of the fraction of removed edges f . (iii) the average

distance SdT, calculated by

SdT~
1

N(N{1)

X

vi,jw[E,i=j

dvi,jw, ð4Þ

where dvi,jw is the distance from node i to j. dvi,jw is set to N

when there is no directed path from node i to j. Clearly, the

smaller SdT is, the better connectivity and more efficient the

network will be.

Fig. 4 and Fig. 5 show the corresponding results of the three

examined matrices. In Fig. 4, it shows different dynamical patterns

of removing reciprocal and nonreciprocal links, respectively. The

size of strongly connected giant component (RGSCC ) decreases

more sharply when removing reciprocal links than deleting non-

reciprocal ones. Accordingly, the network susceptibility (S)

increase quicker when removing reciprocal links than that of

deleting non-reciprocal links. In addition, Fig. 5 shows that the

average network distance (SdT) increases much faster when

removing reciprocal links than deleting the nonreciprocal ones.

In a word, different dynamical results indicate that reciprocal links

play a more important role in both maintaining the connectivity

and keeping the efficiency of directed networks than non-

reciprocal links. It also strongly supports the results in the previous

section that reciprocity can much promote the speed of

information diffusion, as it takes a more significant responsibility

for the robustness of directed networks. Furthermore, one

interesting question is that what kind of nodes are more likely to

have reciprocal links. Motivated by this, we calculate the

correlation coefficient between the value of k-core (treat the

network as undirected) and the proportion of reciprocal links. The

correlation coefficient is 0.176 (0.23) for Sina Weibo (Douban),

with p-value %0:05, which indicates strong positive correlation

between k-core number and proportion of reciprocal links. That’s

to say, nodes with higher probability to get reciprocal links tend to

located at the core of the network.

Figure 5. The average network distance (SdT) as the function of removed links (f ) on the two observed datasets, (left panel) Sina
Weibo and (right panel) Douban. The red and green curves correspond to the results of removing reciprocal and non-reciprocal links, respectively.
The average network distance (SdT) increases much faster when removing reciprocal links than deleting nonreciprocal ones. That is to say, reciprocal
links also play a more important role in keeping the efficiency of directed networks than non-reciprocal links.
doi:10.1371/journal.pone.0103007.g005
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Conclusion and Discussion

In this paper, we have studied the influence of reciprocal links of

directed networks from information spreading process. Experi-

mental results on two representative directed social networks, Sina
Weibo and Douban, show that reciprocal links indeed play a more

important role than non-reciprocal ones. In particular, the results

of information spreading show that reciprocity can significantly

enhance both the spreading coverage and speed. We explain those

phenomena by studying the effect of different type of links for

network robustness. The two examined datasets show that the

reciprocity is largely responsible for maintaining the connectivity

and keeping the efficiency of directed networks, which suggests its

significant impact in information spreading on networks.

The findings of this work may have a wide-range application in

studying the role and influence of reciprocal links. Firstly, the topic

of community detection has been well discussed [57], however, the

progress on directed networks [58] is relatively slow. The main

reason is that the modularity [59] of directed networks is rather

difficult to be precisely defined. Secondly, most studies on

epidemic spreading and information diffusion focus on studying

the corresponding dynamics on undirected networks, the in-depth

theoretical understanding of the underlying spreading mechanism

on directed networks still remains to be solved. Finally, the area of

information filtering confronts a huge challenge as more and more

directed social services are provided in the information era. The

present work just provides a start point to see the preliminary

effects of reciprocal links, a more comprehensive and in-depth

understanding of reciprocity still need further efforts to discover.

The findings of this work may have a wide-range application in

studying the role and influence of reciprocal links. Firstly, the topic

of community detection has been well discussed [57], however, the

progress on directed networks [58] is relatively slow. The main

reason is that the modularity [59] of directed networks is rather

difficult to be precisely defined. Secondly, most studies on

epidemic spreading and information diffusion focus on studying

the corresponding dynamics on undirected networks, the in-depth

theoretical understanding of the underlying spreading mechanism

on directed networks still remains to be solved. Finally, the area of

information filtering confronts a huge challenge as more and more

directed social services are provided in the information era. The

present work just provides a start point to see the preliminary

effects of reciprocal links, a more comprehensive and in-depth

understanding of reciprocity still need further efforts to discover.
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of networks with degree correlations and arbitrary degree sequences. Physical

Review E 77: 016106.
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