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Abstract

Measuring volatility in financial markets is a primary challenge in the theory and practice of risk management and is
essential when developing investment strategies. Although the vast literature on the topic describes many different models,
two nonparametric measurements have emerged and received wide use over the past decade: realized volatility and
absolute return volatility. The former is strongly favored in the financial sector and the latter by econophysicists. We
examine the memory and clustering features of these two methods and find that both enable strong predictions. We
compare the two in detail and find that although realized volatility has a better short-term effect that allows predictions of
near-future market behavior, absolute return volatility is easier to calculate and, as a risk indicator, has approximately the
same sensitivity as realized volatility. Our detailed empirical analysis yields valuable guidelines for both researchers and
market participants because it provides a significantly clearer comparison of the strengths and weaknesses of the two
methods.
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Introduction

In recent decades, financial markets have grown rapidly and

financial instruments have become increasingly complex. The

result is a market that is highly volatile and that produces a level of

risk that strongly affects all investment decisions [1]. The ever-

growing need for theoretical and empirical risk indicators has

driven a rapid expansion of research on price volatility in financial

markets. Since volatility is strongly linked to uncertainty, it is a key

input in many investment decisions and in overall portfolio

management. Because investors and portfolio managers must

determine what levels of risk they can bear and because volatility is

the primary risk indicator [2], reliable forecasts of market volatility

are pivotal. Thus comparing the predictive capabilities of existing

methods of quantifying market volatility can potentially produce

extremely valuable information for both market researchers and

active traders.

Financial market volatility is a quantity that is difficult to

observe. Although we can watch instrument prices and their

movement on a monitor, we cannot directly "watch" volatility.

Volatility must be approximated using calculations that draw on

such observable values as daily price changes or intraday price

changes, and these volatility calculation techniques fall into

roughly two categories: parametric methods and nonparametric

methods [3].

Parametric approaches to volatility modeling are based on

explicit functional form assumptions regarding the volatility and

include both discrete-time models and continuous-time models.

The most widely used discrete-time models are the ARCH model

[4] and stochastic volatility (SV) model. Much has been written

about the ARCH model and it has been modified into dozens of

different variations, e.g., the generalized autoregressive conditional

heteroskedasticity model (GARCH) [5]. In parallel with the

ARCH class of models, SV models are based on an autoregressive

formulation of a continuous function describing the latent volatility

process [6]. In contrast to discrete-time models, most continuous-

time models are used in the development of asset and derivative

pricing theories. They assume that the sample paths are

continuous, and they model the corresponding diffusion processes

in the form of stochastic differential equations [7].

In recent years these parametric models have become increas-

ingly restrictive and difficult to use, and there has been an

movement toward the use of flexible and computationally simple
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nonparametric measurements, two of which are widely used:

absolute return volatility and realized volatility.

The simplest measurement of instrument price volatility is

tracking the absolute return values and observing the range of day-

to-day price changes. This traditional method of volatility

modeling from daily returns measures the log-difference of closing

prices. Treating absolute returns as a proxy for volatility is the

basis of much of the modeling efforts presented in the literature

[8–10]. It has been used primarily in econometrics and

econophysics research [11–14] and, in recent years, has shown

itself to be a better measurement of volatility [15].

The second method, measuring realized volatility, summarizes

all the variances sampled at regular intra-daily intervals under

some assumptions of the quadratic variation of the underlying

diffusion process [16–18]. Realized volatility measurements, which

track the variance of price changes on an intra-day basis, have

become possible in recent years because of the increasing

availability of high frequency data. Although this volatility

measurement derived from high frequency data is more accurate

and in principle a better aid in forecasting volatility, it exhibits

numerous micro-structural problems. Price discreteness, bid-ask

bounce [19], screen fighting [20], non-trading hours, and the

irregular spacing of quotes and transactions can all bias volatility

estimates. By appropriately adjusting bias and investigating returns

standardized by realized volatility, it is found that the return

dynamics are consistent with a Gaussian stochastic process

incorporating time-varying volatility [21–24].

In this paper we compare the two most popular nonparametric

volatilities—absolute return volatility and realized volatility—and

focus on their accuracy as risk indicators, their short-term effect,

and their long-term memory. Because realized volatility reflects

intra-day variance and absolute return volatility reflects day-to-day

change, we will also determine ways in which they differ. Our

comparison will provide a clear understanding of the advantages

and disadvantages of these two measurements, and this will make

possible the development of better guidelines for both researchers

and market participants.

Results

Figure 1 shows a log-log plot of the probability density function

for (a) the absolute return volatility and (b) the realized volatility.

Notice that both become a straight line in the tails, indicating that

both volatilities follow a power-law distribution. The fat tails

indicate that the probability that the absolute return volatility or

realized volatility will be significantly large is higher than would be

indicated by a Gaussian (normal) distribution. The tails of the

Figure 1. The probability density function of absolute return volatility and realized volatility of TOPIX Core30 Index members
drawn on a log-log plot. Both of them follow power-law distribution. The slope of realized volatility is arv~4:02 a bit larger than that of absolute
return volatility aav~3:39, which indicates that realized volatility has slightly larger fat tails than absolute return volatility. For realized volatility about
1996 of the 2500 power law fitness KS tests fail to reject the null while for absolute return volatility about 1482 of the 2500 power law fitness KS tests
failed to reject the null. The results suggest that the power law distribution may fit both of them but realized volatility has better fit with power law
compared to absolute return volatility. The power law fitness KS test details may refer [30,31].
doi:10.1371/journal.pone.0102940.g001
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realized volatility are somewhat fatter than the tails of the absolute

return volatility, indicating that its fluctuations are stronger. This is

because the absolute return volatility captures only the change in

daily closing price, while the realized volatility captures data on the

basis of quotes sampled at discrete intervals throughout the day.

Note that using these two volatility calculation methods means that

a zero return will not provide useful information for a given

trading day. It also means that although a high return may signal a

high absolute return volatility during the day, it may also simply

indicate that the opening price is significantly different from the

closing price the previous day but very close to the closing price of

the same trading day, and have a small high-low spread. On the

other hand, realized volatility can capture this phenomenon

exactly and thus will offer more insights into price-change

behavior.

We next examine the ways in which the two methods of

calculating volatility differ and draw a distribution of the daily

changes in both. Figure 2 shows that the probability density of the

daily change of realized volatility (red dashes) is sharper than that

of absolute return volatility (black line) and that both distributions

exhibit positive excess kurtosis, i.e., they are leptokurtic. The

kurtosis of the daily changes for realized volatility is larger,

indicting that it is more "stable" than absolute volatility and that

there is a smaller probability it will exhibit large fluctuations. In

other words, realized volatility can usefully model the clustering

properties of volatility in which random periods of low activity are

followed by periods of high activity, a behavior often observed in

financial markets.

Note that both methods of calculating volatility allow us to

calculate and analyze fat-tail and clustering properties. In order to

understand the underlying dynamics of these two features, we

study the memory effect in both methods.

We begin by examining the short-term memory effect. Figure 3

shows the mean conditional volatility for both absolute return

volatility and realized volatility, which is the first moment of

(sAVDsAV0
) and (sRVDsRV0

), immediately after a given sAV0
or

sRV0
subset. Note that both the absolute return volatility and the

realized volatility have a short-term effect, i.e., the large sAV or

Figure 2. The distribution peak (near 0) of realized volatility changes between neighboring days P½sRV(t){sRV(t{1)� is much
sharper than of absolute return volatility changes P½sAV(t){sAV(t{1)�. The kurtosis of realized volatility is 105 which is much higher than the
kurtosis of absolute return volatility which is 61. Furthermore since we had normalized the variance of both values to 1. The differ of kurtosis are
mostly contributed by the relations between neighboring days. The result indicates that the realized volatility is much smoother than absolute return
volatility. Black curve stands for absolute return volatility of 30 TOPIX Core30 Index members while red dash curve represents realized volatility.
doi:10.1371/journal.pone.0102940.g002
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sRV tend to follow large sAV0
or sRV0

and the small sAV or sRV

tend to follow small sAV0
or sRV0

. The realized volatility has a

stronger short-term effect than the absolute return volatility,

however. The line connecting the red squares (the mean

conditional realized volatility) remains above the line connecting

the black triangles (mean conditional absolute return volatility) at

all points except at the lower left.

Figure 4 shows the probability density function of the mean

conditional absolute return volatility and the realized volatility

given the smallest 1/6th and the largest 1/6th of the whole value.

The plot shows that the two lines indicating the smallest and the

largest 1/6th portions have a repeated area, which is highlighted

in gray. The repeated area (gray area) of the absolute return

volatility is much larger than the repeated area (deep gray area) of

the realized volatility, indicating that the fluctuations of the

realized volatility are much smaller and thus easier to predict over

the short term. This supports what is shown in Fig. 3, i.e., that

realized volatility better demonstrates the short-term effect, and

supports the "clustering feathers" pattern shown in Fig. 2.

The quantities SsAVDsAV0
T and SsRVDsRV0

T and the smallest

and the largest portions of the probability density function

accurately describe the short-term memory in both methods.

The long-term memory effect in the two volatility methods is

equally important. Figure 5 shows the mean conditional volatility

of a cluster of n volatility subsets through the dataset. To obtain

good statistics we divide the sequence into two bins separated by

the median of the entire database. We indicate subsets above the

median with "+" and below with "–." Thus n consecutive "+" or

"–" subsets form a cluster. The mean of the conditional volatility of

an n-cluster reveals the memory range in the sequence. Figure 5

Figure 3. Short-term effect of realized volatility is stronger than that of absolute return volatility. Shown is the mean conditional
volatility SsAVDsAV0

T and SsRVDsRV0
T for both absolute return volatility (black triangles) and realized volatility (red squares). Compared to absolute

return volatility, realized volatility has stronger short-term effect because the red square line is above the black triangle line all the time except for the
lower left points.
doi:10.1371/journal.pone.0102940.g003
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shows that for "+" clusters the mean conditional volatilities in both

methods increase with the size of the cluster. The opposite is true

for the "–" clusters. Because we do not see a plateau of large

clusters in either method, the results indicate that there is long-

term memory in both methods. Note that when we compare these

two curves we find that for small intervals the realized volatility

(the line connecting the red squares) has a stronger memory effect

because it expands more than the absolute return volatility (the

line connecting black triangles), which is in accord with the short-

term memory behavior shown in Figs. 3 and 4. For longer

intervals, however, the slope of the absolute return volatility is

larger than the realized volatility, which indicates a stronger long-

term memory effect.

To confirm the above long-term memory effect picture, we

study the Hurst exponent for both methods. The Hurst exponent

measures the long-term memory of a time series in terms of the

autocorrelations in the time series and the rate at which they

decrease as the lag between pairs of values increases. Designated

the "index of dependence" or "index of long-range dependence,"

the Hurst exponent is an widely-accepted method of quantifying

the tendency of a time series to either regress strongly to the mean

or to cluster in a single direction [25]. A value H in the range

0:5vHv1 indicates that the time series has long-term positive

autocorrelation, i.e., that a high value in the series will probably be

followed by another high value and that the future long-term

values will also be high. Figure 6 shows the Hurst exponent for

both absolute return volatility and realized volatility. Both Hurst

exponents are in the range of 0.5 to 1, which means that both

methods have a strong autocorrelation with long-term memory

effects, i.e., the same result as shown in Fig. 5. The Hurst

exponents of realized volatility also increase as sampling interval D
decreases, but all of the values are significantly higher than those of

the absolute return volatility.

Because absolute return volatility and realized volatility are two

of the most widely used calculation methods for determining

market price fluctuations, they should exhibit strong cross

correlations. Surprisingly, when we draw the two time series

sRV and sAV for each stock, we find that the cross correlation

values between the two time series are not high, although they

appear similar, e.g., the Nintendo stock in Fig. 7(a). We also find

that the correlation coefficients of these two quantities for each

stock are very low and that the average correlation coefficient for

Figure 4. The conditional probability density for the largest and smallest 1/6th portion of the absolute return volatility (black line)
and realized volatility (blue dots). The cross-over area (gray area) of absolute return volatility is much larger than the cross-over area (dark gray
area) of realized volatility. Noted that we had normalized the variance of both values to 1, the results may mostly reflect that the neighboring days’
memory of RV and AV are significantly different.
doi:10.1371/journal.pone.0102940.g004
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the TOPIX Core30 component ^0:36. Figure 7(b) shows the time

series of the average realized volatility SsRVT and average

absolute return volatility SsAVT of all TOPIX Core30 compo-

nents. Surprisingly, we find that the correlation coefficient between

SsRVT and SsAVT is ^0:65, which is much larger than the

average correlation coefficients of the two quantities of each

separate stock. This correlation coefficient is also larger than any

of the correlation coefficients of the two quantities of each stock,

the largest of which is ^0:58.

Applying multiscale entropy (MSE) analysis [26] to the two

average volatility time series, SsRVT and SsAVT (see Fig. 8). The

method of multiscale entropy (MSE) analysis is useful for

investigating complexity in time series that have correlations at

multiple scale. MSE has been widely applied to a wide variety of

time series data to analyze the complexity and memory effect.

Figure 8 shows that at scale one the entropy for SsAVT is much

higher than entropy for SsRVT. Furthermore, the value of entropy

derived from SsRVT increases with the scale factor, while the value

of entropy derived from SsAVT decreases with the scale factor.

Discussion

In this paper we use several methods to study the clustering and

memory effects in two commonly used nonparametric methods of

calculating volatility, absolute return volatility and realized

volatility. We apply them to both intraday data and daily data

and find that both methods are good indicators of market risk

because they clearly show the fat-tail and clustering behavior of

market price fluctuations. We analyze the short-term and long-

term memory effects generated by both methods and find that

both offer good predictions of future market behavior. Realized

volatility is a better method for describing short-term effects than

absolute return volatility and thus it provides a better estimate of

near-future possible risk. When we measure the long-term

memory capabilities, the two methods are almost the same. Both

are sensitive to financial crises, as is shown in their detection of the

2008 global financial crisis. Our analytic comparison of the two

approaches will provide researchers and market traders with a

more complete understanding of their choices when using

volatility as a risk indicator.

Figure 5. Long term memory effect in volatility subset clusters. Shown is the mean conditional volatility of the absolute return volatility
(black triangles) and the realized volatility (red squares) given n consecutive values that are above (+) or below (2) the median of the entire volatility
data set. The upper part of the curves is for + clusters while the lower part is for – clusters. For the + clusters, the mean conditional volatilities for both
methods increase with the size of the cluster, behavior opposite to that for the – clusters, indicating the presence of long-term memory in both
volatility methods.
doi:10.1371/journal.pone.0102940.g005
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The realized volatility and absolute return volatility can both be

considered indicators of risk, and we do not find significant

correlations between them, but the correlations between the

average realized volatility and the average absolute return

volatility are very strong with a correlation coefficient r^0:65,

much higher than the correlation coefficient of any individual

stock. Our results indicate that the time series of realized volatility

and absolute return volatility probably exhibit similar trends. The

process of averaging can make the random noise weaker.

Additionally, taking into consideration the close relationship

between risk and volatility, we may assume that this trend is

related to systematic risk.

Finally we use multiscale entropy (MSE) to investigate the

averaged realized volatility and absolute return volatility and get

somewhat different results. The different entropy changing

patterns across different scales clearly indicate that the configu-

rations and behaviors observed when using the realized volatility

method differ from those observed when using the absolute return

volatility method.

Materials and Methods

We analyze 30 stocks comprising the TOPIX Core30 Index of

the Tokyo Stock Exchange. The time period of the data is from 3

July 2006 to 30 December 2009. Because the calculation methods

for realized volatility differ from those of absolute return volatility,

we clarify the comparison by using two different representations of

volatility. For realized volatility we utilize high-frequency minute-

to-minute data and for absolute return volatility we use the daily

closing prices.

Realized volatility
The realized volatility is a model-free estimate of volatility

constructed as a sum of squared returns. For high-frequency data,

the realized volatility sRV(t) of the t th day is constructed using a

sum of n squared intraday returns defined as

rtziD~ ln ptziD{ ln ptz(i{1)D ð1Þ

where, p represents the price and D is the sampling interval. Thus

the original realized volatility (non-normalized) can be defined

V (t)~nSr2
(tziD)T ð2Þ

where S � � � T is the daily average value. A good sampling

frequency that reduces the bias but maintains the accuracy of

the realized volatility measurement is needed if distortion caused

by microstructural noise is to be avoided. The long-memory will

decrease as D increases, but an extremely short interval D can yield

an extremely irregular and unpredictable volatility measurement.

We select a sampling frequency of five minutes as possibly yielding

the best estimate of the the realized volatility [27–29]. The daily

realized volatility can then be normalized as

sRV(t)~
V (t)

sV

, ð3Þ

where sV indicates the standard deviation of the original realized

volatility series.

Figure 6. Hurst exponents of realized volatility (squares) are significant higher than the hurst exponent of absolute return volatility
(triangles). Additionally the Hurst exponent of realized volatility increases with the decreasing of sampling interval D.
doi:10.1371/journal.pone.0102940.g006
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Figure 7. The cross correlation between average realized volatility and average absolute return volatility is much higher than cross
correlation between any separate realized volatility and absolute return volatility of each stock. (a) shows an example time series,
realized volatility SsRVT and absolute return volatility SsAVT of the stock Nintendo, and the average correlation coefficients of all TOPIX Core30
components SrT~0:36; (b) shows the average SsRVT and SsAVT time series of all TOPIX Core30 components with the correlation coefficient
between them is 0.65.
doi:10.1371/journal.pone.0102940.g007
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Absolute return volatility
In econophysics research, the daily logarithmic returns are used

to calculate the absolute return volatility. For each stock, the daily

logarithmic change Rt of price pt, commonly called the return, is

Rt~ ln pt{ ln pt{1: ð4Þ

The daily absolute return volatility is normalized as

sAV(t)~DRt{SRtT
sR

D, ð5Þ

where sR indicates the standard deviation of the return series.
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