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Abstract

A biological signal is transmitted by interactions between signaling molecules in the cell. To date, there have been extensive
studies regarding signaling pathways using numerical simulation of kinetic equations that are based on equations of
continuity and Fick’s law. To obtain a mathematical formulation of cell signaling, we propose a stability kinetic model of cell
biological signaling of a simple two-parameter model based on the kinetics of the diffusion-limiting step. In the present
model, the signaling is regulated by the binding of a cofactor, such as ATP. Non-linearity of the kinetics is given by the
diffusion fluctuation in the interaction between signaling molecules, which is different from previous works that
hypothesized autocatalytic reactions. Numerical simulations showed the presence of a critical concentration of the cofactor
beyond which the cell signaling molecule concentration is altered in a chaos-like oscillation with frequency, which is similar
to a discontinuous phase transition in physics. Notably, we found that the frequency is given by the logarithm function of
the difference of the outside cofactor concentration from the critical concentration. This implies that the outside alteration
of the cofactor concentration is transformed into the oscillatory alteration of cell inner signaling. Further, mathematical
stability kinetic analysis predicted a discontinuous dynamic phase transition in the critical state at which the cofactor
concentration is equivalent to the critical concentration. In conclusion, the present model illustrates a unique feature of cell
signaling, and the stability analysis may provide an analytical framework of the cell signaling system and a novel formulation
of biological signaling.
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Introduction

Protein interaction is essential for cellular activities such as

cytoskeleton formation [1,2], protein assembly [3], and cellular

signaling [4]. The MAPK signal pathway is an example of a

cellular signaling pathway that has been extensively studied [5–8].

A transient binding cofactor such as ATP/GTP, or phosphory-

lation of amino acid residues, controls signaling molecule

interactions and the subsequent modification of signaling mole-

cules. Resulting reaction cascades operate to transmit cellular

signals [6]. In cell signaling, oscillation has been reported in many

studies, with circadian rhythms being a well-known example [9].

Calcium ion signaling oscillation is another well-known phenom-

enon [10]. Mathematical models have been proposed to explain

signaling kinetic behaviors based on a set of kinetic equations.

Systems biology approaches have also been developed in recent

years [1,2,11].

Systems biology can describe the kinetics of a signal pathway

usingsimultaneousequations of a complex reaction network. On

the other hand, there are other types of models consisting of many

simultaneous reaction rate equations, including more than ten

variables [12,13]; furthermore, systems biology models including

more variables are also known [14]. Signaling networks frequently

include non-linear reaction autocatalytic processes. To date, there

have been many fascinating models of such autocatalytic reactions,

enabling bifurcation and/or bi-stability in association with

physical theory [5,15]. However, autocatalytic models or positive

feedback are not necessarily applicable to all biological signaling

pathways.

In the current study, to understand biological signaling

pathways, we used the following three novel perspectives (A)–(C)

based on a non-linear and non-equilibrium kinetic model, which

included only two concentrations of the signaling molecule to

describe the biological signaling pathway. (A) An equation of the

continuity of the chemical concentration of ci (i = 1…., n)

including chemical reaction items can be described using diffusion

coefficients Di, kinetic coefficients ki, and concentrations of

individual compounds ci as follows:

dci

dt
~Di+2ciz

Xn

i~1

kiciz
Xn

i~1,j~1

kicicjz � � � ð1:1Þ

In the above formula, the diffusion rate is hypothesized to obey

Fick’s law. In general, the diffusion items and chemical reaction

items are thus separately described. On the other hand, because

the biological signaling pathway network, including protein
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interactions, is limited by the slow diffusion rate of the signaling

molecular proteins, kinetic coefficients generally depend on the

diffusion coefficient. Therefore, diffusion items and reaction items

cannot necessarily be separated without validation in the biological

reaction. In the current model, we therefore described kinetic

coefficients in a diffusion-coefficient-dependent manner.

(B) A feedback process due to non-linear self-catalytic reactions

was not assumed in the current model, but instead, interactions

between signaling molecules in their diffusion was assumed to give

non-linearity to the model.

(C) A model system far from equilibrium due to a continuous

supply of chemicals from the outside was hypothesized. The main

issue is how minimal extracellular changes can be transformed into

intracellular environmental changes. We aimed to evaluate the

behavior of the model around the critical state by perturbation

expansion using a minimal change of the supplied molecule

concentration. By this mathematical evaluation, we aimed to

illustrate the dynamic continuous oscillatory concentration change

of signaling molecules from a static state.

In the current study, we constructed a novel model and aimed

to evaluate the general intrinsic properties underlying cellular

signaling based on signaling molecule interaction kinetics. Previous

systems biology models have not necessarily focused on the

diffusion process of proteins. Given the non-linearity during

diffusion, we assumed kinetic instability of the signaling molecule

interaction, and the sensitivity of the cell signaling in response to

the environmental change was evaluated. The model system

consists of several steps as follows: (i) the signaling molecule

achieves an interaction active state by reversibly binding a cofactor

that provides the signaling molecule with interaction activity; (ii)

the signaling molecule has the ability to hydrolyze the cofactor; (iii)

the signaling molecule interaction activity becomes lower when

binding a hydrolyzed inactive cofactor compared to the signaling

molecule binding an active cofactor; (iv) the signaling molecule has

the ability to exchange the inactive cofactor with an active one; (v)

active cofactors are supplied continuously from the outside. Thus,

we set the interaction activity to be self-limiting, causing dynamic

instability of the signaling molecule interaction. In the present

model, we assumed that a signaling protein diffuses relatively

slowly in the cytoplasm, and the whole signal transduction is a

diffusion-limited reaction (assumption A.1). Following the protein

interaction, one of the signaling molecules is phosphorylated or is

bound to a cofactor such as GTP or ATP. In the kinetics of the

protein interaction, fluctuation analysis was not fully performed in

spite of the greater fluctuation in concentration relative to the

solution of small molecules. Furthermore, we systematically

analyzed the roles of the fluctuation in cellular signaling.

Materials and Methods

Numerical simulation
Numerical calculations were performed using Mathematica 8

(Wolfram Research, Inc., Champaign, IL).

Results

Protein interaction kinetics
The model scheme is shown in Figure 1. There are two types of

signaling molecule, an active cofactor-binding signaling molecule

(X), and an inactive cofactor-binding signaling molecule (Z). An

active cofactor is non-hydrolyzed, and the inactive cofactor is the

hydrolyzed type. X has the higher interactive activity and Z has the

lower interactive activity. First, X can associate with oligomeric

enzyme complex R consisting of X and Z, which transforms the

active form X into the inactive form Z by hydrolysis of the binding

cofactor and is to be released as Z irreversibly:

XzR /? R (?k1;/k{1, kinetic coefficient)

R?ZzR (k2) ð2:1Þ

In the above formula, we assumed that signaling proteins diffuse

relatively slowly in the cytoplasm and that the dissociation rate

(relating to the irreversible orientation k21) of an encountering

pair X and Z is significantly slower than the hydrolysis rate of the

active cofactor changing into inactive cofactor (relating to k2)

(assumption 2; A.2). On a simple consideration of the diffusion

limited step, when the kinetic rate can be described according to

Fick’s law using diffusion coefficients DX and DZ of X and Z,

respectively:

k1~4p DX zDZð Þ=2 ð2:2Þ

Next, Z recovers its interaction activity by exchange active

cofactor P into inactive cofactor P’, returning to X (Figure 1).

ZzP?XzP0 k3ð Þ ð2:3Þ

Signaling molecules have the potential to hydrolyze the cofactor

by interacting with identical species:

XzX?XzZ k4ð Þ ð2:4Þ

XzZ?2Z k5ð Þ ð2:5Þ

In (2.4) and (2.5), likewise in (1.2):

k4~4pDX ð2:6Þ

k5~4p DX zDZð Þ=2 ð2:7Þ

Kinetic equations of interaction signaling molecules
Here, kinetic equations were set according to the above simple

reaction cascade. The equations consist of protein interactive items

and an item of small-molecule-cofactor exchange. When the

concentration of the protein is sufficiently small, the dependency of

the diffusion coefficient on the concentration is linear [11,13–18].

In comparison with the exchange kinetic rate of the cofactor (2.3),

the rate of macromolecular protein interaction that depends on

the diffusion step can be regarded as significantly smaller ((1.1),

(2.4), & (2.5)) as a general (assumption 1; A.1). In this case, the

whole reaction system can be regarded as diffusion-limited

[4,19,20], and the diffusion rate is given according to Fick’s law

using a gradient of concentration. Thus, we get the protein

interaction kinetics equations using the diffusion coefficient:

Bifurcation of Signaling Molecule Fluctuation
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_XX~{k1RXzk3PZ{k4X 2{k5XZ ð2:8Þ

Here, the exchange rate of the cofactor is expressed by the item

k3 ’ PZ. Further,

_ZZ~k2Rzk3PZzk4X 2zk5XZ ð2:9Þ

Because kinetic coefficients depend on diffusion coefficients, we

set:

k1:D1!
DX zDR

2

p:k3
0P

k4:D4!DX

k5:D5!
DX zDZ

2
ð2:10Þ

Using (2.10), (2.8) and (2.9) are rewritten as follows:

_XX~{D1RXzpZ{D4X 2{D5XZ ð2:11Þ

_ZZ~k2RzpZzD4X 2zD5XZ ð2:12Þ

Here we set the oligomer concentration as constant because

de novo asssembly is considered to be much slower than monomer

interaction at the steady state (assumption 3; A.3):

_RR~D1RXe{k2R~0 ð2:13Þ

Here, a small letter affixed signifies values at the steady state.

This assumption is based upon on the steady state in the protein

assembly [21–24].

Figure 1. Scheme of signaling molecule interaction. Individual globules or oblongs represent signaling molecules X, Y, Z, and receptor R.
Kinetic coefficients are shown next to the arrows. Outside and inside signify the outside and the inside of the cell, respectively.
doi:10.1371/journal.pone.0102911.g001
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Setting the right hand sides of Eqs. (2.11) and (2.12) gives:

Xe~
k2

D1
, Ze~

k2

D1

D1
2Rzk2D4

D1p{k2D5

� �
ð2:14Þ

Fluctuation of diffusion coefficient
Subsequently, let us consider the fluctuation of participant

proteins. We set:

X~Xezx, Z~Zezz ð3:1Þ

In actuality, receptor R interacts with other proteins, X and Z,

in the course of diffusion (Figure 1). In actual signaling pathways,

signaling molecules associate with other signaling molecules and

phosphorylate them or are phosphorylated by them. The diffusion

coefficients can be altered in proportion to the signaling molecule

concentration. By using the Gibbs-Duhem expression, the

diffusion coefficient D of one macromolecule in the solution can

be generally written as [13]:

D~
kBT

g
1{NAnc=Mð Þ 1z2AMcz � � �ð Þ ð3:2Þ

where T is the temperature of the solution, kB is the Boltzmann

constant, and g is the frictional coefficient of a given macromol-

ecule in solution. A is the second virial coefficient, v is the partial

specific volume of protein with molecular weight M, and NA is

Avogadro’s number. The small letter c denotes the concentration

of the solute.

Further, we hypothesized that DR, DX, and DZ, the diffusion

coefficients of R, X and Z, are given by extension of (3.2) to the

mix solution of two macromolecules, X and Z:

DX (X ,Z)~

kBT

gX

1{
NAvX

MR

X{
NAvZ

MZ

Z

� �
1z2AX MX Xz2AZMX Xz � � �ð Þ

DZ(X ,Z)~

kBT

gZ

1{
NAvX

0

MX

X{
NRvZ

0

MZ

Z

� �
1z2AX

0MX Xz2AZ
0MX Xz � � �ð Þ

DR(X ,Z)~

kBT

gR

1{
NAvX

00

MX

X{
NRvZ

00

MZ

Z

� �
1z2AX

00MX Xz2AZ
00MX Xz � � �ð Þ

ð3:3Þ

where vX and vZ are the partial specific volumes of X and Z with

molecular weights MX and MZ, respectively. AX AX’, AX’’, AZ, AZ’,
and AZ’’ are the second virial coefficients. In actuality, X and Z are

the same molecules except with bound ATP or ADP. The

fluctuation of the diffusion coefficient is given by:

dD1!d
DX zDR

2

� �
~

L
LX

DX zDR

2

� �
x

z
L

LZ

DX zDR

2

� �
z

ð3:4Þ

And therefore, we set:

dD1:ax{bz ð3:5Þ

Here, an increase in X contributes to a decrease in diffusion

coefficient D1 in thefluctuation item, ax (a.0), because of the

higher interaction activity that reducesdiffusion; in contrast,

increased Z contributes to increases in the diffusion coefficient

D1 in the fluctuation item bz (b.0).

Likewise in (4.5),

dD4:cx{dz (c,dw0)

dD5:ex{fz (e,f w0)
ð3:6Þ

Using (3.5) and (3.6), Eqs. (2.5) and (2.7) give the fluctuation

kinetic equations:

_xx~{ R(D1{aXe)z2D4XezD5Zef gx

z(Ra{D4z2cXzeZ)x2

z(p{bXe{D5Xe{dX 2{fXeZe)z

{(D5zRb{eXezfeZe)xz{fXez2

ð3:7Þ

_zz~(2D4XezD5Ze{cX 2{eXeZe)xz(D4{2cX{eZ)x2

z(D5XezdX 2zfXeZe{p)z

z(D5z2Xed{eXezfeZe)xzzfXez2

ð3:8Þ

Further, using matrix formulation,

_xx

_zz

" #
~L

x

z

" #
z

(Ra{D4z2cXzeZ)x2{(D5zRb{eXezfeZe)xz{fXez2

(D4{2cX{eZ)x2z(D5z2Xed{eXezfeZe)xzzfXez2

" #ð3:9Þ

Here,

L:

{R(D1{aXe){2D4Xe{D5Ze p{bXe{D5Xe{dX 2{fXeZe

2D4XezD5Ze{cX 2{eXeZe D5XezdX 2zfXeZe{p

" #ð3:10Þ

Calculus simulation of concentration oscillation
The time-course of the signaling molecule concentrations was

simulated via the substitution of appropriate numerical values into

(3.9). A numerical calculation was performed over a sufficiently

long period to evaluate the trend of signaling protein behavior. In

the current simulation, the fluctuation coefficients a, b, c, d, e, and

f, of D1, D4, and D5 are of the same order of magnitude, 102

(100,856). The concentrations of X and Z at the steady state are

given by Eq. (2.14). On the basis of A.3, D1, the diffusion

coefficient of the assembling rate of X to R, is significantly smaller

than D4 and D5, which are diffusion coefficients of the assembling

rate between X and X, and X and Z. Applying the above

conditions, the simulation results are shown in Figure 2. When p
increases to the values that satisfy:

(3.3)

(3.10)

Bifurcation of Signaling Molecule Fluctuation
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Figure 2. Time-course of the fluctuation of the signaling molecules displays a chaos-like oscillation. Diffusion of active cofactor binding
signaling molecule (X) and of inactive cofactor binding signaling molecule (Z). The Appendix S1 presents the simulation parameters, with the notation
of Eqs. (3.9). p is (a) 0.795, (b) 0.81, (c) 0.84, (d) 0.88, (e) 0.96, (f) 1.00, (g) 1.12, and (h) 1.16. The upper graph shows two parametric plots of X, and Z.
Red, and blue lines in the lower graph represent the concentrations of X, and Z, respectively. The horizontal axis represents time (0 # t # 200) and the
vertical axis represents the concentrations of X, and Z, respectively. When p exceeds 0.80, chaos-like oscillation is observed. Mathematica cord when
p = 0.795 (a) is shown below. Below is the simulation program when p = 1.0253:
D1= 0.28
k2= 0.00034580
a= 800
b= 656
c= 100
d= 100
e= 100
f= 100
p= 1.0253
D4= 156
D5= 156
R= 1
X=k2/D1
Z=(k2 (D1‘2 R+ D4 k2))/(D1 (D1 p - D5 k2))
NDSolve[{Derivative[1][x][t]= =-(R (D1 - a X) +2 X D4+ D5 Z) x[t] + (R a - D4+2 c X + e Z) x[t]‘2+ (p - D5 X - b X - d X‘2 - f X

Bifurcation of Signaling Molecule Fluctuation
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p&0:8~pc, ð4:1Þ

the concentration of the signaling molecules continuously oscil-

lates, showing nearly equivalent frequency and amplitude at

oscillatory individual peaks, except for at the initial phase.

Subsequently, we evaluated the mean amplitude and frequency

of the fluctuation oscillation. From t = 50, around when the

oscillation initiates, to t = 1000, the mean amplitude was calculated

as the division of the sum of each size of the peak by the number of

peaks. In addition, the frequency was estimated by dividing the

number of the peak by Dt = 950.

Notably, the present simulation shows that both frequency and

amplitude are nearly proportional to the logarithm of e= p2pc

(Figure 3). Namely,

vf w! log e ð4:2Þ

These formulae imply that the outside alteration is transformed

inside into the information of cell signaling. On the basis of the

above simulation results, the present signaling model system is

characterized by:

I~log2"

(5 -

Figure 3. Plot of the mean amplitude and frequency. The frequency of the oscillation of fluctuation x is plotted in reference to the numerical
calculation from e= 0 to 0.25. The line is the result of regression analysis on logarithm function. The correlation coefficient is shown in the plot.
doi:10.1371/journal.pone.0102911.g003

Z) z[t] - (D5+ R b - e X + f Z) x[t] z[t] - (f X) z[t]‘2, Derivative[1][z][t]= =(2 X D4+ D5 Z - c X‘2 - e X Z) x[t] + (D4–2 c X -
e Z) x[t]‘2+ (D5+2 X d - e X + f Z) x[t] z[t] + (D5 X - p + d X‘2+ f X Z) z[t], x[0]= = 1.’*‘-6, z[0]= = 1.’*‘-6}, {x, z}, {t,
0, 30000}, MaxSteps -.50000]
g001=Plot[{X + x[t]}/. %, {t, 0, 200}, PlotRange -. All,

PlotStyle -. {RGBColor[1, 0, 0]}, PlotRange -. ALL]
g003=Plot[{Z + z[t]}/. %%, {t, 0, 200}, PlotRange -. All,

PlotStyle -. {RGBColor[0, 0, 1]}, PlotRange -. All]
g004=ParametricPlot[Evaluate[{X + x[t], Z + z[t]}/. %%%], {t, 0, 2000},

PlotRange -. All, AxesLabel -. {"X", "Z"}]
Show [g001, g003, AxesLabel -. {"t", "X, Z"}]
doi:10.1371/journal.pone.0102911.g002
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Evaluation of the stability of the model around the
equilibrium state

For mathematical analysis of stability around the critical point,

Eq. (3.9) (4.10) was formulated. When p is equivalent to pc = 0.8,

the matrix for (x, z) is given by Lc in (3.10):

Lc:

{ R(D1{aXe)z2D4XezD5Zef g (pc{bXe{D5Xe{dX 2{fXeZe)

(2D4XezD5Ze{cX 2{eXeZe) (D5XezdX 2zfXeZe{pc)

" #ð5:1Þ

Using the eigenvectors of L, (l1, l2), coordinate transformation is

performed as follows:

_XX

_ZZ

" #
~ l1 l2½ �

_uu

_vv

� �
ð6:2Þ

_uu

_vv

� �
~ l1 l2½ �{1

_XX

_ZZ

" #
ð6:3Þ

The above parameters are subsequently set as:

_uu~fu(u,v)

_vv~fv(u,v)
ð6:4Þ

Further u is given by:

u~h(",v)

~a1v2za2v"za3"
2za4v3za5v2"za6v"2za7"

3zO(4)
ð6:5Þ

Therefore, using

_uu~
Lh(",v)

Lv
_vvz

Lh(",v)

L"
_""~ 2a1vza2"ð Þfu(u,v), ð6:6Þ

we can then obtain using (6.5) and (6.6):

2a1vza2"ð Þfu(u,v)

~a1v2za2v"za3"
2za4v3za5v2"za6v"2za7"

3zO(4)
ð6:7Þ

Solving the above (6.7), the coefficients of ai in (6.5) are given (see

Appendix S1: mathematica cord [#55–70]). By substitution of u
that is given by n and e into fv (u,v) in (6.4), we can obtain the

kinetic stability equation of fluctuation n using coefficients ni (i = 1,

2, 3, 4, 5, 6) as follows (See Appendix S1, Out [#73] in the

mathematica cord):

_vv~n1v2zn2"vzn3"
2vzn4v2zn5"v

2zn6v3zO(4) ð6:8Þ

To evaluate the amplitude of fluctuation, setting the right hand

equal to zero,

Figure 4. Scheme of the transformation of outside information into the intracellular signaling oscillation. The scheme illustrates the
bifurcation of the fluctuation with respect to the increase in p.
doi:10.1371/journal.pone.0102911.g004
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n1v2zn2v"zn3"
2vzn4v2zn5"v

2zn6v3zO(4)~0 ð6:9Þ

As a result, when e,7.061024, Eq. (6.9) has two real number

solutions of v other than zero, indicating the bi-stability of the

fluctuation v; when e$7.061024 (6.9), it has only the zero solution

of the fluctuation (See Appendix S1; mathematica cord Out

[#74]). Therefore, a bifurcation of the fluctuation with respect to

the value of e is predicted (Figure 4). Because v is simply given by

the linear equation (6.3), this directly demonstrates the amplitude

bifurcation of x and z.

Discussion

Here, we presented a model of cell signaling systems and

performed mathematical analysis on the model in addition to

numerical simulations. An increase in the supply of the cofactor

near the critical concentration induces a ‘phase transition’ of the

system, indicating that the model system has the ability to

transform information on the concentration change of a cofactor

outside the system into inside information, i.e., the amplitude or

frequency of the concentration oscillation of the signaling molecule.

This term, ‘phase transition’, is a metaphor implying that the model

system nearly discontinuously acquires the ability to dynamically

transform outside information into inside information.

The introduced non-linear kinetic equations include only two

independent parameters, the active or inactive cofactor binding

protein. The observed oscillation of signaling molecules in the

simulation is not a chaotic behavior that requires more than two

parameters [25]. However, the fluctuation of the signaling

molecule concentration shows chaos-like oscillatory behavior. In

fact, neither the amplitude nor frequency of every oscillation is

precisely constant for a lengthy period as shown in the trajectory.

We will report mathematical validation of the result elsewhere. We

will report mathematical validation of the result elsewhere.

The simulation allowed us to define the formula (5.3) mentioned

above. The formula using the logarithmic function brings to light

an important idea. The present simple model illustrates an

essential property in which a system is relatively stable to the

outside environment, because a minimal increase in the concen-

tration of the cofactor is transformed into the logarithm of the

concentration change inside the cell system. These features may be

crucial in responding to transformations of the outside environ-

ment while minimizing the inside influence caused by outside

alteration. Further, the present simple formulation is reminiscent

of the definition of entropy in informatics. In conclusion, our

model indicates that the non-linearity of a protein interaction

theoretically gives an interesting cohesive behavior, such as an

oscillation, of the signaling system leading to self-organization

in vivo. Still, the theoretical basis of cell signaling systems for

quantitative evaluation requires further formulation on the basis of

experimental study.

Supporting Information

Appendix S1

(DOCX)
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