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Abstract

We introduce and analyze a within-host dynamical model of the coevolution between rapidly mutating pathogens and the
adaptive immune response. Pathogen mutation and a homeostatic constraint on lymphocytes both play a role in allowing
the development of chronic infection, rather than quick pathogen clearance. The dynamics of these chronic infections
display emergent structure, including branching patterns corresponding to asexual pathogen speciation, which is
fundamentally driven by the coevolutionary interaction. Over time, continued branching creates an increasingly fragile
immune system, and leads to the eventual catastrophic loss of immune control.

Citation: Schlesinger KJ, Stromberg SP, Carlson JM (2014) Coevolutionary Immune System Dynamics Driving Pathogen Speciation. PLoS ONE 9(7): e102821.
doi:10.1371/journal.pone.0102821

Editor: Rachel J. Whitaker, University of Illinois, Urbana-Champaign, United States of America

Received December 18, 2013; Accepted June 24, 2014; Published July 23, 2014

Copyright: � 2014 Schlesinger et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This material is based upon work supported by the David and Lucile Packard Foundation (http://www.packard.org), the Office of Naval Research
(http://www.onr.navy.mil) MURI grants N000140810747 and 0001408WR20242, the Institute for Collaborative Biotechnologies (http://icb.ucsb.edu) through

earch Fellowship Program
under Grant No. DGE-1144085. The content of the information does not necessarily reflect the position or the policy of the government, and no official 

ation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* Email: kschlesi@physics.ucsb.edu

Introduction

The immune system is a complex adaptive system whose

richness makes it an excellent model for nonlinear dynamics and

biological complexity. From the basic physical and chemical

interactions between foreign substances and the body’s repertoire

of lymphocytes, an array of complex system-wide behaviors can

arise as the immune system works to recognize and eliminate

harmful pathogens [1]. The development of immune system

models has helped to identify mechanisms that underlie many of

these emergent behaviors (e.g. [2–9]).

The adaptive immune system of vertebrates has the remarkable

ability to discriminate between self and non-self agents in the body,

and to remove the foreign threats when recognized. The system

consists of a complex array of lymphocytes, or white blood cells,

which are able to recognize foreign agents with the high binding

specificity of their receptors. These receptors are assembled

randomly from gene segments in the bone marrow, and those

that bind to the body’s own cells are negatively selected as the

lymphocytes mature in the thymus. The population of mature cells

in the lymph nodes then has a diverse collection of specifically

shaped receptors that can bind with high affinity to complemen-

tary peptide sequences, called epitopes, on many possible types of

foreign antigen [1]. During an infection, lymphocytes that

successfully bind with antigen rapidly proliferate to build an

immune response that specifically targets the bound antigen for

clearance.

During the course of an infection, mutations that alter the

shape, charge, or hydrophobicity of epitopes can impair continued

recognition of the infection by the initially stimulated lymphocytes

[10,11]. Some rapidly mutating pathogens, most notably HIV, use

this strategy to avoid clearance by the initial immune response and

develop into a chronic infection [1,3,12]. The adaptive immune

system must then continuously adapt to control new mutant

pathogen strains. This control can be aided by cross-reactivity:

lymphocytes that bind strongly to one epitope can also bind with

lower affinity to similarly shaped epitopes [13,14]. Thus, a mutant

with similar binding characteristics to the originally recognized

epitope can be partially controlled by the existing immune

response until a more specific response is stimulated [3,15].

However, competition between lymphocytes, which during an

infection swell to densities above the ideal homeostatic level, can

also impair the overall immune response [6]. These dynamics of

pathogen mutation and lymphocyte adaptation can be important

in determining the eventual outcome of an infection.

In this paper, we introduce a new model of this coevolution

between the adaptive immune response and mutating pathogens.

The model abstracts the chemical and molecular details of the

binding interaction, while retaining important features that affect

infection dynamics. We account for cross-reactivity by represent-

ing these populations on a phenotypic shape space, in which the

distance separating a pathogen and lymphocyte pair maps to a

particular binding affinity (in general, larger distances give lower

affinities). This method has been used in theoretical studies of

immune system characteristics and behaviors affected by cross-

reactivity, such as clonal repertoire size, self-nonself discrimination

[16], and immunosenescence [17]. We focus on the characteristics

of T-cells, lymphocytes that form the primary response to certain

rapidly mutating viruses such as HIV [18].

In a rapidly mutating infection, the interactions we model give

rise to complex dynamics. We observe several qualitatively

different possible outcomes of infection, including early pathogen

clearance, early pathogen escape, and the development of a long-

lasting chronic infection. We also show the emergence of complex
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structure from the dynamics of a single chronic infection, including

branching patterns in the pathogen population (Fig. 1). In this

evolutionary branching a unimodal phenotypic distribution of

pathogens splits into two distinct and independently evolving

clusters [19]. This is analogous to asexual symptaric speciation

[20] and arises naturally from the coevolutionary interaction

between pathogens and T-cells. Although this speciation initially

occurs while the infection is well-controlled, the numbers of

lymphocytes needed to control the increasing number of distinct

pathogen strains eventually exceeds the homeostatic constraints.

This results in a sudden breakdown of immune control and a

dramatic pathogenic escape, also visible in Fig. 1.

Methods

To capture binding region diversity in the pathogen and T-cell

populations, we describe them as densities denoted by P(~xx,t) and

L(~yy,t) respectively [14,17]. The vectors ~xx and ~yy denote positions

in a shape space of phenotypes which determine the binding

affinity c(~xx,~yy) between pathogens and T-cells [16]. There is

maximal binding complementarity when~xx~~yy, and monotonically

decreasing affinity with increasing distance D~xx{~yyD between T-cell

and pathogen. Following previous theoretical work [14,17,21], we

take this decay to be Gaussian:

c(~xx,~yy)~ exp {
D~xx{~yyD2

2b2

� �
: ð1Þ

The parameter b sets the specificity of antigen recognition and

thus the length scale of the space. We do not consider the

possibility of multiple epitopes, but identify each pathogen with a

single shape space location.

The binding affinity mediates all interactions between patho-

gens and T-cells. The stimulation of T-cells by pathogens is

modeled as a saturating function [22] of pathogen density and

proximity in shape space, a multiplicative factor ranging from zero

to one:

Psat(~yy, t) ~

Ð
c(~xx,~yy)P(~xx,t)d~xx

kz
Ð

c(~xx,~yy)P(~xx,t)d~xx
[½0, 1�: ð2Þ

There can be equivalent stimulation from low-density but high-

affinity, high-density but low-affinity, or a combination of such

pathogen distributions. If Psat(~yy, t) is high, T-cells at ~yy are

stimulated to divide and their decay is suppressed, generating an

immune response.

The killing of pathogens by T-cells is also a function of the

affinity: the total killing rate of P(~xx,t) is proportional to the

effectivity,

V(~xx,t)~

ð
c(~xx,~yy)L(~yy,t)d~yy, ð3Þ

a measure of the quality of an immune response [14].

The following coupled differential equations describe pathogen

and T-cell dynamics:

dL(~yy,t)

dt
~ Czj 1{

Ltot(t)

R

� �
L(~yy,t)zsPsat(~yy,t)L(~yy,t)

{d 1{Psat(~yy,t)½ �L(~yy,t);

ð4Þ

dP(~xx, t)

dt
~ 1{

Ptot(t)

w

� � ð
l(~xx0)P(~xx0,t)Q(~xx0,~xx)d~xx0

{bP(~xx,t)V(~xx,t):

ð5Þ

The first term of Eq. (4) represents a constant influx C of naı̈ve

T-cells from the bone marrow or thymus. The second term,

describing logistic growth, accounts for homeostatic competition

between all T-cells [23,24], independent of binding characteristics.

This allows proliferation under lymphopenic conditions, and

decay when the total T-cell density Ltot(t)~L(~yy,t)d~yy is above the

carrying capacity R, as is usually the case during response to an

infection. The third term of Eq. (4) describes T-cell proliferation in

response to stimulation by pathogens; this occurs at rate

s|Psat(~yy,t), which falls between 0 and s depending on the

pathogen population surrounding ~yy. T-cells turn over at rate d
(fourth term of Eq. (4)), but in activated T-cells this turnover is

suppressed by the factor of (1{Psat).

Figure 1. Coevolving shape space distributions of pathogen
and T-cell populations over 900 days of infection. The infection
shown is an example of a stochastic mutating infection. Inset A (days 0–
50) highlights the early periodic bursts of pathogen mutation which
lead to chronic infection rather than clearance, driven by peaks in
pathogen density which are subsequently controlled by the immune
response. Insets B and C (days 50–500) provide a closer look at the
chronic phase, which exhibits wave-like pathogen dynamics, pathogen
speciation driven by the interaction with the immune response, and a
resulting branch in T-cells, which is caused by selection alone. Following
more branching, increased homeostatic pressure on the T-cells leads to
the pathogens’ dramatic escape from immune control (around day
870), marked by sudden rapid proliferation and unchecked diffusion
throughout shape space. In this simulation, l~3:3 day{1, b~10 sites,

C~ 4 (ml:site day): {1, j~2:3|10  day{3 {1, d~0:35 day{1, and all

doi:10.1371/journal.pone.0102821.g001
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In the absence of immune response (i.e. V~0), Eq. (5) describes

pathogens proliferating at rate l(~xx). We account for a fitness

landscape for the pathogens (independent of immune pressure) by

making this rate a function of ~xx. Since all pathogens compete for

the same resources, we include a logistic factor in the first term of

Eq. (5), limiting growth of any individual strain as the total

pathogen density Ptot(t) ~ P(~xx,t)d~xx approaches a capacity w.

We incorporate mutation into the logistic growth law of Eq. (5)

with a mutation kernel Q [3]. The matrix element Q(~xx,~xx0) gives

the mutation rate of a pathogen from shape space location ~xx to

location~xx0, as a fraction of the replication rate l(~xx). This mutation

conserves pathogen number:

ð
Q(~xx,~xx0)d~xx0~1,V~xx: ð6Þ

In this study, we choose a decaying kernel, so that the mutation

rate between two different sites falls off as distance between the

sites increases:

Q(~xx,~xx0)~
2

p

� �1
2
xD~xx{~xx0D{2,V~xx=~xx0: ð7Þ

Mutations to nearby sites are thus much more likely than long-

distance ones, but long-distance mutations still occur at a non-

negligible rate, due to the possibility that a single amino acid

substitution may substantially change the charge or hydrophobic-

ity of an entire binding region. Finally, for our simulation lattice of

n sites, we choose x so that the total fraction of pathogen at~xx that

mutates to any different site ~xx0=~xx sums to the overall pathogen

mutation rate m:

X
~xx0=~xx

Q(~xx,~xx0)~m,V~xx: ð8Þ

In order to understand the roles of particular parameters in the

outcome of these infections, we represent the process as

deterministic. We can also extend this to a stochastic model by

shuffling the kernel, generating new set of rates Q(~xx,~xx0) at regular

intervals of 0.1 days. To do this, we draw a rate for each ~xx=~xx0

from a folded normal distribution with standard deviation

xD~xx{~xx0D{2, and set the rates for ~xx~~xx0 to satisfy Eq. (6). The

series of kernels generated has a time average equal to the original

kernel. Although in this study we focus mainly on the deterministic

model, we include some results of this stochastic generalization,

which are explicitly noted when presented.

Our simulations are performed on a one-dimensional lattice

with n~400 sites. We hold pathogen fitness l(~xx) constant across

shape space, except at the edges of the lattice where it converges to

zero to prevent edge effects. The population density at any site is

automatically set to zero upon falling below a threshold of 1 to

prevent unrealistic dynamics resulting from arbitrarily low

densities. Parameter values are provided in Table 1; further

information about the estimation of these parameters is provided

in Appendix S1.

Results

Before it is inoculated with pathogens, the immune system is at

rest at homeostatic equilibrium. The corresponding steady-state

solution with no pathogens in the system is a uniform distribution

of T-cells across shape space, which models well the random

distribution of naı̈ve cells before exposure to infection:

P�(~xx)~0,V~xx;

L�(~yy)~
R

2n
1{

d

j

� �
z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{

d

j

� �2

z
4nC

Rj

s2
4

3
5,V~yy:

ð9Þ

We choose the carrying capacity R to equal the total

equilibrium population of T-cells (R~n|L�(~yy)). This results in

the simpler steady-state solution which we use for our initial

condition:

P�(~xx)~0,V~xx; L�(~yy)~
C

d
,V~yy: ð10Þ

This pathogen solution is not stable, but we assume that a

scenario with no pathogens in the system exists before inoculation.

During an infection, the presence in our model of a threshold

population density below which all pathogen populations are

assumed to be 0 allows total clearance to occur. The T-cell

solution is a stable attractor: as long as no pathogens exist in the

system, the T-cells will converge to carrying capacity R~Cn=d
with naive cells uniformly distributed through shape space.

During an infection, however, the T-cell population must be

elevated above carrying capacity for some amount of time to

establish control over the pathogens. The cost of this growth of the

T-cell population above homeostatic equilibrium is a slow decay of

T-cells across all of shape space, at a rate proportional to the

amount by which the population exceeds the equilibrium. This

reduces both the growth rate of stimulated T-cells and the diversity

of the overall T-cell population, and can severely compromise the

immune system’s ability to control an infection.

At time t~0, we inoculate our system with a small, localized

dose of pathogens at site ~xx0. Since the initial dose grows

exponentially until large enough to either (a) stimulate the immune

response, (b) produce viable mutant strains, and/or (c) near its own

carrying capacity, the exact size of the dose does not qualitatively

affect the trajectory of the infection, as long as it is small enough to

avoid triggering these processes initially. We use the value

P(~xx0,t~0)~10ml{1.

Over a range of biologically reasonable parameter values, we

find that there are four possible qualitatively distinct trajectories

that a single infection may take (depicted in Fig. 2):

(1) In regions of parameter space where V(~xx0,t~0)wl=b, the

pathogen population decays immediately upon introduction

to the system, an outcome known as sterilizing immunity. In

this paper, we focus on infections well outside of these regions,

and this outcome is not shown in Fig. 2.

(2) Also possible is early clearance, in which the pathogen

population initially grows exponentially but is completely

cleared before reaching a steady-state level (Fig. 2A).

(3) In some regions of parameter space, an infection is able to

escape early clearance, often by mutating to establish itself in

shape space locations outside the reach of the initial immune

Immune System Dynamics Driving Pathogen Speciation
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response. These infections then approach an approximate

steady state, where the pathogens coexist with the immune

response at a controlled level in a localized region of shape

space for an extended amount of time, which we term a

chronic infection (see Fig. 2B). A chronic infection may also

include mutations, leading to the antigenic drift of the

localized pathogen population.

(4) Finally, the pathogens may avoid not only early clearance, but

also any lasting localization or reduction of their population

by the immune response (see Fig. 2C). These early escape
infections grow to carrying capacity or fill the entire shape

space before the immune system can establish control.

Development of Chronic Infection: Role of Pathogen
Mutation and Immune Trade-offs

With these initial conditions, the system undergoes dynamics

corresponding to the acute phase of infection: roughly exponential

growth of pathogens until the T-cells are stimulated, followed by

the growth of T-cells until the pathogen population begins to

decay. Examples for both mutating and non-mutating infections

during this phase (days 0–50) are shown in Fig. 3. Any system

trajectory which eventually brings the pathogen population at all

sites below the threshold – for example, the black dotted curve in

Fig. 3B – will lead to total pathogen clearance, and a subsequent

return of the system to the equilibrium state in Eq. (10). This

Table 1. Parameters used in all simulations unless otherwise noted.

Parameter Sym. Value

pathogen mutation rate m 2:2|10{5(base:cycle){1

binding specificity b 20 sites

pathogen growth l 3 day{1

pathogen capacity w 1010ml{1

pathogen killing b 10{5ml:day{1

naı̈ve cell influx C 1(ml:site:day){1

homeostatic pressure j 6:1 | 10{4 day{1

T-cell replication s 3 day{1

T-cell decay d 0:33 day{1

stimulation coefficient k 105ml{1

Values are approximated within biologically relevant ranges, based on known immune system characteristics and previous modeling work [8,14] (see Appendix S1 for
details). Although the exact phase diagram boundaries between regions with different infection outcomes may change at different parameter values, the qualitative
dynamics within each infection outcome are not especially sensitive to the exact values of these parameters.
doi:10.1371/journal.pone.0102821.t001

Figure 2. Examples of three of the four distinct types of infection observed in the deterministic model. (The case of sterilizing immunity is
not shown.) The total population densities of both pathogens and T-cells (top panels), as well as the shape space distribution of the pathogens (bottom
panels), are plotted over time for each infection. A. Early clearance after the acute phase of infection (m~1|10 (base{5 :cycle){1, b~36 sites). B. Chronic

infection in which mutant pathogen strains avoid clearance by the initial immune response (m~2:5|10{5(base:cycle){1, b~32 sites). The first 50 days,
in which this initial avoidance occurs, are shown on the left; on the right (days 50–500), the total pathogen density remains nearly constant while slow

antigenic drift and branching occur. C. Early escape (m~3|10{5(base:cycle){1, b~24 sites). Some pathogens are cleared by the initial immune
response, but the population reaches carrying capacity without being controlled. Parameter values in Table 1 were used unless otherwise noted.
doi:10.1371/journal.pone.0102821.g002
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occurs in the non-mutating infection in Fig. 3A, where pathogens

are cleared about a week after inoculation.

The mutating pathogens in Fig. 3A, however, with the same

initial conditions and the same system parameters except for

mutation rate, are able to avoid early clearance by generating new

strains with low affinity to the initial immune response. (These

strains are visible in Figs. 2B and 1A.) This allows the T-cell and

pathogen densities to converge to a chronic infection, an

approximate equilibrium at which T-cells coexist with a

controlled, localized pathogen population.

The corresponding steady-state solution can be approximated

from our equations in the case of non-mutating pathogens

localized at a single site ~xx0. With the assumption that the T-cell

population is large enough early in the infection that the influx C is

negligible, the pathogen population’s steady-state value in the non-

mutating system is

P�(~xx0)&
k(d{j(1{Ltot=R))

szj(1{Ltot=R)
: ð11Þ

The terms beginning with j in the numerator and denominator

of Eq. 11 are negligible in estimating the steady state as long as

sR=jwwDLtot{RD and dR=jwwDLtot{RD, which is a good

approximation for all infections in this study. In the simplest case,

where we assume the T-cells are also localized at a single shape

space site~yy0 in order to approximate the narrow peaks they form

under the homeostatic constraint, we find for the non-mutating

case that

P�(~xx0)&kd=s; L�(~yy0)&l=b: ð12Þ

In non-mutating systems, this approximate steady state occurs

with appropriate initial conditions, such as a large initial pathogen

dose (solid green curve in Fig. 3B). It is also quite similar to the

chronic state reached by the mutating infection. Fig. 3B shows the

system trajectory for this mutating infection (solid black curve)

through day 50, in comparison with two trajectories of the non-

mutating infection (solid green curve and dashed black curve).

This infection is a typical example of the valuable strategy of

mutation allowing pathogens that would otherwise be cleared in

small-dose initial conditions – e.g. the example infection in Fig. 3 –

to avoid clearance (Eq. 10) and converge to a chronic infection

(Eq. 12).

The population density distribution of the pathogens during this

process is shown in Fig. 1A. The pathogens remain at their

original location until the population nears its peak density, at

which point several new strains arise farther from the control of

the responding T-cells. It is these partial escape mutations which

allow the resurgence of total pathogen density seen in Fig. 3A just

before day 10. Subsequent pathogen peaks in Fig. 3A each have

lower density, and Fig. 1A shows that each of these successive

peaks results in a decreased mutation distance in shape space.

Because longer-distance mutations occur at lower rates, higher

pathogen densities are required for them to occur.

Since pathogen mutation can allow infections that would

otherwise be cleared to become chronic if they can establish strains

with low affinity to the initial immune response, we would expect

greater success for pathogens with higher mutation rates, which

are able to generate longer-distance mutations. Similarly, we

would expect greater success for pathogens that face more specific

immune responses, since they have a smaller range of T-cell

recognition to evade. While these expectations are often borne out,

our results also show deviations from this behavior, which are

determined by both the underdamped oscillatory nature of the

Figure 3. Coevolutionary dynamics in the first 50 days of infection. Shown here are the mutating infection from Fig. 1 and a non-mutating
infection with the same parameter values. A. Plots of total pathogen and total T-cell populations for both non-mutating (dashed) and mutating
infections (solid curves). When there is no mutation, the pathogen density decays below the threshold and is set to zero. With mutation, pathogens
escape clearance as strains arise with lower affinity to the T-cell response (see Fig. 1A). Both pathogens and T-cells then converge to an approximate
equilibrium state corresponding to a chronic infection. The inset shows total mutating pathogen density for the entire 900-day infection, which
displays qualitative features observed in HIV and SIV [31]; peaks in the chronic phase correspond to branching events (see Fig. 1). B. Phase plot of
total T-cell versus total pathogen densities for the first 50 days of the two simulated infections in A and a third infection with a higher initial dose of
pathogens. Of the low-dose infections, only the mutating case escapes clearance, converging to a chronic state similar to the approximate steady
state (Eq. 12) existing in the non-mutating system. Parameters are given in Table 1.
doi:10.1371/journal.pone.0102821.g003
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early-infection population dynamics and the strength of the

resource constraint on the immune system.

We examine the dynamics as a function of m, the pathogen

mutation rate, and b, the width of the T-cells anity curve, at two

different values of the homeostatic strength parameter j. Fig. 4

shows a phase diagram of system trajectories at a relatively low

homeostatic pressure j. In most cases, our simple expectation is

confirmed: infections with higher mutation rates and those that

face more specific immune responses are those that become

chronic rather than being cleared; and as m grows and b shrinks,

the immune system becomes unable to control the pathogens at

all. However, the details of the early-infection dynamics also give

rise to a trade-off: to become chronic at a given immune system

specificity, the infection needs a mutation rate both high enough to

generate mutants out of the range of the initial immune response,

and low enough to avoid stimulating too strong a secondary

response.

This trade-off is apparent in the thin green band of clearance

amid chronic infection outcomes in Fig. 4. The pathogens are best

able to become chronic when their mutation rate allows them to

expand just far enough from the original strain to avoid being

cleared (Fig. 4B); the secondary immune response to these few

surviving pathogens cells is too small to reduce them below the

threshold, so the secondary T-cell and pathogen peaks converge to

a chronic infection. At higher pathogen mutation rates, however,

more mutants survive the original immune response; this can

stimulate the secondary response strongly enough that it clears the

secondary pathogen peak completely (Fig. 4C), creating an isolated

clearance band. At even higher mutation rates and narrower

immune specificity ranges, the secondary pathogen peak is able to

produce enough mutants of its own before being cleared to

perpetuate the infection further (Fig. 4D).

The boundaries of these phase space regions depend in complex

ways on the two evolving population distributions and on the

dynamics of their interaction. In particular, boundaries between

chronic infection and clearance, such as those creating the narrow

clearance band in Fig. 4, occur at phase space locations at which,

at any point in time, the maximum single-site pathogen population

density reaches the constant minimum pathogen threshold. If the

maximum single-site density falls below the threshold at any time,

the pathogen will be cleared everywhere; if it remains above the

threshold at all times, the infection will survive. This threshold is

most likely to be crossed near a minimum of total pathogen

density; for example, reaching the threshold at the local pathogen

density minimum following the primary (secondary) infection peak

(see Fig. 3A) corresponds to clearance by the primary (secondary)

immune response, as shown in Fig. 4B (D). At the low value of j
used in Fig. 4, the infections in the green clearance band, including

4C, escape the first response and succumb to the second.

At the relatively low homeostatic pressure strength used in Fig. 4

(j~6:7|10{5day{1), chronic infections’ convergence to equi-

librium typically takes several hundred days, with sustained

oscillations in both populations (see Figs. 4B, 4D, and 5B). The

effects of increased homeostatic pressure (j~6:1|10{4day{1)

are shown in Fig. 5. Here the resource constraint, although still a

small effect in comparison to other immune system interactions,

has a significant damping effect on the oscillations in the early-

infection population dynamics, reducing the time for infections to

converge the approximate chronic steady state (Fig. 5A). These

smaller oscillations keep the minimum population densities higher,

impairing the immune system’s ability to clear the pathogen

population below its threshold. (Note that in reality stochastic

effects, rather than a deterministic threshold, would determine the

fate of a very small population; the values of m and b would merely

determine the probability of pathogen extinction.) Increased

homeostatic pressure thus lowers the effectiveness of the overall

immune response, allowing early escape and chronic infection to

occur at lower pathogen mutation rates (m) and larger affinity

ranges (b). In the crucial early stages of the infection that decide

whether a rapid mutator will be fully cleared or converge to a

chronic infection which may later do much more damage, the

level of specificity in T-cell binding and the effect of the immune

system’s resource constraint can make a significant difference.

Once chronic infection is reached, increased homeostatic

pressure accelerates the narrowing of T-cell distribution by

stimulating faster decay for all T-cells; this allows pathogen

branching and eventual immune escape to occur much more

quickly, in hundreds rather than thousands of days. Otherwise, the

mechanisms leading to these chronic infection behaviors are

similar at different values of j. For computational efficiency and

easier visualization, the infections shown in Figs. 1, 2, and 3 thus

Figure 4. Phase diagram of deterministic infection trajectories
under low homeostatic pressure, as a function of mutation rate
m and T-cell specificity range b. In most cases, infections with a
higher mutation rate in systems with narrower immune specificity
range (i.e. higher m and lower b) are more successful at avoiding early
clearance, but a band of cleared infections in the otherwise chronic
regime highlights a trade-off: pathogen must mutate fast enough to
evade an existing immune response, while keeping mutant numbers
low enough to avoid stimulating another. A. Shape space distribution of
pathogen infection with a low mutation rate: the original inoculation
and all mutants are killed by the initial immune response. B. A faster
mutation rate and narrower immune response allows pathogen
mutants to avoid the initial immune response and establish a chronic
infection. C. As mutation rate increases and specificity range narrows,
an increased number of pathogens avoid the initial immune response;
this stimulates a more effective secondary response, which is able to
clear the entire mutant population. D. Chronic infection is established at
a higher mutation rate when the secondary pathogen peak is able to
establish mutants that can evade the secondary immune response. All
infections have j~6:7|10{5day{1 ; other parameters are given in
Table 1.
doi:10.1371/journal.pone.0102821.g004
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use this higher homeostatic pressure; however, the discussion of

branching and escape behaviors applies to infections over a range

of these values.

Chronic Infection Dynamics
The chronic infection state that arises in a large class of

infections displays particularly interesting dynamics, including

instances of antigenic drift, evolutionary branching corresponding

to asexual speciation of the pathogen population, and the eventual

dramatic escape of the pathogens from immune system control.

Throughout the chronic phase, both the mutation and high-

dose no-mutation simulations show control of the pathogen

population (without clearance) by the adaptive immune system.

It has been suggested that chronic infections are more often

controlled by innate immunity or resource constraints (both are

well modeled by the carrying capacity term in Eq. (5)), and that T-

lymphocytes take on an unresponsive "exhausted" phenotype [25].

However, it has recently been shown that HIV is an example of a

chronic infection that is controlled by the adaptive immune system

[26], and other infectious diseases with immune evasion strategies

may have similar dynamics.

Antigenic drift. Initially, peaks in pathogen density drive

bursts of mutation, but when the chronic phase is reached the

evolution rate declines and stabilizes, as pathogen density

converges to a near-constant level Ptot&dk=s. As long as the

pathogen population at its peak remains large enough, however,

some mutants are still spawned very near in shape space to the

pathogen peak, and those further from the existing immune

response have a competitive advantage. This results in a gradual

traveling wave of pathogens in the phenotypic space, shown in

Fig. 1C. This type of motion through a one-dimensional fitness

space has been seen in analytical studies of related models,

including the specific situation of antigenic drift in RNA viruses

[27], and a pathogen’s interaction with a traveling adaptive

immune response [4].

The corresponding T-cell dynamics in Fig. 1 are purely the

result of selection (we have ignored mutation of lymphocyte

receptors, a choice more consistent with T-cell dynamics [28]).

Thus, wave-like motion driven by the interplay between mutation

and selection does not appear. Instead, a constantly maintained

low density of unactivated cells across shape space allows T-cells to

peak wherever they are most highly stimulated, while homeostatic

pressure keeps these peaks narrow by causing formerly stimulated

T-cells to decay. The decay of formerly stimulated T-cells during a

chronic infection scenario is consistent with findings that

formation of long-lived antigen-independent memory T-cells is

impaired during chronic infection, and a strong active memory is

only formed following acute infection [29].

Evolutionary branching. During this chronic phase, we also

observe evolutionary branching corresponding to asexual specia-

tion of the pathogen population, which is fundamentally driven by

the coevolutionary interaction between the pathogens and the

predatory immune response. This branching is visible in Fig. 2B

and shown in more detail in Fig. 1B.

As the immune response controls the pathogens, the decay

caused by operation above homeostatic equilibrium causes its

density distribution in shape space to narrow, allowing pathogen

strains to proliferate on the opposite side of the T-cell peak. This

peak has higher affinity to the intermediate strains, and eventually

clears them, leaving two separated groups of pathogens which

evolve away from the immune response in opposite directions.

This speciation emerges as a direct result of the pathogen-

immune interaction, without the typical drivers of allopatry (i.e.

spatial separation) or minima in the pathogen’s fitness landscape.

The model’s assumption that all pathogens and T-cells are well-

mixed means that pathogen speciation is sympatric, rather than

the result of a varying spatial distribution within the population

[19,20,30]. The underlying mechanism is the pathogen’s ability to

survive in two distinct niches, which arise due to the disruptive

selection of the immune response on the phenotype continuum.

Our results show a form of speciation that results directly from an

interaction between predator and prey, especially an interaction

mediated by a varying phenotypic trait.

For several hundred days after the pathogen split, the joint

stimulation of the two strains maintains a strong T-cell peak

between them; however, eventually they separate enough for

selection to favor two distinct T-cell peaks over a single central one

(Fig. 1C). The immune system’s enhanced control of the

pathogens here comes at the cost of approximately doubling the

total T-cell density, causing T-cells throughout shape space to

experience increased homeostatic pressure.

Eventual immune escape. At each branching event, both

total populations increase, peaking slightly as the T-cell population

splits. (This causes the cusps in total pathogen population in the

inset in Fig. 3A.) The homeostatic pressure of maintaining such a

high-density immune response both impairs the ability of activated

T-cells to maintain control of existing pathogen strains, and causes

increased susceptibility in the unactivated T-cell regions. After

almost 900 days of infection, this causes a dramatic immune

escape (Fig. 1) in which the pathogens grow out of control,

spreading through the phenotypic space and proliferating to

carrying capacity. Thus, the pathogen speciation contributes to the

weakening and eventual breakdown of the immune system. This

Figure 5. Phase diagram of deterministic infection trajectories
under high homeostatic pressure. Relative to Fig. 4, this increased
pressure (j~6:1|10{4day{1 for all infections in the main phase
diagram) has the overall effect of suppressing the immune response,
allowing early escape and chronic infection to occur at lower pathogen
mutation rates (m) and larger affinity ranges (b). In addition, as shown in
the insets, convergence to the approximate steady state of chronic
infection occurs much more quickly under high homeostatic pressure
(inset A), due to the damping effect of the homeostatic constraint on
population oscillations. Inset B shows population densities for an infection
with low homeostatic pressure from Fig. 4D; these display stronger,
more sustained oscillations. Inset A and infection A have m~2:5|10{5

(base:cycle){1 and b~32 sites. Inset B and its corresponding infection

in Fig. 4D have j~6:7|10{5day{1 , m~2:2|10{5(base:cycle){1 , and
b~28 sites. All other parameter values are specified in Table 1.
doi:10.1371/journal.pone.0102821.g005
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sudden increase in viral load after a long chronic period is

reminiscent of the long-term qualitative features of infections such

as HIV and SIV [3,28,31] (Fig. 3A inset).

Discussion

Overall, our model provides a method of investigating patterns

and behaviors in the coevolutionary dynamics of the immune

system, by abstracting the biochemical detail of the T-cell-

pathogen interaction and representing it on a low-dimensional

phenotypic shape space. With simple choices for the relations

between binding shape, fitness, and relative mutation rates, the

results reproduce the overall qualitative behavior of well-known

chronic infections such as HIV and SIV.

Although the true shape space of binding phenotypes is likely

not one-dimensional [32], sequences of preferred or coordinated

mutations [33] may effectively reduce its dimension, making our

choice a reasonable approximation for many infections. However,

a one-dimensional space does render independently evolving

pathogen strains more likely to encounter each other again

through antigenic drift. When this occurs, the overlap of

stimulation regions incites a strong T-cell response between

strains, as seen in Fig. 1 around day 700. This ensures that

convergent evolution does not occur even in a one-dimensional

shape space; the independent strains persist unless cleared by the

immune response. However, interesting questions remain about

the specifics of the model’s behavior in higher-dimensional shape

spaces, as well as the effect of making disease-specific assumptions

about the fitnesses and mutation rates of particular pathogen

strains.

The question of the T-cell binding specificity needed to mount

the most effective response has been the subject of much discussion

and study [2,15,16]. Our results display a trade-off in naı̈ve cell

specificity (Fig. 4) that arises from a resource constraint, suggesting

that the immune system’s strategy for managing its limited

resources could play an important role in its ability to control to

a rapidly mutating infection. Another often-discussed reason for

specificity trade-offs in naı̈ve T-cells is the necessity of avoiding

self-reactivity [2], an effect not included in this model.

Evolutionary branching in similar predator-prey systems has

been studied using the framework of adaptive dynamics (e.g.

[19,30,34]). Like the shape space technique, these models

represent populations on a phenotypic space, avoiding the

complexity of high-dimensional models that track evolution at a

genetic level. In these models, evolutionary branching occurs at a

fitness minimum which is usually built into the model or

dependent on interactions of the branching population with its

environment. The branching in our model occurs at an effective

pathogen fitness minimum created solely by the presence of

predatory immune response, since the fitness landscape indepen-

dent of the immune system is flat. The branching we see is thus

driven by the coevolutionary interaction, and the exact point of

branching depends on these dynamics.

The increased immune system fragility observed during a

chronic infection under homeostatic pressure, in which the

immune system is highly specialized to control the existing

pathogen strains at the cost of much lower protection in the

unactivated regions, is typical of many complex systems displaying

Highly Optimized Tolerance [17,35–37]. It leads to a state in

which infection in new areas can proliferate with little control by

adaptive immunity. This causes the suddenly increased viral load

similar to that associated with the onset of AIDS [3,28], and the

failure of immune system control.
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