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Abstract

High Throughput Biological Data (HTBD) requires detailed analysis methods and from a life science perspective, these
analysis results make most sense when interpreted within the context of biological pathways. Bayesian Networks (BNs)
capture both linear and nonlinear interactions and handle stochastic events in a probabilistic framework accounting for
noise making them viable candidates for HTBD analysis. We have recently proposed an approach, called Bayesian Pathway
Analysis (BPA), for analyzing HTBD using BNs in which known biological pathways are modeled as BNs and pathways that
best explain the given HTBD are found. BPA uses the fold change information to obtain an input matrix to score each
pathway modeled as a BN. Scoring is achieved using the Bayesian-Dirichlet Equivalent method and significance is assessed
by randomization via bootstrapping of the columns of the input matrix. In this study, we improve on the BPA system by
optimizing the steps involved in ‘‘Data Preprocessing and Discretization’’, ‘‘Scoring’’, ‘‘Significance Assessment’’, and
‘‘Software and Web Application’’. We tested the improved system on synthetic data sets and achieved over 98% accuracy in
identifying the active pathways. The overall approach was applied on real cancer microarray data sets in order to investigate
the pathways that are commonly active in different cancer types. We compared our findings on the real data sets with a
relevant approach called the Signaling Pathway Impact Analysis (SPIA).
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Introduction

Bayesian Network (BN) models have gained popularity for

learning biological pathways from microarray gene expression

data [1,2]. BNs represent dependency structure for a set of

random variables using directed acyclic graphs and have been

used with increasing popularity in mathematics and computational

sciences over the past 20 years. However, current BN applications

are limited to structure learning using observed data and therefore

work only on a few hundreds of variables as structure learning

algorithms are computationally complex. This, in turn, results in

inefficient use of HTBD, which contain a much larger number of

variables.

From a life sciences perspective, data analysis results make most

sense when interpreted within the context of biological networks

and pathways. Previously established individual gene analysis

based methods have been extended to network and pathway scale

mostly along the lines of gene set analysis (GSA) [3,4] or Gene

Ontology (GO) based approaches [5–7], which focuses on

determining predefined gene sets or classes that are significantly

regulated. However, these approaches consider the input genes

and the target gene sets and classes simply as lists and do not

incorporate in their models the topology via which genes in these

classes interact with each other. Other popular commercial

approaches, such as the Ingenuity Pathway Knowledge Base

(Ingenuity Inc., California) or PathwayAssist (Ariadne Genomics,

California) also identify known pathways as active based on

HTBD simply by considering the number of genes shared by the

input list and the target pathway. All aferomentioned methods use

some variation of the main idea that a functional class is relevant

to the observed HTBD if the class possesses a statistically

significant amount of the input gene list.

We have recently proposed an approach, called Bayesian

Pathway Analysis (BPA), for analyzing HTBD using BNs [8]. In

the BPA framework known pathways are modeled as BNs and the

processed HTBD is used to score each network to assess its fitness

to the observed data; achieving a workflow that incorporates in its

model the topology of the pathways. There have since been

approaches that model the pathway topology to some degree in

the analysis of HTBD [9–14]. In terms of general applicability and

direct relation to the output of BPA, we have used the Signaling

Pathway Impact Analysis (SPIA) [15] in our comparisons. SPIA

combines the GSA based pathway activation measure with a novel

pathway perturbation score, which reflects the degree to which the

deregulation of the genes in the pathway is in concordance with

the signaling hierarchy.

In the BPA approach, pathways are retrieved from the KEGG

database [16]. Each entry (node) in the pathway is mapped to an

internal unique ID and a conversion module carries out the

necessary mapping between the input gene expression IDs and the

pathway node IDs. Repeating entries in the pathway are merged

and represented as a single node while conserving edge relations.

BN theory utilizes Directed Acyclic Graphs (DAG) but there may

exist cycles in the biological pathways. This is overcome using

Spirtes’ method where graph representations of structural

equation models [17] are converted to collapsed acyclic graphs
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such that d-separations in the collapsed graph entail the same

independency relations defined by the model. To this end, a

biological pathway is modeled as a BN, which now can be tested

against input data to assess its fitness.

BPA assumes a two-group (e.g. case vs. control) normalized

gene expression data as input. The observation matrix to score

each DAG is obtained by generating the fold change (FC) values

for each pair of samples in the two groups. In this matrix, columns

represent genes in the DAG and rows represent pairwise

comparisons. If there are N1 and N2 samples in the two groups,

the observation matrix consists of N16N2 rows. Each column

represents the FC for the corresponding gene in each of the

N16N2 pairwise comparisons. These continuous FC values are

discretized using a cut-off of 2. If the FC value is greater than 2 or

less than 0.5 (i.e. the gene is deregulated), it is converted into 1,

and otherwise it is converted into 2.

The degree to which a pathway explains given HTBD is

measured using the Bayesian Dirichlet equivalent (BDe) score with

equivalent sample size method [18]. In this phase, the BN is

updated with the observation matrix during the score calculation.

Statistical significance of this measurement is assessed by testing it

against datasets generated by applying randomization via boot-

strapping where the observed score is ranked against scores

obtained from randomized data sets. Bootstrapping is applied to

the columns of the observation matrix providing a randomization

of the rows, which are used in scoring. The results are evaluated in

terms of nominal p-values and false discovery rate (FDR) values

correcting for multiple hypotheses testing.

In this paper, we have two fundamental aims. Our first aim is to

improve on the BPA system by using the following strategies. In

order to optimize the discretization phase, we tried Equal Width,

Equal Frequency, K-means, Column K-means, Bi-directional K-

means, and Automatic Threshold Discretization [19,20] in

addition to the hard-cut-off levels offered by BPA. In the scoring

phase, we applied Akaike Information Criterion (AIC) [21],

Bayesian Information Criterion (BIC) [22], and Factorized

Normalized Maximum Likelihood (fNML) [23] and compared

the results with the BDe scoring scheme. The significance

assessment phase was changed so that random data sets were

obtained at the gene signal level. In this approach, samples in each

of the two classes are randomly permuted to provide new data sets

[24]. Each new data set (with new class assignments for each

sample) is run through the complete workflow and a score value is

calculated. This way, we overcome the cases where the current

BPA approach fails to provide randomized data sets. In testing

these new approaches, we generated synthetic microarray data

that simulates gene expression from N pathways where a subset,

Na, of these pathways is active. A performance criterion is assessed

by the accuracy of predicting active and passive pathways. In

addition to improving the memory and CPU usage of the

algorithm, we also added new organisms for which the BPA system

can be used and we provide a web portal at http://bioinfo.unl.

edu/bpa/ which hosts the stand-alone version of the optimized

software along with a tutorial and example data sets.

Our second aim in this study is to apply the improved pathway

analysis approach on real cancer data sets. For this purpose, we

downloaded real microarray data sets from the NCBI’s GEO

database regarding bladder, brain, breast, colon, liver, lung,

ovarian and thyroid cancers. We investigated the pathways that

are commonly identified as active in these various cancer

microarray data sets.

Methods

Class Label Permutation
In the original BPA system, the observation data matrix for BN

scoring is composed of the 2-level discretized FC levels for the

genes in the network to be scored. The degree to which a pathway

explains given HTBD is measured using the ‘‘Bayesian Dirichlet

equivalent’’ (BDe) score and the statistical significance of this

measurement is assessed by randomization via bootstrapping

where the observed score is ranked against scores obtained from

randomized data sets. Randomized data sets are obtained by

changing the structure of the columns of the observation matrix

via sampling with replacement of each column separately.

In Table 1, we show two sample instances of such input

matrices. Here, columns denote the genes and rows denote the

pairwise comparison of the samples in the two sample groups (e.g.

cancer vs. normal). The aferomentioned randomization method

(originally employed by BPA) works successfully when an

observation matrix as in Table 1 (a) is the case where a given

column does not consist only of one type of observation. However,

if the observation matrix turns out to be as in Table 1 (b), where

columns represent only one type of observation, randomizing the

columns of the observation matrix will not result in any change.

Therefore, the scores obtained by randomized data sets will be the

same, making the significance assessment almost impossible to

achieve. It is possible to obtain matrices as in the latter case, i.e. a

matrix where a given column consists only of the same level, when

a gene shows the same degree and direction of change between the

two classes. In other words, if a gene in a given pathway is

consistently 2 or more FC upregulated in one class versus the

other, we would end up having the column for this gene to consist

only of the same discretization level.

In order to overcome this problem, we applied the permutation

method previously described to randomize gene expression data

sets [24]. This randomization is done by replacing the samples of

each class randomly. Suppose we have a dataset composed of 10

normal and 10 cancer samples. In one instance of the permuta-

tion, for example, 3rd, 5th, and 6th normal samples are replaced

with 1st, 7th, and 9th cancer samples. The observation matrix is

generated by pairwise comparison of the signal values over the

new order of two classes followed by discretization. This procedure

is repeated B times and pathway scores are calculated using the

discretized matrices. As a result, the statistical significance of the

observed score can be assessed accurately via ranking against

scores obtained from different observation matrices generated by

these B randomized data sets. If the score of a given pathway is Sn,

its p-value is assessed using

P Snð Þ~
1

B

XB

k~1

I SkwSnð Þ

where I(a) is 1 if a is ‘‘true’’ and 0 otherwise. The significance of

each pathway is reported as this nominal p-value and the

corresponding false discovery rate (FDR) calculated using the

Benjamini-Hochberg procedure [25]

Discretization
BPA utilized a discretization method such that the continous FC

value is represented as 1 if it’s greater than 2 or less than K (i.e. a

gene is dysregulated), and as 2 otherwise. Another use of the 2-

level discretization is choosing a cut-off value of 3, i.e., the FC is

represented as 1 if its value is greater than 3 or less than 1/3 and as

2 otherwise. In 3-level discretization with the cutoff value 2, the
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fold change is represented as 1 if its value is greater than 2, as 2 if

less than K, and as 3 otherwise. In 3-level discretization with the

cut-off value of 3, the fold change is represented as 1 if its value is

greater than 3, as 2 if less than 1/3, and as 3 otherwise.

In this study, we propose new discretization methods [19,20] to

be utilized in processing the observed fold change values for use by

Bayesian scoring metrics. An N-by-M matrix E is used to denote

the observed FC matrix, where N is the number of pairwise

comparisons and M is the number of genes. E(n,m) denotes the

FC value of comparison n for the gene m. E(n,:) denotes FC data

of comparison n for all genes, and E(:,m) denotes the FC data of

gene m for all the comparisons.

Equal Width Discretization (EWD). EWD divides the

observation matrix row n into k intervals of equal width between

E(n,:)min and E(n,:)max. Thus the intervals of comparison n have

width w = (E(n,:)max - E(n,:)min)/k, with boundary points at

E(n,:)min +w, E(n,:)min +2w, …, E(n,:)min + (k - 1)w where k is a

positive integer.

Equal Frequency Discretization (EFD). EFD divides the

sorted E(n,:) into k intervals so that each interval contains the

same number of FC values.

K-means Discretization. K-means divides E(n,:) into k
intervals by k-means clustering so that similar FC values of

comparison n are placed in the same interval.

Column K-means Discretization (Co-k-means). Co-k-

means divides E(:,m) into k intervals by k-means clustering so

that similar FC values for the gene m are placed in the same

interval.

Bidirectional K-means Discretization (Bi-k-means). In

the bi-k-means method both k-means and co-k-means are

respectively implemented with parameter k+1, giving every FC

value two discretized values. If the product of the two values is

equal to or greater than x2, and less than (x+1)2, the final

discretized value of this expression value is x, where x is a positive

integer ranging from 1 to k.

Automatic Threshold Discretization. There are two op-

tions for the automatic threshold discretization, which iteratively

determines the cut-off values by minimizing the variance. The

whole FC data E is divided into two intervals according to a

certain cut-off value in the global option. The local option of this

method divides E(:,m) into two intervals according to the cutoff

values defined for each column (gene) separately.

Scoring
In addition to the BDe scoring scheme, we propose the

following score metrics to be used in the BPA system.

Akaike Information Criterion (AIC). AIC is one of the

most commonly used information criteria, which selects the model

that minimizes the negative likelihood penalized by the number of

parameters [21]:

AIC M,Dð Þ~ log P̂P DDMð Þ{p

whereP̂P DDMð Þ is the maximum likelihood of the model M, D is

observed data, and p is the number of parameters in the model.

Bayesian Information Criterion (BIC). BIC is another

widely used information criteria and unlike AIC, BIC is consistent

and improves in performance with large sample sizes [22]. BIC is

defined as:

BIC M,Dð Þ~ log P̂P DDMð Þ{ p

2
log Nð Þ
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BIC differs from AIC only in the second term, which depends

on the sample size N.

Factorized Normalized Maximum Likelihood

(fNML). Silander et al. [23] developed the fNML score based

on the normalized maximum likelihood (NML) distribution

[26,27]. Given a data set D, the NML model selection criterion

chooses the model M for which PNML DDMð Þ is largest.

PNML DDMð Þ~ P̂P DDMð ÞX
D’

P̂P D’DMð Þ

where the normalization is done over all data sets D9 of the same

size as D. After taking the logarithm, the score is in a form of

penalized log-likelihood given G = {G1,…,Gm} as the parent set in

the DAG (i.e. Gi is the parent set of the node Xi in the DAG):

SfNML Di,DGi

� �
~ log PNML Di DDGi

� �

~ log P̂P Di DDGi

� �
{ log

X
D ’i

P̂P D’i DDGi

� �

where the normalizing sum goes over all the possible Di column

vectors. Even though the penalty term has an exponential number

of terms, it can be evaluated efficiently using a linear-time

algorithm introduced in [28]. By calculating the penalty term for

each variable in the dataset, the NML becomes factorized.

Data Sets
We generated synthetic transcriptional regulatory networks and

produced simulated gene expression data with noise using

SynTReN v1.12 [29]. We created 55 synthetic networks that

mimic biological pathways with sizes ranging from 7 to 200. We

randomly selected 20 out of 55 pathways to be active and

SynTReN generated the corresponding expression datasets for 20

test and 20 control samples with 2249 genes adding a 4% noise

level.

To test the optimized and improved BPA performance on real

data sets, we used 1 bladder, 2 brain, 2 breast, 1 colon, 2 liver, 1

lung, 1 ovarian, and 2 thyroid cancer data sets. In choosing the

data sets, we fixed the platform to be Affymetrix to prevent bias

and used data sets where tumor and normal samples are clearly

defined and the cancer samples are as homogenous as possible.

Most of the chip data came from the Affymetrix HG-U133 Plus

2.0 GeneChip, which is composed of more than 54,000 probe sets

representing over 47,000 transcripts providing a comprehensive

picture of the human transcriptome. Other chip types include HG-

U133A and HG-U133A_2, which represent approximately 22,000

probesets. Prior to application of the proposed approach, raw

microarray data has been normalized using Affymetrix Microarray

Analysis Suite (MAS) 5.0 algorithm [30].

For each data set, we applied the proposed analysis method with

1000 permutations and assessed significant pathways with a

nominal p-value of 0.05 and an FDR of 0.25.

Results

In Table S1, we list the accuracy levels (if a network is correctly

called active/inactive) of the different discretization schemes for 10

simulated datasets (D1–D10). According to the simulation results,

the best discretization method is the 2-level k-means discretization

applied to the rows of the observation matrix. This approach

achieves an accuracy of 0.96260,031. Therefore, 2-level k-means

method is used as the discretization method for the experiments to

determine the best scoring criterion.

The datasets, which are used for the performance measurement

of discretization methods, are also used for the assessment of the

scoring methods. The obtained prediction accuracies are listed in

Table 2. According to the simulation results, the best scoring

method is the fNML method, which estimates whether a pathway

is active or not with an accuracy of 0.98460,016. Therefore, the

2-level k-means discretization and fNML scoring methods are used

for the real microarray data analysis as this combination achieved

the highest accuracy.

In Table 3, we list the 12 real cancer microarray data sets (GEO

Numbers, cancer types, and numbers of samples) and the number

of pathways identified as active by BPA and SPIA analyses. In

Tables S2 and S3, we list the complete list of pathways deemed

active by the BPA and SPIA methods for each real cancer

microarray dataset, respectively. In total, BPA identified 171

pathways that have been found significant in at least one of the

data sets. 15 of these pathways have been found to be significant in

at least half of the data sets and therefore potentially represent

mechanisms common to different cancer types (see Table S2).

We also investigated the commonality of significant pathways in

cancer types represented by two data sets except for the thyroid

cancer, which has resulted in very few significant pathways. These

results for the BPA analysis are summarized in Figure 1. In the

case of brain and liver cancer data sets, the common pathways

consist of 52% and 59% of the dataset with the smaller number of

pathways. In the breast cancer data sets, we see a lesser degree of

agreement (,31%). These commonalities are 60%, 41%, and

52% for the brain, breast, and liver datasets, respectively, using the

SPIA analysis. However, SPIA uses a subset of the pathways

investigated by the BPA system. When we consider only the

pathways in the SPIA database, the commonalities in the BPA

analysis are 73%, 45%, and 71% for the brain, breast, and liver

datasets, respectively.

In Figure 2, we list the number of pathways identified by the

two analysis methods when the pathway database is restricted to

the one used by SPIA. On average, the number of pathways found

to be significantly active by both methods is about 60% of the

pathways of the algorithm with the smaller number of active

pathways.

Although the improved BPA system outperformed the old BPA

system on synthetic data sets (data not shown), we compared the

performance of both methods on the real cancer microarray data.

The list of pathways deemed significant by the old BPA system is

represented in Table S4. The old BPA analysis revealed 127

pathways active in at least one of the cancer data sets and 18 of the

pathways were found to be common to at least half of the data sets.

In Table S5, we list the numbers of pathways identified as active

by both BPA systems and indicate the number of pathways

commonly identified by the two methods in each cancer data set.

These results on the real cancer data sets (Tables S4 and S5)

indicate that the old BPA system fails to exhibit consistency for

some of the datasets (e.g. 57 vs. 1 pathway identified by the new vs.

old PBA in the ‘‘bladder’’ data set; 16 vs. 3 pathways identified by

the new vs. old PBA in the ‘‘breast’’ data set; 58 vs. 0 pathway

identified by the new vs. old PBA in the ‘‘lung’’ data set; and 10 vs.

0 pathway identified by the new vs. old PBA in the ‘‘thyroid’’ data

set). We believe this is mainly due to the permutation test method

introduced in the new BPA system where the old system fails to

generate randomized data sets in pathways showing a constant

fold change direction for its members (see Table 1). Some of the

performance improvement can be attributed to the optimized

discretization and scoring methods incorporated in the new BPA

system. The old and new BPA sytems show, on average, a 28%

overlap between the pathways identified in each data set. This

Bayesian Pathway Analysis
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level of agreement is significantly lower than the one observed

between the new BPA and SPIA methods, which showed 60%

overlap on average. Moreover, we obtained a 25% overlap on

average between the old BPA and SPIA methods when the

pathways identified for each real cancer microarray data set by the

two methods were considered.

We also applied the improved BPA method on the NCI-60

cancer cell line microarray data set used in describing the Gene

Set Enrichment Analysis (GSEA) method [31]. This data set

contains microarray results (run on the Affymetrix HGU95Av2

platform) for 50 of the NCI-60 cell lines (www.broadinstitute.org/

gsea/datasets.jsp). We used this data set to identify pathways

deregulated following a mutation in the tumor suppressor p53

gene. Out of the 50 samples, 17 are wild type and 33 carry

mutations in the p53 gene. The pathways identified as active by

BPA due to the mutations in p53 are listed in Table 4.

Discussion

Our synthetic data simulations identified k-means clustering as

the best performing discretization method. We find this result

reasonable as k-means uses the distribution in the data to minimize

the total mean squared error with respect to the discretized values

and the real FC occurrences. Also based on the synthetic data

results, the scoring method that yielded the highest accuracy was

the factorized normalized maximum likelihood (fNML) score [23].

This result was also expected as it has been shown that the BDe

scoring scheme is very sensitive to the choice of prior hyper-

parameters and AIC and BIC require some manual parameter

setting and do not work well with small data sets, which is

occasionally the case with HTBD [32]. fNML on the other hand is

an information theory based optimized scoring method that has no

tunable parameters.

In the real microarray data analysis using BPA, the pathway

that came out in most of the cancer data sets as significantly active

Table 2. Prediction accuracy of different scoring methods on synthetic datasets.

BDe AIC BIC fNML

D1 0.945 0.964 0.909 1.000

D2 0.982 1.000 0.927 0.964

D3 0.982 1.000 0.945 1.000

D4 0.964 0.982 0.982 1.000

D5 0.945 1.000 0.891 1.000

D6 0.945 0.982 0.982 0.964

D7 0.982 0.982 0.927 0.982

D8 1.000 0.982 0.964 0.982

D9 0.982 0.982 0.927 0.982

D10 0.891 0.945 0.945 0.964

Avg 0.962 0.982 0.940 0.984

SD 0.031 0.017 0.030 0.016

BDe: Bayesian Dirichlet Equivalent; AIC: Akaike Information Criterion; BIC: Bayesian Information Criterion; fNML: factorized Normalized Maximum Likelihood.
doi:10.1371/journal.pone.0102803.t002

Table 3. Cancer Data Sets and numbers of active pathways Identified by BPA and SPIA analyses.

GEO# (GSE) Cancer Type Chip Type (HG-U133) # of Samples BPA SPIA

7476 bladder Plus2 12 (9C, 3N) 57 40

12907 brain A 25 (21C, 4N) 81 23

15824 brain Plus2 35 (30C, 5N) 46 32

8977 breast Plus2 22 (7C, 15N) 16 25

22544 breast Plus2 18 (14C, 4N) 66 36

41328 colon Plus2 20 (10C, 10N) 36 39

14520 liver A2 43 (22C, 21N) 77 22

14323 liver A2 66 (47C, 19N) 59 17

10799 lung Plus2 19 (16C, 3N) 58 43

14407 ovarian Plus2 24 (12C, 12N) 5 18

3678 thyroid Plus2 14 (7C, 7N) 4 27

6004 thyroid Plus2 18 (14C, 4N) 10 27

doi:10.1371/journal.pone.0102803.t003
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(8/12) is the Cell adhesion molecules (CAMs) pathway. CAMs are

located on the cell surface and participate in the activity of a cell

binding with other cells. One of the primary features of cancer

cells is uncontrolled growth where the cells are immune to density-

dependent inhibition. Cancer cells keep on growing, forming

multiple levels, even when the cell density is increased. This is

mainly due to the malfunctioning in CAMs, which has been shown

to play an important role in cancer progression [33] and

disrupting important signal-transduction pathways [34]. Specifi-

cally, CAMs have been shown to be involved in brain [35],

bladder [36], breast [37], liver [38], lung [39] and thyroid [40]

cancer; the cancer data sets where the proposed system found the

CAM pathway as significantly activated.

Other pathways that need to be emphasized are ‘‘Citrate

(TCA/tricarboxylic acid) cycle’’, ‘‘Complement and coagulation

cascade’’ and ‘‘Adipocytokine signaling’’ pathways that are found

to be significantly active in 7 cancer data sets out of 12. Citrate

cycle, also known as the tricarboxylic acid cycle (TCA cycle) or the

Krebs cycle, is part of cellular respiration. It is a series of chemical

reactions used by all aerobic organisms to generate energy. Its

central importance to many biochemical pathways suggests that it

was one of the earliest parts of cellular metabolism to evolve [41].

A recent study identified this cycle as a cancer-specific metabolic

pathway [42]. In a wide range of tumor cells including the types

included in our datasets, it is found that a mutation causes this

cycle to run in reverse. Complement and coagulation cascade

pathway can be explained in two parts: the complement system is

a proteolytic cascade in blood plasma and a mediator of innate

immunity, a nonspecific defense mechanism against pathogens,

and blood coagulation is another series of proenzyme-to-serine

protease conversions. This pathway is identified as significant for

breast and liver cancer types in a functional cancer map, which

has been established following the analysis of functional expression

profiles of significantly enriched KEGG pathways across different

tumor entities assigned to various tumor classes [43]. Adipocyto-

kine signaling pathway is positively correlated with leptin

production, which is an important regulator of energy intake

and metabolic rate. Leptin and adiponectin are the most abundant

adipocytokines and the best-studied molecules in this class so far.

Recent tumor biological findings on the role of the most

prominent adipocytokines leptin and adiponectin, which are

involved in tumor growth, invasion and metastasis, show the

effects of adipocytokines to brain and breast cancers [44], the types

of cancer datasets where the BPA system found this pathway as

significantly activated. There have been other additional studies

that have shown the relation of adipocytokine signaling pathway to

lung and liver cancers [59,60].

Our synthetic data results show that the improved BPA system

identifies the activity of a pathway with over 98% accuracy.

Although there is no gold standart in assessing the active pathways

regarding the real microarray data of a certain phenotype, BPA’s

reproducibility in the same cancer types has been over 50% in

average. When the pathway database is limited to the one used by

SPIA, this reproducibility exceeds 70%. Finally, when all the

cancer datasets are considered, the agreement between the two

methods is around 60%. Given the technical and biological

Figure 1. Commonality of significant pathways using the BPA analysis on the same cancer types.
doi:10.1371/journal.pone.0102803.g001

Figure 2. Number of pathways found significant in real microarray data sets using BPA and SPIA methods.
doi:10.1371/journal.pone.0102803.g002
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variation, such a high degree of overlap between different pathway

analysis schemes is very promising.

In an attempt to identify patways specific to particular cancer

types, we investigated pathways that are consistently found to be

active for the same cancer types (and non-active for the other

cancer types) by the current BPA system. For brain cancer,

‘‘Parkinson’s disease pathway (hsa05012)’’ was found active in

both brain cancer data sets and only in one of the remaining 10

cancer data sets. Parkinson’s disease (PD) is one of the most

common neurodegeneretive disorders associated with cell loss in

the substantia nigra region of the midbrain [45]. Recently, there

have been studies that link the molecular mechanisms and genetic

dispositions of the disease to cancer. Mutations in PARK2, one of

the most common causes of early-onset PD, has been shown to

play a central role in glioblastomas [46] exhibiting changes in

almost identical residues in both the PD and the brain cancer

samples. Identification of this pathway as active almost uniquely

and consistently in brain cancer data sets implies that BPA is able

to identify biologically meaningful pathways based on the

underlying HTBD. In the liver cancer data sets, ‘‘Biotin

metabolism (hsa00641)’’ and ‘‘3-Chloroacrylic acid degradation

(hsa00780)’’ pathways were found to be active only in the two liver

data sets. Biotin concentration is known to be high in cancerous

tumors compared to normal tissues and biotin and other water-

soluable vitamin B metabolisms have been shown to be important

in hepatocellular carcinoma [47,48]. Similarly, 3-Chloroacrylic

acid degradation pathway has been shown to be active in

hepatocellular carcinoma [49,50].

Comparison of the old BPA system with the improved one

proposed in this paper on the real cancer microarray data sets

revealed that the old BPA system fails to identify pathways for

some data sets and provides less biologically meaningful pathways

showing insignificant agreement with the improved BPA and SPIA

methods. Moreover, we see a less degree of agreement for the

same cancer data sets in the old BPA system. For example, the old

system identified only 3 pathways in one of the ‘‘brain’’ data sets

compared to 122 pathways identified for another data set for the

same cancer type. These differences are very likely due to the

improved randomization, discretization, and scoring strategies

introduced in the current BPA system.

Pathways that have been identified as significantly activated by

BPA due to a p53 mutation are listed in Table 4. p53 is known to

be involved in ‘‘melanogenesis’’ (hsa04916) through skin hyper-

pigmentation due to its role in cytokine receptor signaling [51],

where alterations in p53 levels significantly affect the expression

levels of melanogenic factors. p53 plays a central role in

‘‘melanoma’’ (hsa05218) as a therapeutic agent [52] and risk

factor where certain signature hot-spot mutations in the p53 gene

result in oncogenic transformation. Among the pathways listed in

Table 4, p53 has been shown to be involved in ‘‘glioma’’

(hsa05214) [53] and ‘‘pancreatic cancer’’ (hsa5212) [54,55].

Recently, it has been shown that antigen specific (CD4+) T cell

response is critically affected by deregulation of p53 through ‘‘T

cell receptor signaling pathway’’ (hsa04660) [56]. p53 is also

known to be involved in ‘‘purine metabolism’’ (hsa00230) [57],

‘‘pyrimidine metabolism’’ (hsa00240) [58], and ‘‘fatty acid

biosynthesis’’ (hsa00061) [59,60]; other pathways identified as

active by BPA due to mutations in p53. Overall, BPA was clearly

able to identify pathways related to p53 using related microarray

data. We believe that utilized synthetic, real, and benchmark data

along with synthetic data sets render results that show the utility of

the improved BPA system as a new resource for pathway analysis

of HTBD.
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