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Abstract

High dimensionality and small sample sizes, and their inherent risk of overfitting, pose great challenges for constructing
efficient classifiers in microarray data classification. Therefore a feature selection technique should be conducted prior to
data classification to enhance prediction performance. In general, filter methods can be considered as principal or auxiliary
selection mechanism because of their simplicity, scalability, and low computational complexity. However, a series of trivial
examples show that filter methods result in less accurate performance because they ignore the dependencies of features.
Although few publications have devoted their attention to reveal the relationship of features by multivariate-based
methods, these methods describe relationships among features only by linear methods. While simple linear combination
relationship restrict the improvement in performance. In this paper, we used kernel method to discover inherent nonlinear
correlations among features as well as between feature and target. Moreover, the number of orthogonal components was
determined by kernel Fishers linear discriminant analysis (FLDA) in a self-adaptive manner rather than by manual parameter
settings. In order to reveal the effectiveness of our method we performed several experiments and compared the results
between our method and other competitive multivariate-based features selectors. In our comparison, we used two
classifiers (support vector machine, k-nearest neighbor) on two group datasets, namely two-class and multi-class datasets.
Experimental results demonstrate that the performance of our method is better than others, especially on three hard-
classify datasets, namely Wang’s Breast Cancer, Gordon’s Lung Adenocarcinoma and Pomeroy’s Medulloblastoma.

Citation: Sun S, Peng Q, Shakoor A (2014) A Kernel-Based Multivariate Feature Selection Method for Microarray Data Classification. PLoS ONE 9(7): e102541.
doi:10.1371/journal.pone.0102541

Editor: Andrew R. Dalby, University of Westminster, United Kingdom

Received April 7, 2014; Accepted June 20, 2014; Published July 21, 2014

Copyright: � 2014 Sun et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability: The authors confirm that all data underlying the findings are fully available without restriction. All relevant data within the paper can be
downloaded for free. The MATLAB source code of kernelPLS is publicly available at https://github.com/sqsun/kernelPLS

Funding: This work was jointly supported by the National Natural Science Foundation of China (grant numbers 61173111, 60774086) and the Ph. D. Programs
Foundation of Ministry of Education of China (grant number 20090201110027). The funders had no role in study design, data collection and analysis, decision to
publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* Email: qkpeng@xjtu.edu.cn

Introduction

Microarray gene expression based cancer classification is one of

the most important tasks in bioinformatics. A typical classification

task is to separate healthy patients from cancer patients, based on

their gene expression ‘‘profile’’. However, because cancers are

usually marked by changing in the expression levels of certain

genes [1], therefore it is obvious that not all measured features are

discriminative features for target. Hence, feature selection problem

is ubiquitous in cancer classification.

Feature selection techniques for microarray data can be broadly

grouped into three categories that are wrapper (classifier-

dependent) methods [2,3], embedded (classifier-dependent) meth-

ods [4,5] and filter (classifier-independent) methods [6,7]. The

primary distinguishing factors among them are computational

complexity and the chance of overfitting [8]. Generally, in terms of

computational cost, filters are faster than embedded methods,

which are in turn faster than wrappers. In terms of overfitting,

wrappers have higher learning capacity so are more likely to

overfit than embedded methods, which in turn are more likely to

overfit than filter methods [9]. Filter methods can be divided into

two classes, univariate-based filters and multivariate-based filters

[8]. Univariate filter methods have attracted much attention

because of their low complexity and fast performance for high

dimensionality of microarray data analyses. However, some

valuable genes discarded by univariate methods may have great

contribution for classification [10]. Therefore, the major reason of

their less accurate performance is that they disregard the effects of

feature-feature(we use without distinction the term ‘‘feature’’ and

‘‘gene’’ in the paper) interactions. The applications of multivariate

filter methods are simple bivariate-based methods which are

almost based on entropy(or conditional entropy) and mutual

information [9,11], such as mRMR [7,12], CFS [13] and several

variants of the Markov blanket filter method [14]. However, they

also abandon presumably redundant variables that can result in a

performance loss [15].

Partial least squares(denoted as PLS), which shares the

characteristics of other regression and feature transformation

techniques(such as canonical correlation analysis and principal

component analysis), has proven to be useful in situations when the

number of observed variables(D) are significantly greater than the

number of observations(N ) (e.g.N%D). In other words, PLS is a

popular approach to solve problems when there is high multi-

collinearity among features [16]. SlimPLS [17],PLSRFE [18,19]

and TotalPLS [20] are multivariate-based feature selection

methods that were proposed by Gutkin et al. and You et al.,
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respectively. Unfortunately, classical PLS technique is essentially a

linear regression method that only can capture the linear

relationships between genes in original space. In real biological

applications, linear relationship often fails to fully capture all the

information among genes. Kernel method, which approaches the

problem by projecting the data into a high dimensional feature

space, is commonly used for revealing the intrinsic relationships

that are hidden in the raw data.

Motivated by mentioned above, in this paper, we develop a

feature selection method based on the partial least squares(abbre-

viated PLS) [21] and theory of Reproducing Kernel Hilbert Space
[22], we called it kernelPLS(publicly available at https://github.

com/sqsun/kernelPLS). Determining the number of components

is a thorny problem in PLS(also in kernelPLS) method. In order to

obtain a reasonable number of components, we make use of the

relationship between PLS and linear discriminant analysis to

determine the number of components in kernel space based on

kernel linear discriminant analysis. We find that the two classifiers

combined with our feature selection method obtained promising

classification accuracy on eleven microarray gene expression

datasets.

The rest of this paper is organized as follows. In section 2 we

proposed a filter method based on PLS and kernel method. Then

we proceed in section 3 to determine the optimal parameters for

our method. In section 4 we compared our approach with several

competitive filters. The conclusion can be found in section 5.

Methods

In the following, let X[ N|D represents a data matrix of N

inputs (N samples) and Y[ N|C stands for corresponding

response matrix of C-dimensional(C classes). Further we assume

columns of X and Y are zero-mean.

Kernel partial least squares
PLS is one of the widespread use of a class of multivariate

statistical analysis technique introduced by [21], and a popular

regression technique in Chemometrics [23]. It differs from other

methods in constructing the fundamental relations between two

matrices (X and Y ) by means of latent variables called components,
leading to a parsimonious model which shared characteristics with

other regression and feature transformation techniques [16]. The

goal of PLS is to calculate vectors of its X -weight (v), Y -weight (c),

X -score (t) and Y -score (u) by an iterative method for the

optimization problem: arg maxEvE~1,EcE~1cov(t,u)~cov(Xv,Yc).

Where t~Xv and u~Yc, are called components of X and Y ,

respectively.

When the first two components t1 and u1 are obtained, the

second pair t2 and u2 is extracted from their residuals

EX ~X{t1pT and EY ~Y{t1qT , respectively. Here p and q

are called the loadings of t with respect to X and Y , respectively.

This process can be repeated until the required halt condition is

satisfied. The detail description of the algorithm can be found in

[17]. The geometric representation of PLS can be found in

Figure 1(a).

The kernel version of PLS uses a nonlinear transformation W(:)
to map the gene expression data into a higher-dimensional(even

infinite dimensional) kernel space ; i.e. mapping

W : xi[ D?W(xi)[ . However, we do not need to know the

specific mathematical expression of nonlinear mapping, we only

need to state the entire algorithm in terms of dot products between

pairs of inputs and substitute kernel function K(:,:) for it. This is

so-called the ‘‘kernel trick’’.

In order to state dot product operation in the algorithm, we can

restrict v to belong to the linear spans of the points. They can

therefore be expressed as:

v~(W(x1), � � � ,W(xN ))bW

tW~

W x1ð Þ
..
.

W xNð Þ

0
BBBB@

1
CCCCA

v~

W x1ð Þ
..
.

W xNð Þ

0
BBBB@

1
CCCCA

W x1ð Þ, � � � ,W xNð Þð ÞbW~KX bW

Let KX (xi,xj) be an element of the Gram matrix KX in feature

space and h is the desired number of components. Deflating Y

will, however, be needed for kernel partial least squares.

The first component for kernel PLS can be determined as

eigenvector of the following square kernel matrix for bW:

bWl~KY KX bW, where l is an eigenvalue. The size of the kernel

matrix KY KX is N|N. Hence, no matter how many variables

there are in the original matrices X and Y , the size of these kernel

matrices will not be get affected by it. Therefore, the combination

of PLS with kernel produces a powerful algorithm that will solve

this problem rapidly and effectively. The geometric representation

of kernel PLS can be found in Figure 1(b). The kernel PLS

algorithm procedure and the number of determined components

can be found in Table 1 (https://github.com/sqsun/kernelPLS).

The importance of each feature
In original space, let T is a set of components,

T~ft1,t2, � � � ,thg. The accumulation of variation explanation of

T to Y is given by [24,25]

wi~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D

Xh

l~1
Y(Y ,tl)v

2
ilXh

l~1
Y(Y ,tl)

vuuut ,i[f1,2, � � � ,Dg: ð1Þ

where h is the number of components and vil is the weight of the

ith feature for the lth component. Y(Y ,tl)~
XC

j~1
Y(yj ,tl) is the

correlation between tl and Y , where Y(:,:) is correlation function.

The larger value of wi, the more explanatory power of the ith

feature to Y .

It is worth noting that the above equation can also be used in

kernel space. The reason is holding of equation W(yj)~yj , because

here yj is class label. So the expression Y(W(yj),t
W
l ) can be

expressed as Y(yj ,t
W
l ), here tWl [TW and TW~ftW1 ,tW2 , � � � ,tWh g.

Model selection
Two issues are still unresolved before applying kernel PLS for

feature selection. The number of components and the number of

features are unknow.

The number of components
In order to determine the number of components h, there are

two widely used methods in the previous works, one is setting a

fixed number, such as h~3, and another is by cross validation

(CV). Different datasets contain various data structures, therefore,

a fixed number is not suitable for all datasets. Although the CV
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combined with various classifiers lead to good performance, it

suffers from huge computational burden.

To fully circumvent these difficulties, [26] has given an

implication of close relationship between PLS and Fisher’s linear

discriminant analysis (FLDA) in original space. FLDA can

be considered as an optimization problem

aT S1a=aT S2a
� �

, e.g. finding an appropriate projection vector a.

Where S1 presents the inter-class scatter matrix, S2 denotes the

intra-class scatter matrix.

In kernel space, the FLDA turns out to be an optimization

problem arg maxa[ N aT SW
1 a=aT SW

2 a
� �

, where SW
1 and SW

2 are

the inter-class scatter matrix and the intra-class scatter matrix in

kernel space, respectively. We consider

cl~

X
C
i~1Nim

W
ilX

C
i~1Ni

It denotes the contribution of the lth component for classifica-

tion. Where Ni indicates the number of samples in the ith class,

here mW
il represents the mean vector of the i th class with respect to

l th component in projection space and the cl represents

segmentation threshold of classification, the larger cl corresponds

to the more significant in classification.

The number of features
Figure 2 shows how classification performance varies with the

change in number of features which were selected. The average

classification error rate was calculated by two classifiers on all test

datasets. An improvement in performance could be evident if the

number of related features increase from 1 to 25, but after

increasing number of features beyond 25, no significant improve-

ment was obvious. In order to find optimum results for all the

datasets, we extend the range from 20 to 50 features configurations

in our study.

Results

Test datasets
To assess the performance of our method, we have conducted

several experiments on a number of publicly available datasets.

Summary of all data sets we used in our experiments can be found

in table 2 and following is the brief description of each data set.

N AMLALL(A)([27]). There are two parts containing the initial

(train), 38 bone marrow samples from two classes: 27 cases of

acute lymhoblastic leukemia(ALL) and 11 cases of acute

myeloid leukemia(AML); independent (test), 34 samples from

two classes: 20 cases of ALL and 14 cases of AML. Each case is

described by expression levels of 7129 probes from 6817

Figure 1. The geometric representation of PLS and kernel PLS. (a) In the original space, the components tl , l[f1,2g are on plane r. (b) We
projected the data into the kernel space by mapping W(:) and the components tW are captured in kernel space. The weight of each feature is
estimated by arg min

vl
~EtWl {xivlE, i[f1,2, � � � ,Ng.

doi:10.1371/journal.pone.0102541.g001

Table 1. Algorithm 1: kernelPLS.

Input: KX – kernel matrix

KY – kernel matrix

Output: w – the weight of each feature

1: Initializing K1/KX ,c1~z?;

e~0:01, l~1;

2: while clwec1 do

3: Initializing the projection direction bW
0 , bW

l ;

4: while EbW
l {bW

0 Ew do

5: bW
0 /bW

l ;

6: bW
l /KY Kl b

W
l ;

7: bW
l /

bW
l

EbW
l E

;

8: end while

9: Calculating the component tWl , tWl /Klb
W
l ;

10: Deflating target matrix Yl , Ylz1/Yl{D{1tWl tWl
T

Yl , where D~tWl
T

tWl ;

11: Deflating kernel matrix Kl , Klz1/(I{D{1tWl tWl
T

)Kl (I{D{1tWl tWl
T

);

12: Calculating the contribution of the lth component cl , cl~

XM

i~1
Nim

W
ilXM

i~1
Ni

;

13: l~lz1;

14: end while

15: h~l{1

16: Calculating the weight of each feature w via Equation(1)

17: return w

doi:10.1371/journal.pone.0102541.t001
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human genes. Source: http://www-genome.wi.mit.edu/

cgi-bin/cancer/datasets.cgi;

N Breast(B)([28]). The dataset used the raw intensity Affym-

etrix CEL files and normalized the data by RMA procedures.

A final expression matrix comprising 22283 features and 209

samples, 71 of which are from patients, the rest 138 samples

are normal samples. Source: http://math.bu.edu/people/

sray/software/prediction;

N Lung(L)([29]). This dataset contains 86 samples: 24 are

tumor samples and 62 are normal controls, 7129 genes with

highest intensity across the samples are considered. Source:

http://math.bu.edu/people/sray/software/prediction/;

N Prostate(P) ([30]). This dataset contains 52 prostate tumor

samples and 50 normal samples with 12600 genes. An

independent set of testing samples is generated from the

training data, 25 tumor and 9 normal samples are extracted

Figure 2. The effect of different numbers of selected features. Two classifier, SVM and KNN, are used for measuring the performance of
average error of all test datasets based on kernelPLS selector. Where the optimal parameters of RBF kernel SVM are determined by partial swarm
optimization and the parameter k for the nearest neighbors is 5.
doi:10.1371/journal.pone.0102541.g002

Table 2. The cancer classification datasets1 used in the present paper.

Class Dataset Sample Feature Class Source

AMLALL 72 7129 2 [27]

Breast 209 22283 2 [42]

Two-class

Lung 86 7129 2 [29]

Prostate 102 12600 2 [30]

DLBCL 77 7129 2 [31]

Medulloblastoma 60 7129 2 [32]

Stjude 215 12558 7 [13]

Lymphoma 62 4026 3 [33]

Multi-class

SRBCT 83 2308 4 [34]

MLL 72 8685 3 [35]

Lung 203 3312 5 [37]

1Available at https://github.com/sqsun/kernelPLS-datasets.
doi:10.1371/journal.pone.0102541.t002
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according to Singh’s publication. Source (training): http://

www.broadinstitute.org/cgi-bin/cancer/datasets.cgi;

N DLBCL(D)([31]). The goal of this dataset is to distinguish

diffuse large B-cell lymphoma (DLBCL) from follicular

lymphoma (FL) morphology. This dataset contains 58 DLBCL

samples and 19 FL samples. The expression profile contains

7129 genes. Source: http://www-genome.wi.mit.edu/mpr/

prostate;

N Medulloblastoma(M)([32]). Patients outcome prediction

for central nervous system embryonal tumor. Survivors are

patients who are alive after treatment whiles the failures are

those who succumbed to their disease. The dataset contains 60

patient samples, 21 are survivors and 39 are failures. There are

7129 genes in the dataset. Source: http://www-genome.wi.

mit.edu/mpr/CNS;

N Stjude(S)([13]). The dataset has been divided into six

diagnostic groups, BCR-ABL (9 samples), E2A-PBX1 (18

samples), Hyperdiploidw50 (42 samples), MLL (14 samples),

T-ALL (28 samples) and TEL-AML1 (52 samples)), and one

that contains diagnostic samples (52 samples) that did not fit

into any one of the above groups. There are 12558 genes.

Source: http://www.stjuderesearch.org/data/ALL1;

N Lymphoma(Ly)([33]). The dataset consists of measure-

ments of 4026 genes from 62 patients. The patients are

classified into three classes: lymphoma and leukemia (DLCL,

42 samples), follicular lymphoma (FL, 9 samples) and chronic

lymphocytic leukemia (CLL, 11 samples). We estimated the

missing values of ‘‘NA’’ symbol in original ratio data by KNN-

imputed method (k~10). Source: http://llmpp.nih.gov/

lymphoma;

N SRBCT(SR)([34]). The dataset contains 83 samples and

2,308 gene expression values. It can be divided into four classes,

the Ewing family of tumors (EWS), Burkitt lymphoma(BL),

neuroblastoma (NB) and rhabdomyosarcoma (RMS). Among

the 83 samples, 29, 11, 18, and 25 samples belong to classes

EWS, BL, NB and RMS, respectively. Source: http://www.

biomedcentral.com/content/supplementary/1471-2105-7-

228-S4.tgz.

N MLL(ML)([35]). The dataset contains 72 samples in three

classes, acute lymphoblastic leukemia (ALL), acute myeloid

leukemia (AML), and mixed-lineage leukemia gene (MLL),

which have 24, 28, 20 samples, respectively. In our

experiment, we preprocessed this dataset according to

reference [36] and obtained a dataset with 72 samples and

8685 genes. Source: http://www.biomedcentral.com/ con-

tent/supplementary/1471-2105-7-228-S4.tgz.

N Lung(Lu)([37]). The total of this dataset contains 203 samples

with 12600 genes in five classes, adenocarcinomas (139),

squamous cell lung carcinomas (21), pulmonary carcinoids

(20), small-cell lung carcinomas(6) and normal lung (17). We

preprocessed the dataset according to reference [36] and

obtained a dataset with 203 samples and 3312 genes. Source:

http://www.biomedcentral.com/content/supplementary/

1471-2105-7-228-S4.tgz.

Comparison of selected genes
In our first experiment, we used two datasets, namely the

Leukemia data (two-class) of [27] and the Lymphoma data(three-

class) of [33], to compare our method with previous works with

respect to the selected genes.

For the Leukemia data, we collected several most important

genes (in table 3) that were published in several papers. It can

readily be seen that three probes, X95735_at, M27891_at and

M23197_at were reported by five published papers, and their

ranking by our method are 4th, 17st and 8st, respectively. We

notice that there are many overlapping of genes among the list of

papers.

For Leukemia data, the top-ranked 40 features obtained by our

procedure are shown in table 4 in which genes are in columns

from 1 to 40. There is a worthwhile result achieved by our

Table 3. Description of genes reported by existing published papers and ranked by our method.

Accession number Gene description References Rank

X95735_at Zyxin [43] [38] [27] [44] [28] 4

M23197_at CD33 [43] [38] [27] [44] [28] 8

U22376_cds2_s_at C-myb [38] [27] [44] [28] 74

M27891_at Cystatin C [43] [38] [27] [44] [28] 21

M16038_at LYN [38] [27] [44] [28] 11

M84526_at DF(adipsin) [43] [38] [27] [44] 9

M27783_s_at ELA2 Elastatse 2 [38] [44] [28] 80

U50136_rna1_at LTC4 synthase [38] [27] [28] 3

Y12670_at Leptin receptor [38] [27] [28] 2

U46499_at Glutathione [43] [38] [44] 96

L09209_s_at Amyloid beta [43] [38] [44] 48

U46751_at p62 [38] [27] 19

M55150_at Fumarylacetoacetate [38] [27] 7

M83652_s_at Properdin [38] [27] 22

M80254_at CyP3 [27] [28] 17

X17042_at Proteoglycan 1 [43] [27] 10

U82759_at HoxA9 [43] [27] 8

doi:10.1371/journal.pone.0102541.t003
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method, that is, it obtained the genes with the highest weight.

Many of these genes are known as differentially expressed genes by

many foregoing studies. 24 out of 40 genes are listed in this table

that were also selected by [27], which shows the effectiveness of

our method.

For the Lymphoma data of [33], the missing values are imputed

by KNN-imputed method(k~10). The top 40 genes ranked by

our procedure are listed in table 5. From the table, We can see that

important genes can be captured easily by our method. There are

many genes that are also chosen by [38].

Figure 3 illustrates the differentially expressed genes for two

datasets, namely the Leukemia data and the Lymphoma data. No

single gene is uniformly expressed across the class, all these genes

as a group appear correlated with class which is illustrating the

effectiveness of the Kernel PLS method. In Figure 3(a) the top

panel is consist of three genes GENE1622X, GENE2402X and

GENE1648X that are highly expressed in DLCL, middle panel is

comprised of GENE1606X, GENE896X and GENE1617X that

are highly expressed in DLCL but moderately expressed in FL.

Bottom panel compose of three genes, namely GENE1602X,-

GENE681X and GENE1618X, are more highly expressed in

CLL. In Figure 3(b) the top panel shows three probes highly

express in AML and the bottom panel shows three probes more

highly expression in ALL. The probe U377055_rna1_s_at was

found by our method to distinguish AML from ALL. Figure 3(c)

demonstrate the projected result of top 100 genes using sammon

mapping which shows DLBCL, CLL, FL are very clear and the

boundaries can be easily drawn.

Comparison of several multivariate-based feature
selectors

In our second experiment, we compared several feature

selectors with our procedure based on two classifiers, SVM and

KNN. In our experiments, we choose the RBF kernel for each

dataset to perform classification. To determine the best values of

C(-c) and c(-g), we conducted particle swarm optimization
algorithm to pick the pair (C,c) with best accuracy in the range

of C[f10{3, � � � ,102g and c[f10{3, � � � ,104g. We set the param-

eter to k~5 for k-nearest neighbor. To obtain a statistically

reliable predictive measurement, we performed 10-fold cross

validation for two-class datasets and 5-fold cross validation for

multi-class datasets. The results are evaluated by classification

accuracy(Acc), area under receiver operating characteristic curve

(AUC) for two-class problems and classification accuracy(Acc),

Cohen’s Kappa coefficient(Kappa) for multi-class problems. The

reason of using 5-fold cross validation for multi-class datasets is

that there is just a few number of samples in some groups (classes)

of these datasets. Therefore to ensure the presence of samples of

each class in training and also in test datasets we need to perform

5-fold cross validation for multi-class datasets.

In this paper, the comparison was conducted with four

competitive algorithms, PLS, ReliefF, SVMrfe and mRMR. The

Table 4. Top-ranked 40 features selected using kernelPLS for the Leukemia dataset.

1. M23197_at1 11.M16038_at 21.M27891_at 31.M28130_rna1_s_at

2.Y12670_at 12.M96326_rna1_at 22.M83652_s_at 32.M37435_at

3.U50136_rna1_at 13.X70297_at 23.M19507_at 33.M98399_s_at

4.X95735_at 14.M62762_at 24.M63138_at 34.U12471_cds1_at

5.D49950_at 15.X85116_rna1_s_at 25.X58431_rna2_s_at 35.U37055_rna1_s_at

6.X04085_rna1_at 16.L08246_at 26.Y00787_s_at 36.U67963_at

7.M55150_at 17.M80254_at 27.M68891_at 37.Y07604_at

8.U82759_at 18.M22960_at 28.X52056_at 38.M69043_at

9.M84526_at 19.U46751_at 29.M11147_at 39.U63289_at

10.X17042_at 20.M81933_at 30.M57710_at 40.M81695_s_at

1The boldfaced probes were selected by [27].
doi:10.1371/journal.pone.0102541.t004

Table 5. Top-ranked 40 features selected using kernelPLS for the Lymphoma dataset.

1.GENE1622X1 11.GENE1608X 21.GENE1636X 31.GENE1646X

2.GENE2403X 12.GENE622X 22.GENE710X 32.GENE721X

3.GENE653X 13.GENE833X 23.GENE2401X 33.GENE709X

4.GENE1644X 14.GENE712X 24.GENE1641X 34.GENE699X

5.GENE1607X 15.GENE735X 25.GENE654X 35.GENE2110X

6.GENE1647X 16.GENE1553X 26.GENE1661X 36.GENE639X

7.GENE1610X 17.GENE708X 27.GENE1702X 37.GENE717X

8.GENE2402X 18.GENE530X 28.GENE642X 38.GENE2109X

9.GENE1648X 19.GENE675X 29.GENE1744X 39.GENE2399X

10.GENE1643X 20.GENE2400X 30.GENE689X 40.GENE2397X

1The boldfaced genes were selected by [38].
doi:10.1371/journal.pone.0102541.t005
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parameter setting of them are as follows: for the PLS-based feature

selection, we used the SIMPLS method and the number of

components determined by self-adaptive manner which is the

same as the kernelPLS (the proposed method). The parameter k of

ReliefF is equal to the number of sample according to the

published paper [39]. For SVMrfe, in order to ensure acceptable

running time, we use SVM with RBF kernel and its parameter

settings are same as in LIBSVM.

Without loss of generality, we used two datasets, Breast(two-

class) and Lymphoma(three-class) to show the performance of our

method. Figure 4 shows the comparison of error rate between our

method and four other methods. One can see that when number

of selected features are 30, error rate of our method is less than

other methods for both classifiers and both datasets.

Table 6 and 7 summarized the comparison of results generated

by our method and other methods with respect to Acc and AUC

for two-class datasets. From the results, we can see that the

performance of our method is better than others. Refers to table 6

we can see that for Breast(B) and Prostate(P) datasets, accuracy of

our method is considerably higher as compare to other methods,

which shows the effectiveness of our method.

Similarly in table 7 for datasets Breast, Lung, DLBCL,

Medulloblastoma, Prostate and Stjude, kernelPLS shown better

accuracy rate for SVM classifier wrather than KNN. Both Acc and

AUC values of our method have higher values among others and

finally the average results likewise are best. Although for few

datasets our results are similar to their results but in these cases

time taken by our method is significantly smaller than other

methods. For example in table 7 for AMLALL dataset, including

our method, the AUC is 100% for many methods but time

consumed by our method is only 0.0891 s while the time taken by

other methods, ReliefF, mRMR, SVMrfe and PLS, are about 5 s,

52 s, 210 s and 12 s, respectively. So time consumption by our

algorithm is many times less than others which depicts overall well

performance of our method.

It is worth noting that our method outperforms others on three

hard-classify datasets, Wang’s Breast cancer, Gordon’s Lung

adenocarcinoma and Pomeroy’s Medulloblastoma. We also make

a comparison with the results of other feature selectors in

published papers. Fox example, the reference [40] reported that

the accuracies of k-TSP+SVM on these datasets were 67.1%,

72.2% and 64.2%, respectively. The reference [41] combined

multiple feature selection (or feature transform) approaches for

Medulloblastoma dataset and the obtained highest Acc was 70%.

To estimate the performance of our method we did not limit our

evaluation to only two-class datasets we also used 5 multi-class

datasets in our experiments. Tables 8 and 9 demonstrate the

comparison of kernelPLS with other methods for multi-class

datasets on the bases of results obtained for two evaluation

measures, namely Acc and Kappa. Results shown in table 8 and

table 9 are for two classifiers KNN and SVM, respectively. In

table 8 results obtained by kernelPLS are better than Relief,

SVMrfe and PLS and highly competitive to mRMR method for

several multi-class datasets. For example in case of Stjude dataset

for Acc and Kappa values by kernelPLS are 96.4% and 0.956

respectively which are highest among all values achieved by other

methods. Likewise table 9 authenticates the high performance by

kernelPLS over other methods for SVM classifier. Here one can

see that kernelPLS give outperforming results for all datasets by

achieving accuracies and Kappa coefficients values superior than

all other methods. As a conclusion the overall high average Acc

and Kappa values in both tables show the effectiveness and

significance of our method as compare to other popular methods.

Table 10 shows the comparison between running time taken by

our method and other methods. There is no single method among

these that can perform faster than our method. It clearly shows

that kernelPLS is faster than the other algorithms. For example for

Figure 3. The genes expression levels of two datasets, namely the Leukemia and the Lymphoma data. Expression levels for each gene
are normalized across the samples such that the mean is 0 and the SD is 1. Expression levels greater than the mean are shaded in black, and those
below the mean are shaded in white. (a) The expression profiles of the Lymphoma dataset. Each row corresponds to a gene, with the columns
corresponding to expression levels in different samples. (b) The expression profiles of the Leukemia dataset. Each row expresses a probe while each
column describes expression level in different samples. (c) Display the results on the Lymphoma dataset using sammon mapping. This projection
expresses the gene expression levels of genes that perfectly separate the three types of Lymphoma subtypes, i.e. DLBCL, FL, and CLL.
doi:10.1371/journal.pone.0102541.g003
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AMLALL dataset time consumed by our method is 0.0891 s while

time spent by ReliefF, mRMR, SVMrfe and PLS are 5.1510 s,

52.5854 s, 210.4046 s, 12.1222 s, respectively.

Discussion

In this article, we proposed an effective multivariate-based

feature filter method for cancer classification, namely, kernelPLS-

based filter method. We showed that gene-gene interactions

cannot be ignored in feature selection techniques to improve

classification performance. In other words the nonlinear relation-

ship of gene-gene interactions is a vital concept that can be taken

into account to enhance accuracy. To capture these nonlinear

relations of interaction between genes we used kernel method

because kernel method can be used to reveal the intrinsic

relationships that are hidden in the raw data. In order to capture

the reasonable number of components, we make use of the

relationship between PLS and linear discriminant analysis to

determine the number of components in kernel space based on

kernel linear discriminant analysis. To verify the importance of

gene-gene interactions we compared our feature selector with

other multivariate-based feature selection methods by using two

classifiers SVM and KNN. Experimental results, expressed as both

accuracy(Acc) and area under the ROC curve(AUC), showed that

our method leads to promising improvement in ACC and AUC.

We can conclude that the gene-gene interactions whats more,

nonlinear relationships of gene-gene interactions are core

interactions that can improve classification accuracy, efficiently.

We can summarize the characteristics of proposed approach as

follows: (1)Fast and efficient. The time complexity of deflation

procedure used after the extraction of each component scale is

O(N2), where N is the number of sample. In most cases, the

number of sample in microarray data is less than 150, therefore,

the running speed of kernelPLS procedure(feature selection time)

is faster than others, which are summarized in table 10. (2)Model-

free, e.g. no need the distributional assumptions. Because of small

sample size, it is difficult to validate distributional assumptions,

such as Gaussian distribution, Gamma distribution etc. (3)Appli-

cable to both two-class as well as multi-class classification

problems.

In our method, the choice of kernel functions can affect the

results. When high dimensionality exist(such as microarray

datasets), the performance of linear kernel is better than Gauss

Figure 4. Classification error rate of different number of selected features using two classifiers, KNN and SVM. (a) and (b) indicate the
results on the Breast dataset. (c) and (d) indicate the results on the Lymphoma dataset.
doi:10.1371/journal.pone.0102541.g004
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kernel for our method. What’s more, in case of linear kernel there

is no noticeable effect on the results while adjusting its parameters.
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