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Abstract

This study analyzes whether the release of nitric oxide (NO) and thromboxane A2 (TXA2) depends on the time lapsed since
gonadal function is lost, and their correlation with the proliferation of vascular smooth muscle cells (VSMC) mediated by the
epidermal growth factor receptor (EGFR). For this purpose, aortic and mesenteric artery segments from control and 6-weeks
or 5-months orchidectomized rats were used to measure NO and TXA2 release. The results showed that the basal and
acetylcholine (ACh)-induced NO release were decreased 6 weeks post-orchidectomy both in aorta and mesenteric artery,
but were recovered 5 months thereafter up to levels similar to those found in arteries from control rats. The basal and ACh-
induced TXA2 release increased in aorta and mesenteric artery 6 weeks post-orchidectomy, and was maintained at high
levels 5 months thereafter. Since we previously observed that orchidectomy, which decreased testosterone level, enlarged
the muscular layer of mesenteric arteries, the effect of testosterone on VSMC proliferation was analyzed. The results showed
that treatment of cultured VSMC with testosterone downregulated mitogenic signaling pathways initiated by the ligand-
dependent activation of the EGFR. In contrast, the EGFR pathways were constitutively active in mesenteric arteries of long-
term orchidectomized rats. Thus, the exposure of mesenteric arteries from control rats to epidermal growth factor (EGF)
induced the activation of EGFR signaling pathways. However, the addition of EGF to arteries from orchidectomized rats
failed to induce a further activation of these pathways. In conclusion, this study shows that the release of NO depends on
the time lapsed since the gonadal function is lost, while the release of TXA2 is already increased after short periods post-
orchidectomy. The alterations in these signaling molecules could contribute to the constitutive activation of the EGFR and
its downstream signaling pathways after long period post-orchidectomy enhancing the proliferation of the vascular
muscular layer.
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Introduction

The vascular tone is regulated by several mechanisms that

implicate the participation of hormonal, neuronal and endothelial

factors [1]. It has been established that sex hormones are able to

modify the production of different vasoactive factors released from

the vessel wall. Among them, nitric oxide (NO), prostanoids and

reactive oxygen species play pivotal roles regulating the vascular

tone through their vasoactive properties as well as regulating cell

proliferation [2–4]. An altered production of these factors could

modify the regulation of the vascular tone leading to the

development of different vascular pathologies.

Clinical studies have shown a correlation between hypotestos-

teronemia and incidence of cardiovascular diseases [5] and

mortality risk [6]. These issues, as well as different mechanisms

of action by which testosterone causes vasodilation were reviewed

by Jones [7], In this regard, previous studies from our group have

demonstrated an increase in the production of superoxide anion

[8], prostanoids, such as thromboxane A2 (TXA2) [9,10] and

prostaglandin E2 (PGE2) [11] five months post-orchidectomy.

Concerning the effect of androgens on endothelial NO release,

most of studies were carried out in endothelial cells culture

showing an increased release [12–14]. However, when the effect of

androgenic derivatives was studied in orchidectomized animals,

the vasodilator action of NO rather than its release was analyzed,
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and contradictory results were often obtained [15–17]. Thus, the

involvement [16] or lack of involvement [17] of NO in

testosterone-induced relaxation has been reported. Moreover,

androgen-induced relaxation has been reported to be mediated by

endothelium-independent mechanisms [18]. This variety of results

could depend on the tissue, the concentration, administration-

time, and the molecular structure of the androgenic derivatives

used.

Concerning the effects of sex hormones deprivation on vascular

function, we previously demonstrated in mesenteric artery of

orchidectomized rats that the increased activity of protein kinase C

(PKC) positively regulated eNOS activity [19], preventing a

decrease in the release of endothelial NO. In aorta from rats, we

reported that the effect of ovariectomy on NO release depended

on the time lapsed since the loss of the gonads [20]. This implies

that different compensatory mechanisms are likely to be at work

during prolonged periods of time after gonadectomy preventing

vascular failure, as already suggested [21]. In view of these data,

our first objective in the present study was to determine whether

there were differences in the release of NO and TXA2 in aorta and

mesenteric arteries of rats subjected to short (6 weeks) and long (5

months) periods post-orchidectomy.

We have also found in a previous study an enlargement of the

media muscular layer of mesenteric arteries from orchidectomized

rats [8], suggesting that testosterone deprivation could enhance the

proliferation of VSMC. The ability of TXA2 [22], PGE2 [23],

superoxide anion [24] and PKC [25] to induce epidermal growth

factor receptor (EGFR) transactivation have been reported,

suggesting that this receptor could be implicated in the

hyperproliferation of the mesenteric muscular layer from rats

after 5-months post-orchidectomy. The EGFR is a receptor

tyrosine kinase (RTK), which upon ligand-dependent dimerization

leads to the activation of several intracellular signaling pathways,

including the mitogen-activated protein kinase/extracellular-reg-

ulated kinases 1/2 (MAPK-ERK1/2) and the phosphatidylinositol

3-kinase (PI3K)/Akt pathways that control cell survival and cell

growth [26]. In view of these data, our second objective was to

analyze whether the loss of gonadal function for long periods

enhances the ligand-dependent activation of the EGFR and its

downstream signaling pathways in mesenteric arteries, and

whether this can be correlated with the effect of testosterone on

VSMC.

Materials and Methods

Animal protocols
Male Sprague-Dawley rats (6 months-old) were housed in the

Animal Facility of the Universidad Autónoma de Madrid

(registration number EX-021U) in accordance with directives

609/86 CEE and RD 233/88 of the Ministerio de Agricultura,
Pesca y Alimentación of Spain. The animals were subjected to

12 hours of light/dark cycles and standard feeding with fodder

and water ad libitum. In a first group, orchidectomy was

performed 4 weeks after birth and 5 months later the animals

were sacrificed. In a second group, the orchidectomy was

performed 4.5 months after birth and 6 weeks later the animals

were sacrificed. A control group not subjected to orchidectomy

was also included. Surgery was performed under anesthesia by

isoflurane inhalation. Absence of retraction reflex in the hind-legs

after mechanical stimulation and regular respiratory rhythm were

tested to determine the adequacy of anesthesia. For analgesia, rats

were treated with 0.30 mg/Kg SC meloxicam (Metacam from

Boehringer-Ingelheim) immediately after surgery and with 50 mg/

Kg ibuprofen for 4 days. Systolic blood pressure was indirectly

measured in animals 2–3 days before sacrifice by the tail-cuff

method [21] using a Leica Digital Pressure Meter LE5000

(Barcelona, Spain). Extraction of blood samples (by cardiac

puncture) for testosterone levels determination and body weight

measurement were done the day of the experiment before the

animals were sacrificed by CO2 inhalation. The aorta and the

superior mesenteric artery were carefully dissected and removed,

cleaned of connective tissue, cut into 4 mm long segments and

placed in Krebs-Henseleit solution (KHS) at 4uC containing (in

mM): NaCl 115, CaCl2 2.5, KCl 4.6, KH2PO4 1.2, MgSO4 1.2,

NaHCO3 25, glucose 11.1, Na2-EDTA 0.03 (pH 7.4). The

investigation conforms to the Guide for the Care and Use of
Laboratory Animals published by the USA National Institutes of

Health (NIH publication No. 85.23 revised 1985). This study was

approved by the Ethical Committee of the Universidad Autónoma
de Madrid.

Testosterone levels
The testosterone level in the serum was determined using an

enzyme immunoassay kit (Cayman Chemical; Ref. No. 582701).

The assays were performed according to the manufacturer’s

instructions.

Cells culture
Vascular smooth muscle cells (SV40LT-VSMC) were obtained

from the American Type Culture Collection (ATCC) (Lot

No. 3350860) and grown in Dulbecco’s Modified Eagle’s Medium

(DMEM) supplemented with 10% (v/v) fetal bovine serum (FBS),

40 mg/ml gentamicine and 2 mM L-glutamine in F75 flasks at

37uC in a humidified atmosphere containing 5% CO2. Cells were

seeded (450,000 cells/well) in P6 plates in the same medium, and

maintained overnight in the absence of FBS and in the absence

and presence of testosterone (10 nM) before performing the

experiments.

NO release
Endothelium-intact arterial segments from control and orchi-

dectomized rats were subjected to a resting tension of 9.8 and

4.9 mN in aorta and mesenteric artery, respectively. After an

equilibration period of 60 min in a buffer containing (in mM):

NaCl 119, N-(2-hydroxyethyl)piperazine-N-2-ethane-sulfonic acid

(HEPES) 20, CaCl2 1.2, KCl 4.6, MgSO4 1, NaHCO3 5, glucose

5.5, KH2PO4 0.4, Na2H2PO4 0.15 (pH 7.4), the presence of

vascular endothelium was tested by the ability of ACh (10 mM) to

relax segments pre-contracted with noradrenaline (NA, 0.1 and

1 mM in aortic and mesenteric segments, respectively). Only

arterial segments in which the ACh-induced relaxation was higher

than 75% of the previous contraction were used. After, the arterial

segments were rinsed several times and recovered the basal tone,

arteries were incubated with the fluorescent probe 4,5-diamino-

fluorescein (DAF-2) (0.5 mM) for 45 min, as previously described

[8]. Then, the medium was collected to measure the basal NO

release. Once the organ bath was refilled, arteries were pre-

contracted with NA for 2 min (0.1 mM and 1 mM in aorta and

mesenteric segments, respectively), and then followed by the

addition of cumulative ACh concentrations (0.1 nM–10 mM)

applied at 1 min intervals to induce relaxation and to measure

NO release. The fluorescence emitted by DAF-2 was measured in

a spectrofluorimeter (LS50 Perkin Elmer instruments, FL

WINLAB Software) using an excitation wavelength of 495 nm

and an emission wavelength of 515 nm. When required assays

were performed in the presence of the NO synthetase (NOS)

inhibitor L-NG-nitroarginine methyl ester (L-NAME), in which the

ACh-induced fluorescence was abolished [27]. Blanks were
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collected from segment-free medium in order to subtract the

background fluorescence. The amount of NO released was

expressed as arbitrary units/mg tissue.

Release of TXA2

The production of TXA2 in vivo is typically monitored by

measuring its stable metabolite TXB2 using an enzyme immuno-

assay kit [11]. Endothelium-intact aortic and mesenteric arterial

segments from control and orchidectomized rats were subjected to

an equilibration period of 30 min in KHS at 37uC followed by 2

wash periods of 10 min using 0.2 ml of the same medium and

collecting samples to measure the basal release. Once fresh KHS

was replaced, arteries were exposed to NA for 2 min (0.1 mM and

1 mM in aorta and mesenteric segments, respectively), and then

cumulative ACh concentrations (0.1 nM–10 mM) were applied at

1 min interval. The medium was collected, and stored at 280uC
until use. To analyze the effect of testosterone on the release of

TXA2, vascular smooth muscle cells (VSMC) were seeded

(450,000 cells/well) in P6 plates and grown at 37uC. Thereafter,

plates were maintained overnight in the same conditions but in the

absence of FBS and in the absence and presence of testosterone

(10 nM). Media were collected and stored at 280uC until use. The

TXB2 assay was carried out according to the manufacturer’s

instructions. Results were expressed as pg TXA2/mg tissue or as

pg TXA2/ml of medium for arteries or VSMC, respectively.

Preparation of cell and tissue extracts
VSMC were seeded (450,000 cells/well) as previously men-

tioned in P6 plates and grown at 37uC. Plates were maintained

overnight in the absence of FBS and in the absence and presence

of testosterone (10 nM). Time-course stimulation (0–30 min) with

EGF (10 nM) was carried out and the reaction was stopped with

10% (w/v) trichloroacetic acid. Artery segments were incubated in

the absence and presence of EGF (10 nM) during 2 minutes. The

reaction was stopped with liquid nitrogen and the arteries were

stored at 280uC until used. Arterial segments were homogenated

at 4uC in 150 ml of RIPA buffer containing 50 mM Tris-HCl

(pH 8), 150 mM NaCl, 1% (w/v) deoxycholic acid, 1% (v/v) NP-

40, 1% (v/v) SDS, 100 mM NaF, 1 mM Na3VO4, and a protease

inhibitor cocktail (Calbiochem; Ref. No. 539134) supplemented

with freshly prepared 1 mM phenylmethylsulfonyl fluoride.

Samples were centrifuged at 16,000 g during 30 min at 4uC and

the supernatant was collected to quantify protein concentration by

the bicinchoninic acid assay using the BCATM Protein Assay Kit

(Pierce).

Western blotting analysis
Electrophoresis Laemmli’s loading buffer was added to each

sample and heated 5 min at 100uC. Proteins were separated by

SDS-PAGE in linear gradient (5–20%) gels, and transferred to

polyvinylidene difluoride (PVDF) membranes (BioTRACETM).

Membranes were stained with 0.1% (w/v) Fast Green in 50% (v/

v) methanol and 10% (v/v) acetic acid to ascertain equal loading.

Membrane segments were blocked with 5% (w/v) fat-free

powdered milk or 5% (w/v) bovine serum albumin following the

instructions of the antibodies’ manufactures in 10 mM Tris-HCl

(pH 7.4), 150 mM NaCl and 0.1% (v/v) Tween-20 (TBS-T), and

incubated overnight with the following primary antibodies (Cell

Signalling Technology) at a 1:2000 dilution: monoclonal anti-

phospho-tyrosine (4G10) and anti-phospho-ERK1/2 (Thr202/

Tyr204); and polyclonal anti-Akt (pan), anti-phospho-Akt (S473)

and anti-ERK1/2. Membranes segments were washed with TBS-

T and incubated with the corresponding anti-IgG horseradish

peroxidase-conjugated antibody (Invitrogene) at a 1:5000 dilution

following commercial recommendations. Finally, membranes were

developed with the ECLTM Western Blotting detection kit (GE

Health Care) exposing X-ray films for appropriate periods of time.

The intensity of the bands was quantified with a computer-assisted

scanning densitometer using the NIH Image 1.60 program.

Statistical Analysis
All data are presented as the mean 6 SEM. The experiments

on NO and TXA2 release, testosterone level, body weight and

blood pressure were analyzed using an unpaired Student’s t-test

(GraphPad Prism software), and the activation of the EGFR and

signaling pathways in VSMC in the absence and presence of

testosterone by the two-way analysis of variance (ANOVA). A p,

0.05 was considered significant.

Reagents
The reagents used were: NA, ACh, L-NAME and DAF-2 were

obtained from Sigma-Aldrich, and human recombinant EGF was

from PeproTech EC. Reagents were prepared in distilled water

except NA that was dissolved in a solution of 0.9% (w/v) NaCl and

0.01% (w/v) ascorbic acid, and EGF that was dissolved in 25 mM

HEPES-NaOH (pH 7.4). Reagent stock solutions were kept at 2

20uC and appropriate dilutions were made in KHS or HEPES-

buffer on the day of the experiment.

Results

Effect of short and long periods post-orchidectomy on
serum testosterone levels, body weight and blood
pressure

Table 1 shows that the levels of testosterone in serum samples

drastically decreased in rats 6 weeks post-orchidectomy. These

levels were maintained low in 5-months post-orchidectomized

animals. The body weight was not modified in 6-weeks post-

orchidectomized rats, but in orchidectomized rats after 5 months it

was slightly decreased. Orchidectomy did not significantly modify

the systolic blood pressure in either group (Table 1). We have

observed, however, that in old orchidectomized rats the systolic

blood pressure was increased (control young, 141.564.1 mmHg;

control aged, 149.263.8 mmHg; orchidectomized aged,

159.562.9 mmHg, p,0.05).

Effect of short and long periods post-orchidectomy on
NO and TXA2 release in aorta and mesenteric arteries

ACh enhanced the basal release of NO in aortic segments from

control and orchidectomized rats. However, both basal and ACh-

induced release of NO decreased in 6 weeks post-orchidectomized

rats. These values were restored to similar levels found in aorta

from control animals 5 months after orchidectomy (Fig. 1A).

Similarly, in mesenteric artery, the basal NO release was

strongly decreased in 6-weeks post-orchidectomized rats, and ACh

did not induce a significant further release. As observed in aortic

segments, the basal and ACh-induced NO release in mesenteric

artery was restored to control levels in 5-months post-orchidecto-

mized rats (Fig. 1B).

In aortic segments from control and orchidectomized rats, ACh

enhanced the release of TXA2 [11]. Both basal and ACh-induced

TXA2 release increased 6 weeks post-orchidectomy. This increase

was not further modified in 5 months post-orchidectomized rats

(Fig. 2A). Similar results to those described in aorta were found in

mesenteric arteries at 6 weeks and 5 months post-orchidectomy

(Fig. 2B).
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The levels of TXA2 were also analyzed in the medium

conditioned by VSMC incubated in the absence and presence of

testosterone (10 nM). Our results show that after overnight

incubation of VSMC with testosterone the release of TXA2 was

decreased (control, 8.1760.9 pg/ml; testosterone-treated,

5.460.3 pg/ml; n = 6, p,0.05).

Effect of testosterone on the activation of EGFR signaling
pathways in VSMC

The ligand-dependent activation of the EGFR and their

downstream signaling kinases Akt and ERK1/2 were analyzed

in homogenates of cultured VSMC incubated overnight in the

absence and presence of 10 nM testosterone. Testosterone

treatment slightly decreased the ligand-dependent phosphorylation

(activation) of the EGFR after time course stimulation with 10 nM

EGF (Figs. 3A and 3B). Moreover, the phosphorylation of a

<115 kDa phospho-(Tyr)-protein (p115) (Figs. 3A and 3C), Akt

(Figs. 3A and 3D) and ERK1/2 (Figs. 3A and 3E) were also

significantly reduced. The EGFR was progressively dephosphor-

ylated after addition of its ligand, and this was attributed to the

combined action of phosphatases and the internalization and

proteolytic processing of the receptor, as it is apparent by the

progressive decrease of the total EGFR signal (Figs. 3A).

Immunoprecipitation experiments showed that the <115 kDa

phospho-(Tyr)-protein was not the catalytic subunit of PI3K (data
not shown).

Effect of long period post-orchidectomy on the
activation of EGFR signaling pathways in mesenteric
artery

We also determined the activation of the EGFR and the

downstream Akt and MAPK(ERK1/2) signaling pathways in

homogenates of superior mesenteric artery from control and

orchidectomized rats 5 months after surgery. The stimulation of

mesenteric artery from control rats with 10 nM EGF for 2 min

produced the phosphorylation (activation) of a faint 170 kDa band

corresponding to the EGFR. This was accompanied by a

significant increased phosphorylation of the <115 kDa phospho-

(Tyr)-protein (p115), which is likely to correspond to a substrate of

the EGFR, and the phosphorylation (activation) of Akt and

ERK1/2 in arteries from control rats (Fig. 4). However, in arteries

from orchidectomized rats the EGFR, p115, Akt and ERK1/2

were already activated in basal conditions and did not further

increase their phosphorylation upon addition of EGF (Fig. 4).

Table 1. Time-dependent effect of orchidectomy (Orch) on the serum testosterone level, blood pressure and body weight in male
rats.

Control (n = 7) 6 weeks-Orch (n = 6) 5 months-Orch (n = 8)

Testosterone (pg/mL) 23686323 235645* 220652*

Systolic blood pressure (mmHg) 14365.6 147.567.2 14566.2

Body weight (g) 47369.4 48064.7 43266.8+

The number of animal used are indicated.
*p,0.0001 vs control rats.
+p,0.05 vs control rats.
doi:10.1371/journal.pone.0102523.t001

Figure 1. Time-dependent effect of orchidectomy on the release of NO from rat aorta and mesenteric artery. The plots present the
basal- and ACh-induced NO release in aorta (A) and mesenteric (B) segments from control, 6 weeks and 5 months post-orchidectomized rats. Results
(mean 6 SEM) are expressed as arbitrary units (AU)/mg of tissue. * p,0.05, compared with its respective basal condition; # p,0.05 compared with
basal NO release in control animals; + p,0.05, ++ p,0.001 compared with ACh-induced NO release in control animals. The number of animals used
were: control, 6; 6 week post-orchidectomy, 4; 5 months post-orchidectomy, 7.
doi:10.1371/journal.pone.0102523.g001
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Discussion

The pivotal role of NO and prostanoids in the regulation of the

vascular tone has been established [3,4,28]. Likewise, the

beneficial effect of androgens on the vascular function of males

is widely recognized [5,29–31]. The effects of androgenic

derivatives on NO [12,13] and prostanoids [32,33] signalling

pathways in different tissues have been described. Concerning NO

release, both genomic [12] and non-genomic [13,34] actions of

dehydroepiandrosterone haven been reported. Testosterone has

been also shown to induce NO release via activation of the PI3K/

Figure 2. Time-dependent effect of orchidectomy on the release of TXA2 from rat aorta and mesenteric artery. The plots present the
basal- and ACh-induced TXA2 release in aorta (A) and mesenteric (B) segments from control, 6 weeks and 5 months post-orchidectomized rats.
Results (mean 6 SEM) are expressed as pg/mL/mg tissue. Number of animals: 4–7. * p,0.05, ** p,0.001 compared with its respective basal
condition; # p,0.01 compared with basal TXA2 release in control animals; + p,0.01 compared with ACh-induced TXA2 release in control animals.
The number of animals used were: control, 6; 6 week post-orchidectomy, 4; 5 months post-orchidectomy, 7.
doi:10.1371/journal.pone.0102523.g002

Figure 3. Effect of testosterone treatment on ligand-dependent activation of the EGFR and downstream signaling pathways in
smooth muscle vascular cells. Serum starved SMVC were incubated with 10 nM EGF during the indicated times and the reaction arrested with
10% (w/v) trichloroacetic acid. The samples were processed by Western blots using the indicated antibodies to determine the phosphorylation levels
of the EGFR, p115, Akt, and ERK1/2, and the total levels of EGFR Akt, ERK1/2 and GAPDH as described in Materials and Methods. The total EGFR level
decreased after EGF stimulation due to the expected proteolytic processing of the receptor after ligand-dependent internalization. The total Akt,
ERK1/2 and GAPDH levels were used as loading controls. The intensity of the bands was measured densitometrically and the signal of the different
phosphoproteins was corrected using appropriate loading controls. The photograph (A) shows typical Western blots of the proteins. The top and
bottom arrows point to the phosphorylated EGFR and p115, respectively. The plots (B–E) present the mean 6 SEM phosphorylation of the EGFR
(n = 4) (B), p115 (n = 5) (C), Akt (n = 6) (D), and ERK1/2 (n = 6) (E) from a set of experiments similar to those shown in A.
doi:10.1371/journal.pone.0102523.g003
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Akt cascade [14]. The majority of studies performed in arteries

have been focused on analysing NO function instead of NO

release, and discrepant results have been described. Thus, it has

been reported that testosterone can increase [1,16] and decrease

[15,17] the endothelium-dependent relaxation. However, endo-

thelium-independent relaxation induced by testosterone and its 5-

reduced metabolites has been also reported [18]. Likewise, it has

been described that androgens induce vasorelaxation by activating

K channels by increasing K+ efflux and by inhibiting calcium

channels causing hyperpolarization [30]. These discrepancies

could be explained depending on the tissue or animal model,

the concentration, administration-time and molecular structure of

the androgenic derivatives used. In addition, it is important to note

that most of the published studies analyzed the effect of specific

androgenic derivatives in orchidectomized animals. However, a

more integrative approach could be more informative, especially

taking into account that in 5 months-orchidectomized rats

different signaling pathways are simultaneously working to try to

maintain the vascular function [8,19,27,35].

Taking into account that in aorta from female rats the basal and

ACh-induced NO release was decreased 6 weeks post-ovariecto-

my, but recovered up to levels similar to those found in control rats

5 months thereafter [20], we analyzed whether the vessels from

male rats showed a similar pattern. The results shown in the

present study confirm that this is indeed the case, as both aorta

and mesenteric arteries presented lower basal and ACh-induced

NO release in 6 weeks post-orchidectomized rats. It is important to

note that the mesenteric artery showed greater reduction in NO

release than the aorta, since ACh failed to induce significant NO

release in the former. This result is in agreement with that

reported in mesenteric arteries of female rats, in which the

involvement of endothelial NO was abolished four weeks post-

ovariectomy [28]. This suggests that the effects due to the loss of

gonadal function also depend on the specific vascular bed.

Figure 4. Effect of orchidectomy on the ligand-dependent activation of the EGFR and downstream signaling pathways in the
mesenteric artery. Segments of the superior mesenteric artery from control and 5 months post-orchidectomized rats were incubated in the
absence (2) and presence (+) of 10 nM EGF during 2 min, and the reaction was thereafter arrested freezing the samples in liquid nitrogen as
described in Materials and Methods. The frozen samples were stored and thereafter homogenized and processed by Western blots using the
indicated antibodies. The photograph shows the phosphorylation levels of the EGFR, p115, Akt and ERK1/2, and the total levels of Akt and ERK1/2
and segments of PVDF membranes stained with Fast Green used as additional loading control. The top and bottom arrows point to the
phosphorylated EGFR and p115, respectively. The figure shows a typical experiment from control (n = 4) and orchidectomized (n = 4) rats.
doi:10.1371/journal.pone.0102523.g004
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In addition to NO, prostanoids exert important regulatory

effects on the vascular function. It has been reported that TXA2 is

one of the most important vasoconstrictor prostanoids produced

by the vascular wall that may participate in vascular dysfunction

associated with cardiovascular risk factors [36–38]. We have

already demonstrated that the release of TXA2 was increased 5

months post-orchidectomy in mesenteric artery [9,10,19], prob-

ably as consequence of increased oxidative stress observed in these

experimental conditions. To ascertain whether the release of

TXA2 also depends on the time lapsed since the gonadal function

is lost, its release was also analyzed in vessels from 6 weeks post-

orchidectomized rats. The results showed that after short periods

of gonadal function loss the production of TXA2 was already

increased up to similar levels of those observed in vessels from 5

months post-orchidectomized rats. This increased release of TXA2

over time, could be involved in the maintenance of NO release

during a prolonged period of time after gonadectomy, as observed

in aorta from male (unpublished results) and female rats [21].

Since the reduction of testosterone in the serum was already

evident in 6 weeks post-orchidectomized rats and maintained 5

months post-orchidectomy, the effect of testosterone on TXA2

release in VSMC was analyzed. The results show that the

incubation of VSMC with testosterone decreased the release of

TXA2, in accordance with data previously reported [32]. Overall,

these results indicate that testosterone is involved in the effects

observed, although the participation of gonadal factors or

hormones other than testosterone cannot be discarded.

It is well known that NO and TXA2 are able to regulate platelet

aggregation and vasomotor response [38]. Moreover, it has been

described that NO and TXA2 are important regulators of

endothelial cell migration, angiogenesis and cell proliferation

[39–42]. The participation of the EGFR in cell proliferation has

been widely documented [43,44], since its activation initiates

intracellular signaling pathways with cell proliferation effects in

which the kinases ERK1/2 and Akt are involved [45]. On the

other hand, it has been reported that the TXA2 receptor

transactivates the EGFR by a mechanism implicating Src-

mediated phosphorylation of the receptor [25], and that NO

negatively regulates the EGFR inducing the reversible S-nitrosyla-

tion of the receptor [46,47]. Since we have found in a previous

study an enlargement of the media muscular layer of mesenteric

arteries from orchidectomized rats [8], we correlated the changes

in NO and TXA2 levels with cell proliferation by analyzing the

activation of EGFR-induced signaling pathway. Our results

demonstrate that testosterone downregulates mitogenic signaling

pathways initiated by the ligand-dependent activation of the

EGFR in SMVC. Conversely, a decrease in testosterone after

orchidectomy results in the basal activation of these EGFR

pathways. The exposure of mesenteric arteries from control rats to

EGF for 2 min induced the activation of the EGFR signaling

pathways. However, in arteries from orchidectomized rats the

addition of EGF did not induce a further increase in these

signaling pathways. Overall, these results suggest that a decrease in

the level of circulating testosterone may lead to increased

proliferation of cells in the vascular wall, as previously observed

in the muscular layer [8]. Likewise, the results obtained could

account for the inhibitory effect of testosterone on vascular

remodeling described in resistance mesenteric arteries [48].

Although the exact mechanism by which decreased level of

testosterone upregulates EGFR signaling was not studied in the

present work, the overproduction of TXA2, PGE2 and superoxide

anion in arteries from orchidectomized rats could be involved,

since transactivation of the EGFR by these signaling molecules has

been described [25,38,49,50], initiating the proliferation signal via

the MAPK and Akt pathways. In this context, it has been reported

that hypertension increased the transactivation of RTKs induced

by proinflammatory mediators [51]. In the present study we

reported the activation of the EGFR in mesenteric arteries after

long period post-orchidectomy, and the animals did not develop

hypertension, probably due to the existence of compensatory

mechanisms. We believe that maintaining gonadal function is

essential to prevent the development of hypertension, as only old

orchidectomized animals develop hypertension. Taken together,

these results could contribute to the understanding of the signaling

pathways implicated in pathophysiological situations in which

gonadal function is impaired. (i.e.: aging, hypogonadism, and

pharmacological treatment of prostate cancer).

In summary, this study shows that the release of NO depends on

the time lapsed since the gonadal function is lost, while the release

of TXA2 is already increased after short period post-orchidectomy,

and that this correlates with the possible consequences of the

modifications along the time of these two crucial factors in

regulating the vascular tone and the proliferation of vascular cells.

In addition, this study describes for the first time the increased

activation of the EGFR and its downstream signaling pathways in

rat mesenteric arteries after long period post-orchidectomy, that

maintained for prolonged periods of time could contribute to the

development of hypertension.
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