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Abstract

Despite the fact that conceptual models of individual decision making under risk are deterministic, attempts to
econometrically estimate risk preferences require some assumption about the stochastic nature of choice. Unfortunately,
the consequences of making different assumptions are, at present, unclear. In this paper, we compare three popular error
specifications (Fechner, contextual utility, and Luce error) for three different preference functionals (expected utility, rank-
dependent utility, and a mixture of those two) using in- and out-of-sample selection criteria. We find drastically different
inferences about structural risk preferences across the competing functionals and error specifications. Expected utility
theory is least affected by the selection of the error specification. A mixture model combining the two conceptual models
assuming contextual utility provides the best fit of the data both in- and out-of-sample.
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Introduction

Virtually all conceptual models of risky choice, including

Expected Utility Theory (EUT) and the behavioral alternatives

such as prospect theory, are deterministic. The deterministic

nature of the theories presents a challenge for applied economists

attempting to econometrically estimate risk preferences in a

sample of individuals. In essence, the analyst must make

assumptions about the decision making process that go above

and beyond the content of the theory, making it difficult to

conduct clean tests of the underlying theory itself and to

confidently identify underlying structural parameters. The litera-

ture on stochastic error specifications is not negligible but is by no

means a large one. While a few previous studies have analyzed the

extent to which different stochastic error specifications influence

estimates of risk preferences [1,2], there have been new

developments in the field [3] that have not been thoroughly

addressed in previous model comparisons, and there has been an

almost exclusive focus on the ability of models to fit the data in-

sample (with few exceptions) over the recent years.

The focus on in-sample fit is particularly important in

determining which decision making theory, EUT or a behavioral

alternative, best describes lottery choices. EUT is a relatively

parsimonious theory, characterizing risk preferences simply by the

curvature of the utility function over income or wealth. Some

popular functional forms such as constant relative (or constant

absolute) risk aversion consist of a single parameter. Behavioral

theories often proceed by adding parameters to the basic EUT set-

up. Cumulative prospect theory, for example, allows for different

degrees of curvature in the gain and loss-domains and for

additional parameters describing the extent to which individuals

under- or over-weight low probability events (both in the gain and

loss domains). Given the additional parameters, there might be a

tendency for such behavioral models to over-fit the data, and while

in-sample test statistics, such as Akaike or Bayesian Information

Criteria, suggest improvements in model fit, this is no guarantee

the model will perform better predicting out-of-sample.

Starting with [4] and [5], several previous studies have

compared different decision making models under risk. Table 1

lists these empirical studies in chronological order. The literature

has attempted to evaluate several different decision theories albeit

EUT and Rank Dependent Utility (RDU) are the main

contenders. Various error stories have been evaluated as well,

using a variety of model fit criteria. The early literature frequently

relied on Akaike’s Information Criterion (AIC) [6], while it is only

recently that there has been a focus on the predictive accuracy of

the models using out-of-sample fit criteria. The table does not list

all the utility functions (e.g., constant relative risk aversion, expo-

power etc.) and probability weighting functions that each study has

evaluated under different error stories because this would render

the table unreadable.

Because most experimental studies are performed with a

relatively small sample of subjects, it would seem that most

analysts are attempting to extrapolate risk preferences out-of-

sample to the more general population, and as such, studying out-

of-sample prediction performance appears a worthwhile line of

inquiry. Judging out-of-sample prediction performance is not

always easy for discrete choice problems, and as such, we turn to

the out-of-sample-log-likelihood function approach long used in

the marketing literature for model selection [7,8] which has been

further elucidated in the economics literature [9,10].
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The purpose of this paper is to use several in- and out-of sample

model selection criteria to determine which stochastic error

specification and decision theory best fits lottery choice data

gathered in an experimental setting. In particular, we compare

three different error specifications: one of those has been used by

[5] and is called the Fechner error specification (or sometimes

called ‘white noise’); the second error specification, called the Luce

error, has been popularized by [11] (H&L); the third error

specification has been recently introduced by [3,12,13] and given

the name contextual utility. Obviously, this is not an exhausitive

list of all possible errors specifications. On the contrary, we picked

(what seems to us) the most popular error stories in the relevant

literature. Similarly, we focus on just two decision theories: EUT

and RDU. Although there has been a burst of theoretical

modeling, which has resulted in a long list of decision theories,

EUT and RDU theory remain the leading alternatives for the

description of behavior under risk. Therefore, we focus our

attention to these theories alone. The methods we describe herein

can be extended to a larger battery of decision theories and error

specifications.

We extend previous studies in two ways. First, instead of testing

whether subjects’ choices adhere to one decision theory alone (i.e.,

EUT or RDU) we allow more than one data generating processes

(i.e., combining EUT and RDU). These combined models have

been called mixture specifications in the respective literature

[14,15]. We further test how these mixture models combine with

different error specifications. Second, we add to the list of battery

tests a non-parametric alternative to the Vuong’s non-nested test.

Overall, our battery of tests can provide a better characterization

of which decision theory and error story is more likely to be the

‘correct’ one.

The next section of the paper describes the laboratory

experiment we conducted to elicit preferences for competing

lotteries. Then, we describe the competing approaches used to

estimate risk preferences, after which we present the results from

the competing models. Following this discussion, we discuss

different model selection criteria and indicate the best fitting

models. The last section concludes.

Methods

Ethics statement
The data in this study have been collected from the

undergraduate population of the University of Ioannina while

one of the authors (Andreas C. Drichoutis) was still a faculty

member of the Economics department. The University does not

operate an ethical review board and as such no consideration,

approval or waiver was possible to obtain. There is a university

ethics code that lays out general principles that experimenters

should abide by but no review board is responsible for checking

whether projects abide by the code. This is the case with all non-

invasive studies that are being conducted in the premises of the

university or on behalf of the university. Subjects did give an oral

consent for participating in the study before each experimental

session. When checking subjects’ name against a list of pre-

registered participants, the experimenter asked each person

individually whether s/he wants to participate in the experiment,

Table 1. Literature on error stories.

Study Decision theory Error story Model fit criteria

[36] EUT Trembles, Fechner error (Logit link), Random preferences Akaike Information
Criterion

[37] Expected value, EUT, RDU, Disappointment aversion
theory, Prospective reference theory, Quadratic utility,
Regret with independence, Weighted utility

Trembles, Fechner Akaike Information
Criterion

[38] EUT, RDU, Prospective reference theory, Weighted
utility, Quadratic utility, Regret with independence

Homoscedastic errors, Variants of heteroscedastic errors x2 tests, Akaike
Information Criterion

[39] EUT, RDU Fechner error (Probit link), Fechner error (Probit link)
with trembles, Random preferences with trembles

Log-likelihood,
Likelihood ratio tests,
Vuong’s test

[40] Cumulative PT Trembles, Fechner error (Probit link), Fechner error (Logit
link), Luce error

Akaike Information
Criterion

[41] Cumulative PT, Stochastic EUT Fechner error (Probit link), Fechner error (Logit link),
Truncated random errors

Log-likelihood, Vuong’s
test

[12,13] EUT, RDU Fechner error (Logit link), Luce error, Contextual utility
(Logit link), Wandering vector model, Random
preferences

Log-likelihood, Vuong’s
test, Out-of-sample fit

[42] Expected value, EUT, Choquet EUT, PT, Cumulative PT,
Decision Field Theory, [43] MaxMin EUT, [43] MaxMax
EUT, [44], Alpha theory, MaxMin, MaxMax, Minimum
Regret

Trembles, Luce error, Fechner error, Contextual utility,
Wandering vector model, Random preferences, Variance
of the valence difference

Out-of-sample fit

[45] Expected value, EUT, Regret theory, Skew-symmetric
bilinear utility theory, Yaari’s Dual theory,
Disappointment aversion theory

Trembles, Fechner error (Probit link), Fechner with
heteroskedastic errors, Fechner with truncated errors,
Random utility, Luce error

Likelihood ratio tests,
Vuong’s test

[3] EUT, RDU Fechner error (logit link), Luce error, Contextual utility
(logit link), Random preferences

Log-likelihood, Vuong’s
test, Out-of-sample fit

Notes: EUT = Expected utility theory, RDU = Rank Dependent utility, PT = Prospect theory. In some papers ‘trembles’ are also called ‘constant error probability model’ and
the ‘Fechner error’ is also called ‘white noise’. The [42] paper is about uncertainty, not risk. In the studies listed above, different decision theories are combined with
different error stories; not all combinations are possible though. For example, ‘variance of the valence difference’ is specific to Decision Field Theory. The specific papers
should be advised for more details.
doi:10.1371/journal.pone.0102269.t001
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informed the subject that the experiment only involves data

collection and emphasized that s/he is free to leave if s/he wants

to. In addition, the data collection was completely anonymized (as

we describe below) and no data can be linked to any single person.

Description of the experiment
A conventional lab experiment was conducted using the z-Tree

software [16]. Subjects consisted of undergraduate students at the

University of Ioannina, Greece and were recruited using the

ORSEE recruiting system [17]. During the recruitment, subjects

were told that they would be given the chance to make more

money during the experiment. More specifically, subjects were

told that ‘‘In addition to a fixed fee of 10, you will have a chance

of receiving additional money up to 25. This will depend on the

decisions you make during the experiment.’’ [18] have shown that

stochastic and non-stochastic fees can significantly affect self-

selection of subjects with respect to risk attitudes.

Subjects participated in sessions of group sizes that varied from

9 to 11 subjects per session (all but two sessions involved groups of

10 subjects). In total, 100 subjects participated in 10 sessions that

were conducted between December 2011 and January 2012. Each

session lasted about 45 minutes and subjects were paid a 10

participation fee. Subjects were given a power point presentation

explaining the lottery choice tasks as well as printed copies of

instructions. They were also initially given a five-choice training

task to familiarize them with the choice screens that would appear

in the tasks involving real payouts. Subjects were told that choices

in the training phase would not count toward their earnings and

that this phase was purely hypothetical.

Full anonymity was ensured by asking subjects to choose a

unique three-digit code from a jar. The code was then entered at

an input stage once the computerized experiment started. The

experimenter only knew correspondence between digit codes and

profits. Profits and participation fees were put in sealed envelopes

(the digit code was written on the outside) and were exchanged

with digit codes at the end of the experiment. No names were

asked at any point of the experiment. Subjects were told that their

decisions were independent from other subjects, and that they

could finish the experiment at their own convenience. Average

total payouts including lottery earnings were 15.2 (S.D. = 4.56).

Risk preference elicitation
We elicited risk preferences using the popular H&L [11]

Multiple Price List (MPL) task, at two payout (low versus high)

amounts. Note that, the data analyzed in this paper are a subset of

the data collected in the experiment. Data analysis of the full

dataset with a different research focus is reported in [19]. The

experiment contained different formats of risk preference elicita-

tion tasks. Here we analyze the data coming from the more

popular H&L task. The baseline H&L MPL presented subjects

with a choice between two lotteries, A or B, as illustrated in

Table 2. In the first row, the subject was asked to make a choice

between lottery A, which offers a 10% chance of receiving 2 and

a 90% chance of receiving 1.6, and lottery B, which offers a 10%

chance of receiving 3.85 and a 90% chance of receiving 0.1.

The expected value of lottery A is 1.64 while for lottery B it is

0.475, which results in a difference of 1.17 between the expected

values of the lotteries. Proceeding down the table to the last row,

the expected values of both lotteries increase, but the rate of

increase is larger for option B. For each row, a subject choose A or

B, and one row was randomly selected as binding for the payout.

The last row is a simple test of whether subjects understood the

instructions correctly. In fact, 16 out of 100 subjects failed to pass

this test concerning comprehension of lotteries and were omitted

from our sample. The high payout task is identical to the control

(shown in Table 2) except that all payouts are scaled up by a

magnitude of five.

Instead of providing a table of choices arrayed in an ordered

manner all appearing at the same page as in H&L, each choice

was presented separately showing probabilities and prizes [20].

Subjects could move back and forth between screens if they

wanted to revise their choices. Once all ten choices in a table were

made, the table was effectively inaccessible. In addition to the

choices shown in Table 2, subjects also made a similar set of ten

choices except the magnitudes of all payoffs were scaled up by a

factor of five. The order of appearance of the set of ten choices

(low versus high payouts) for each subject was completely

randomized to avoid order effects [21]. An example of one of

the decision tasks is shown in Figure 1. For each subject, one of the

choices was randomly chosen and paid out.

Conceptual specification: Expected utility versus Rank
dependent utility theory

To estimate risk preferences, we follow the framework of [22].

Let the utility function be the constant relative risk aversion

(CRRA) specification:

U(M)~
M1{r

1{r
ð1Þ

where r is the relative risk aversion (RRA) coefficient and where

r~0 denotes risk neutral behavior, rw0 denotes risk aversion

behavior and rv0 denotes risk loving behavior.

If we assume that EUT describes subjects risk preference tasks,

then the expected utility of lottery i can be written as:

EUi~
X

j~1,2

pi(Mj)U(Mj) ð2Þ

where p(Mj) are the probabilities for each outcome Mj that are

induced by the experimenter (i.e., columns 1, 3, 5 and 7 in

Table 2).

Despite the intuitive and conceptual appeal of EUT, a number

of experiments suggest that EUT often fails as a descriptive model

of individual behavior. Although there are many proposed

alternatives to EUT, here we consider RDU [23], which was

incorporated into Tversky and Kahneman’s [24] cumulative

prospect theory. RDU extends the EUT model by allowing for

non-linear probabilitiy weighting associated with lottery outcomes.

To calculate decision weights under RDU, one replaces expected

utility in equation (2) with:

RDUi~
X

j~1,2

wi½p(Mj)�U(Mj)~
X

j~1,2

wijU(Mj) ð3Þ

where wi2~wi(p2zp1){wi(p1)~1{wi(p1) and wi1~wi(p1) with

outcomes ranked from worst (outcome 2) to best (outcome 1) and

w(:) is the weighting function. We assume w(:) takes the form

proposed by [24]:

w(p)~
pc

½pcz(1{p)c�1=c
ð4Þ

When c~1, it implies that w(p)~p and this serves as a formal test

of the hypothesis of no probability weighting.
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Stochastic error specifications
To explain choices between lotteries, one option is to utilize the

stochastic specification originally suggested by [25] and popular-

ized by [5]. In particular, the following index:

+EUF ~(EUB{EUA)=m ð5Þ

can be calculated where EUA and EUB refer to expected utilities

(or rank-dependent expected utilities) of options A and B (the left

and right lottery respectively, as presented to subjects), and where

m is a noise parameter that captures decision making errors. The

latent index is linked to the observed choices using a cumulative

standard normal distribution function PrFP~W(+EUF ), which

transforms the argument into a probability statement. This is

known as a Fechnerian (or Strong utility) model [26].

There are two observationally equivalent interpretations of the

Fechner error specification. The most natural, given the set-up

above, is that the term m literally captures the effect of decision

making errors on the part of the subjects. Another way to interpret

this specification is through the random utility framework [27]. In

this framework, utility consists of a systematic component, EUA,

observable to the analyst, and a stochastic component, "A,

unobserved by the analyst but presumed known to the subject.

In the random utility framework, the probability of choosing

option A over B is the probability that EUA{EUBw"B{"A. If

the difference is distributed normally with mean zero and standard

deviation m, then the probability of choosing A over B is given by

W(+EU) which, of course, is the same expression shown above.

An alternative to the error specification of equation (5) is:

PrFL~
exp(EUB=m)

exp(EUA=m)zexp(EUB=m)
ð6Þ

[13] notes that this form is similar to the form that have been

used by [28] and [29]. It can easily be shown that this expression is

algebraically identical to PrFL~L
EUB{EUA

m

� �
[26] where L is

the standard logistic distribution function with L(f)~1=(1ze{f).
Therefore, although this is commonly referred to as the ‘Luce

model’ in the respective literature [13], this is really the

Fechnerian error (Strong utility) with a logit link. We will refer

to these error specifications as PrFP and PrFL to denote the

Fechnerian error with a probit and a logit link, respectively.

[3,13] proposed a ‘‘contextual utility’’ error specification which

modifies the error specifications in (5) and (6) to account for the

range of possible outcome utilities. Contextual utility maintains

that the error specification is mediated by the range of possible

outcome utilities in a pair. The respective probability statements

can be written as:

PrCP~W
EUB{EUA

c=m

� �
ð7Þ

and

PrCL~
exp(EUB=c=m)

exp(EUA=c=m)zexp(EUB=c=m)
~L

EUB{EUA

c=m

� �
ð8Þ

In (7) and (8), c is a normalizing term, defined as the maximum

utility over all prizes in a lottery pair minus the minimum utility

over all prizes in the same lottery pair. It changes from lottery pair
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to lottery pair, and thus it is said to be contextual. Econometri-

cally, the contextual utility correction is a way to accommodate

lottery pair-specific heteroskedasticity. This type of heteroscedastic

latent variable models are also called ‘moderate utility models’

[12,13].

A third type of error models are due to [30] and have been

popularized by [11]. In this case the probabilistic model can be

written as:

PrLUCE~
EU

1=m
B

EU
1=m
A zEU

1=m
B

ð9Þ

which is algebraically identical to PrLUCE~L
ln½EUB�{ln½EUA�

m

� �
.

That is, the Luce model is like the Fechnerian (Strong utility) model

but in which natural logarithms replace the utility values. This is

also called a Strict Utility model in the respective literature

[3,12,13]. Theorem 30 in [26] shows that ‘‘Any strict binary utility

model is also a strong utility model, but not conversely’’.

Estimation
After defining the conceptual model and error specifications, the

log-likelihood function can then be written as:

lnL(y)~
XN

i~1

½(lnZDyi~1)z(ln(1{Z)Dyi~{1)� ð10Þ

where Z~Prj and j indexes the different error models

(j~FP,FL,CP,CL,LUCE). yi~1 denotes the choice of the option

B lottery and yi~{1 denotes the choice of the A lottery in the risk

preference task i. Subjects were allowed to express indifference

between choices and were told that if that choice was selected to be

played out, the computer would randomly choose one of the two

options for them and that both choices had equal chances of being

selected. The likelihood function for indifferent choices is

constructed such that it implies a 50/50 mixture of the likelihood

of choosing either lottery so that (10) can be rewritten as:

lnL(y)~
XN

i~1

½(lnZDyi~1)z(ln(1{Z)Dyi~{1)

z(
1

2
lnZz

1

2
ln(1{Z)Dyi~0)�

ð11Þ

Equation (11) is maximized using standard numerical methods.

The statistical specification also takes into account the multiple

responses given by the same subject and allows for correlation

between responses by clustering standard errors, which were

computed using the delta method. Standard errors computed in

Tables 3, 4 and 5, allow for intrasubject correlation to account for

the fact that subjects made repeated choices and observations are

not independent at the subject level. The robust estimator of

variance that relaxes the assumption of independent observations

involves a slight modiffication of the robust (or sandwich) estimator

of variance ([31], pp. 295).

Instead of discriminating between EUT and RDU models, one

could allow the data generating process to admit more than one

choice models. [14] and [15] allowed more than one process to

explain observed behavior instead of assuming that the data are

generated by a single process. [14] estimated a model where some

choices were allowed to be EUT-consistent and other choices were

allowed to be Prospect Theory-consistent (which is also equivalent

to the rank dependent model in our experimental design) and

found roughly equal support. [15] found that 20% of their subjects

were behaving according to EUT while 80% were RDU

maximizers. A mixture model poses a different question to the

data. As [32] noted, ‘‘if two data-generating processes are allowed

to account for the data, what fraction is attributable to each, and

what are the estimated parameter values?’’ With the mixture

specification we adopt, choices as opposed to subjects are

categorized as completely EUT or RDU. Although it is possible

to rewrite the likelihood in equation (11) such that the mixture is

defined over subjects, [14] discuss how allowing choices across the

same subject to differ, is consistent with experimental evidence

that task domain can influence the strength of support for EUT.

Similarly, our approach allows us being agnostic about the

interpretation of the mixing probability. Note that the mixture

specification in [15] only allows subjects to be completely

categorized as EUT or RDU, whereas the mixture specification

in [14] allows complete categorization at the level of choices. To

put it otherwise, [15] allow for heterogeneity of preference

functionals across individuals while [14] allow for heterogeneity

of preference functionals across choices.

Let pEUT denote the probability that EUT is correct and

pRDU~1{pEUT denote the probability that the RDU model is

correct. We can then replace (11) with:

Figure 1. Example Decision Task.
doi:10.1371/journal.pone.0102269.g001
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lnL rEUT ,rRDU ,pEUT ,c,m; y,Xð Þ

~ln pEUT|LEUTzpRDU|LRDUð Þ
ð12Þ

Results

The purpose of this section is to demonstrate the implications of

different assumptions about error specification and conceptual

model, and illustrate how these choices can lead to significantly

different characterizations of risk preferences; facts which make

necessary the possibility to discriminate between models based on

model fit criteria.

Tables 3, 4 and 5 show the estimated parameters from the

EUT, RDU and mixture models when we assume Fechner error

(with Probit and Logit link, respectively), contextual utility (with

Probit and Logit link, respectively) or the Luce error (Strict utility).

First compare the conceptual models, EUT and RDU, under the

assumption of a Fehcner error specification without accounting for

contextual utility (Table 3). Results show that subjects are on

average risk averse (estimates of r span between 0.638 to 0.682)

and that the introduction of probability weighting does not have a

significant effect on risk aversion. This is mainly because the

estimate for c in the probability weighting function of the RDU

model is very close to 1. In fact, Wald tests of c~1 do not reject

the null at the 5% level (shown at the lower panel of Table 3).

Second, results between the probit and logit link in Table 3 are

roughly the same. This is not surprising; it is pretty well known

[33, for instance] that estimated parameters from a probit and a

logit model differ up to a scale. As a practical note, one can use this

result to check for convergence problems. If the Probit and Logit

link produce strikingly different solutions, this is evidence that local

maxima have been found. Note, that this equivalence between

estimated parameters doesn’t have to apply for mixture specifica-

tions since the estimated mixture probabilities in equation (12) are

not included in the Probit or Logit link. Thus, in the context of

EUT and RDU with a Fechner error, the choice between a Probit

or a Logit link does not seem to have a substantive effect on

implied risk preferences.

When we consider the mixture model for the Fechner error

story, dramatically shifts in implied risk preferences occur. First

note, that the probit and logit link produce similar results. With

respect to the mixture probabilities pEUT and pRDU , we find that

roughly 14% and 12% of choices are explained by EUT (86% and

88% by RDU) in the probit and logit link, respectively. In

addition, the estimated risk aversion coefficients imply risk loving

preferences for EUT and risk aversion for RDU. Clearly, the

results regarding underlying risk preferences are highly sensitivity

to assumptions about heterogeneity of preference functionals.

Now we turn to the impact of contextual utility. The EUT

model is least affected by the introduction of contextual utility in

both the Probit and the Logit link. Although, the RRA coefficient

estimates are lower in magnitude as compared to the non-

contextual utility specifications (compare for example, the 0.58

estimate from Table 3 with 0.68 from Table 4 for the Probit link),

the estimates still imply significant risk aversion. The most

significant effects are found in the RDU specifications. RRA

coefficients span around zero, implying risk neutrality, while c is

estimated to have an unusually large value of 3. While large, this

particular value for c, is not totally unrealistic, and Figure 2 shows

it implies significant under-weighting for all probabilities. In fact, it

implies that subjects totally ignore choices with probabilities lower

than 0.2. The most commonly observed values for c, e.g. when

c~0:6, also imply under-weighting for probabilities larger than

0.35.

The introduction of a mixture specification not only produces

different results as compared to the Fechner error counterparts,

but it also produces different characterizations of risk preferences

depending on whether the Probit or Logit links are assumed. For

example, under contextual utility with a Probit link, the mixture

probabilities imply that about 31.6% of all choices are EUT

consistent while under the Logit link error only about 6% of the

choices are consistent with EUT. In fact, the Wald test of whether

pEUT~0 & pRDU~1 for the Logit link does not reject the null,

implying that the mixture specification collapses to the non-

mixture RDU specification. Under the contextual utility Probit

link, the risk aversion coefficients imply risk aversion for EUT and

risk neutrality for RDU while both RRA coefficient estimates

under the contextual utility Logit link span around zero implying

risk neutrality. Note that c values are estimated at the more

commonly observed values of 0.4 and 0.5 for the Probit and Logit

links, respectively.

The last set of estimates using the Luce error produce even

more striking differences in risk preference characterization.

Table 5 shows that only risk preferences under EUT are consistent

with results estimated with the Fechner error and contextual

utility. The RDU specification implies significant risk loving

behavior with c estimated at a value of 0.37 which highly contrasts

the implied risk aversion from the RDU model of Table 3 (with a c
value close to 1) and risk neutrality of Table 4 with a c value of 3.3.

When it comes to the mixture specification, mixture probabilities

imply that the majority of choices are (81.4%) are RDU consistent.

In fact, the Wald test of whether pEUT~0 & pRDU~1 does not

reject the null at the 5% level, implying that the mixture

specification collapses to the non-mixture RDU specification.

The estimates imply mild risk aversion for EUT choices and

significant risk loving behavior for RDU choices.

Taken together, the results in Tables 3, 4 and 5 demonstrate

that the menagerie of error stories that one could adopt for

modeling risk preference estimation can lead to a variety of

characterizations of risk preferences. Results from these tables

show that implied risk preferences are consistent across error

stories only under EUT, with estimated coefficients of risk aversion

spanning the range of 0.58 to 0.68. However, under RDU the

estimated coefficients of relative risk aversion span across models

from a low of 20.50 (extreme risk seeking) to a high of 0.65

(extreme risk aversion). Moreover, the estimate of the shape of the

probability weighting function under RDU goes from c~0:37
(extreme under-weighting of low probability events) to c~0:9
(near linear probability weighting implying EUT) to c~3:345
(under-weighting of all probabilities) depending on what is

assumed about the error specification. The mixture specifications

either imply that choices can be explained by both EUT and RDU

or that in some cases RDU can better characterize all choices. The

characterization of risk preferences varies as well. We find that the

mixture of EUT-RDU can be characterized by several combina-

tions like risk loving-risk aversion, risk aversion-risk neutrality, risk

neutrality-risk neutrality or risk neutrality-risk loving preferences,

depending on the error story. Thus, it is critically important to be

able to select between competing models based on model fit

criteria.

Model selection criteria: Information criteria
Information criteria like the Akaikes Information Criterion

(AIC) and the Bayesian Information Criterion (BIC) are common

measures of goodness of fit; however, the statistics do not reveal
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how well a model fits the data in an absolute sense, i.e., there is no

null hypothesis being tested. Nevertheless, these measures offer

relative comparisons between models on the basis of information

lost from using a model to represent the (unknown) true model.

Table 6 shows that based on AIC and BIC criteria, the

contextual utility specifications are preferred over Fechner and

Luce error stories within the EUT and mixture functionals,

respectively. Within the RDU preference functional, the Luce

error is preferred over contextual utility and Fechner error albeit

contextual utility is the second best fitting model. When comparing

between EUT, RDU and the mixture specifications, AIC indicates

that the mixture model with contextual utility and a Probit link is

the best fitting model whereas BIC indicates that RDU with Luce

error is the best one. Note, that the second best model according to

BIC coincides with the best model indicated by AIC (Mixture

model with contextual utility and Probit link).

Model selection criteria: Non-nested tests
The classical approach for testing between non-nested models is

the Vuong test [34]. The Vuong test is a model selection test that

compares between competing models and chooses the best model

based on some predefined criteria. The Vuong test, as many other

model selection criteria, is based on the Kullback-Leibler

Information Criterion (KLIC), which measures the distance

between a hypothesized likelihood function and the true likelihood

function. The null hypothesis of the Vuong test is:

H0 : E ln
f (Yi DXi; hf )

g(Yi DXi; hg

� �
~0 ð13Þ

where hf and hg are parameters and f (:), g(:) are the likelihood

functions of the two competing models. The null in equation (13)

implies that the two models are equivalent. The alternative

hypothesis favors the model with the higher average log-likelihood,

if it is significantly greater than the average log-likelihood of the

competing model.

Because the Vuong test is only normally distributed asymptot-

ically, distribution-free tests may be more desirable when the

underlying population is not-normal. A non-parametric alternative

to the Vuong test is the Clarke test [35]. The Clarke test is a paired

sign test of the differences in the individual log-likelihoods from

two non-nested models. The null hypothesis is that the probability

of the log-likelihood paired differences being greater than zero is

equal to the probability of the log-likelihood paired differences

being less than zero, which in essence is a binomial test with

p~0:5. The Clarke test is similar to the Wilcoxon sign-rank test

but without the additional assumption that the distribution of

paired differences is symmetric.

If the models are equally close to the true specification, half the

log-likelihood differences should be greater than zero and half

should be less than zero. If one model is ‘‘better’’, then more than

half the log-likelihood differences should be greater than zero. The

null hypothesis of the Clarke test is:

H0 : median of ln f Yi DXi; hf

� �
{lng Yi DXi; hg

� �
~0 ð14Þ

Top panel in Table 7 shows results from Vuong’s tests which are

performed between all possible pairs of error specifications for the

EUT, RDU and the mixture models. A large positive value of the

Vuong statistic (with a corresponding low p-value) favors the error

model listed in the second column versus the model indicated in

the top row. A large negative value (with a corresponding high p-

value) favors the model listed in the top row versus the model

indicated in the second column.

Table 5. Estimates assuming Luce error (Strict utility).

Coef. Std.Error 95% CI Log-L

EUT r 0.603 0.079 0.447 0.759 2748.115

m 0.172 0.036 0.102 0.242

r 20.500 0.179 20.851 20.148 2696.506

RDU c 0.373 0.035 0.305 0.441

m 0.148 0.011 0.126 0.170

rEUT 0.170 0.073 0.026 0.313 2695.669

rRDU 20.806 0.241 21.278 20.334

Mixture c 0.314 0.036 0.242 0.385

m 0.146 0.011 0.124 0.168

pEUT 0.186 0.116 20.041 0.414

pRDU 0.814 0.116 0.586 1.041

Wald tests:

RDU c~1 0.000

Mixture c~1 0.000

Mixture pEUT = 1 & pRDU = 0 0.000

Mixture pEUT = 0 & pRDU = 1 0.108

Mixture pEUT = 0 & pRDU = 0 0.007

Notes: EUT stands for expected utility theory, RDU stands for rank dependent utility. Bottom panel displays p-values from a Wald test for the respective hypothesis test.
doi:10.1371/journal.pone.0102269.t005
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Within the EUT preference functional, the CL (contextual

utility - Logit link) model is favored against all other models (as

indicated by the corresponding Vuong statistics marked in bold).

This is in agreement with the AIC/BIC measures in Table 6.

Within the RDU functional, the Luce error is favored against all

other models and is in agreement with the AIC/BIC measures.

When it comes to the mixture specification, the CP (contextual

utility - Probit link) model is favored when compared with the

Fechner errors (in accordance with AIC/BIC measures) but does

equally well when compared to the Luce error and contextual

Figure 2. Comparison of probability weighting functions for three gamma (g) values.
doi:10.1371/journal.pone.0102269.g002

Table 6. Information criteria and out-of-sample Log-Likelihood function summary statistics.

AIC BIC OSLLF

Fechner error (Strong utility) Probit 1501.227 1512.080 2759.043

Logit 1480.192 1491.045 2747.636

EUT Contextual utility Probit 1451.263 1462.117 2733.911

Logit 1442.374 { 1453.228 { 2729.002 {

Luce error (Strict utility) 1500.230 1511.083 2759.828

Fechner error (Strong utility) Probit 1501.894 1518.173 2759.351

Logit 1480.504 1496.784 2747.694

RDU Contextual utility Probit 1411.525 1427.805 2714.008

Logit 1417.276 1433.556 2715.762

Luce error (Strict utility) 1399.013 { 1415.293 {{ 2707.149 {

Fechner error (Strong utility) Probit 1437.744 1464.876 2724.826

Logit 1445.420 1472.553 2731.082

Mixture Contextual utility Probit 1397.880 {{ 1425.013 { 2705.556 {{

Logit 1403.214 1430.346 2710.069

Luce error (Strict utility) 1401.337 1428.470 2707.213

Notes: EUT stands for expected utility theory, RDU stands for rank dependent utility, AIC stands for Akaike information criterion, BIC stands for Bayesian information
criterion, OSLLF stands for out-of-sample log-likelihood. { indicates best fitting error model within a preference functional. { indicates best fitting error model across all
preference functionals.
doi:10.1371/journal.pone.0102269.t006
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utility with Logit link (CL), albeit the corresponding p-values are

not that far away from the 10% significance level (12

0.836 = 0.164 and 120.877 = 0.123, respectively) which would

render the CP preferable. In all, results from Vuong’s tests support

the results from the AIC and BIC model selection criteria.

Vuong’s test is suitable for non-nested models, thus we do not

compare error specifications between EUT, RDU and the mixture

models since these are, by construction, nested in each other. For

example, one can test whether the mixture model collapses to

EUT or RDU by testing whether the mixture probabilities are

statistically significantly different from zero. Or one can test

whether RDU collapses in EUT by testing whether c~1. For the

mixture CP model, Wald tests in Table 4 show that it neither

collapses to either EUT or RDU, nor does RDU collapses to

EUT.

Bottom panel in Table 7 shows results from Clarke’s non-

parametric test. For each preference functional (EUT, RDU,

mixture), each error story is compared against all other error

stories. Each comparison involves two, one-sided tests. Obviously,

rejection of the null for one of the one-sided alternatives implies

that we fail to reject the null for the other one-sided alternative.

There will be cases where we fail to reject the null in both of the

one-sided tests. This would imply that the error models that are

being tested do equally well.

For the EUT preference functional the error model that stands

out is the CL model. It is favored in three out of four comparisons

(i.e., against FP, CP, LUCE) and does equally well with FL.

However, FL only does well when in direct comparison with FP. A

problem with this type of tests now becomes apparent. Pairwise

comparisons do not necessarily obey a transitivity principle. More

specifically, the problem here is that FL does equally well with CP,

FL does equally well with CL while CL is preferred to CP. If there

was transitivity, CL should do equally well to CP. Even so, the

general notion is that the contextual utility with a Logit link is

preferable, which is in accordance with all previous methods of

model fit we have reviewed so far.

The RDU preference functional is even more interesting

because the unanimous winner is the CP model (it is favored in

four out of four comparisons) which contrasts results from fit

criteria we reviewed so far. Note that AIC/BIC measures and the

Vuong test were all in favor of the Luce model. This indicates that

comparisons that are based solely on one model fit criterion are

not guaranteed to be flawless.

For the mixture preference functional, the contextual utility

with a Probit link is favored in four out of four comparisons, in

accordance with results from previously discussed fit criteria.

Model selection criteria: Out-of-sample predictions
The Out-Of-Sample Log Likelihood (OSLLF) criterion evalu-

ates models by their fit out of sample. In essence, the OSLLF

approach uses one set of data to estimate the parameters of the

model, and then, given these parameters, calculates the likelihood

function values observed at out-of-sample observations. The

OSLLF value is calculated by using out-of sample observations

to calculate the likelihood function:

ÎI f :ð ÞDYð Þ~
XN

i~1

ln f yi Dĥhf ,{i

� 	h i
ð15Þ

where ĥhf ,{i is the parameter vector estimated without the ith set of

observations. The OSLLF value can be calculated in several ways

[10]. The estimate ĥhf ,{i could be calculated using cross-validation

where ĥhf ,{i is estimated using every observation except i. This is

referred to as ‘‘leave one out at a time forecasting.’’ Alternatively,

one could partition the observations into groups where each group

is iteratively omitted and ĥhf ,{i is estimated. Then, the omitted

group of observations can be used to calculate the OSLLF. This

procedure is known as grouped-cross-validation. In what follows,

we carry out group-cross validation with individuals being the

partitions, where each partition contains twenty observations (as

many as the choices of the subject). Essentially, we leave one

subject (and their associated 20 choices) out at a time, estimate the

model, and calculate equation (15) for the subject. The process is

repeated for every subject in the sample.

Table 6 reports OSLLF values for each of the error specification

for each preference functional (EUT, RDU and the mixture

model). When comparing within preference functionals the

OSLLF agrees with both AIC and BIC measures. When

comparing across all preference functionals, the mixture specifi-

cation with contextual utility and a Probit link ranks highest. This

is in accordance with AIC but not BIC, albeit, as noted before, the

mixture CP model is the second best model in terms of BIC.

Combining the insights gained from the different fit criteria and

tests reviewed above, we can more safely conclude that a mixture

specification with contextual utility and a Probit link fits the data

better than any other preference functional and error story

examined in this paper. This is reinforced by the fact that the

mixture CP model does not collapse either to EUT or RDU, nor

RDU collapses to EUT, as indicated by the corresponding Wald

tests in Table 4.

Discussion

To derive estimates of individuals risk preferences, analysts have

to have some mechanism for translating the conceptual models of

risky decision making into an empirical model that includes

stochastic errors. The results presented in this paper reveal that

seemingly innocuous assumptions about this stochastic process can

lead to substantially different inferences about risk preferences.

Indeed, one can estimate parameters consistent with a high level of

risk seeking or a high level of risk aversion depending on how

errors are incorporated into the statistical model; a finding which

suggests caution in naively assuming adopting a single error

specification.

A battery of in- and out-of-sample model selection criteria

suggest that the model that best fits our data is an EUT-RDU

mixture model assuming contextual utility with a Probit link. We

find that 31.6% of the sample is characterized by EUT with a

coefficient of relative risk aversion equal to 0.41, and 68.4% is

characterized by RDU with a coefficient of relative risk aversion

statistically indistinguishable from zero but with a probability

weighting function implying significant overweighting of low

probability outcomes and under-weighting of moderate to high

probability outcomes.

In our attempt to provide a battery of model fit selection

criteria, we have only focused on the specific preference

functionals and error specifications that are likely to be considered

the main contenders. This was not an exhaustive test of the full

menagerie of preference functionals or stochastic errors that exist

in the literature nor could such an exercise be covered in a single

paper. Researchers would need to apply the methods discussed

herein in their problem at hand.
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