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Abstract

We are looking for the agent-based treatment of the financial markets considering necessity to build bridges between
microscopic, agent based, and macroscopic, phenomenological modeling. The acknowledgment that agent-based
modeling framework, which may provide qualitative and quantitative understanding of the financial markets, is very
ambiguous emphasizes the exceptional value of well defined analytically tractable agent systems. Herding as one of the
behavior peculiarities considered in the behavioral finance is the main property of the agent interactions we deal with in
this contribution. Looking for the consentaneous agent-based and macroscopic approach we combine two origins of the
noise: exogenous one, related to the information flow, and endogenous one, arising form the complex stochastic dynamics
of agents. As a result we propose a three state agent-based herding model of the financial markets. From this agent-based
model we derive a set of stochastic differential equations, which describes underlying macroscopic dynamics of agent
population and log price in the financial markets. The obtained solution is then subjected to the exogenous noise, which
shapes instantaneous return fluctuations. We test both Gaussian and q-Gaussian noise as a source of the short term
fluctuations. The resulting model of the return in the financial markets with the same set of parameters reproduces
empirical probability and spectral densities of absolute return observed in New York, Warsaw and NASDAQ OMX Vilnius
Stock Exchanges. Our result confirms the prevalent idea in behavioral finance that herding interactions may be dominant
over agent rationality and contribute towards bubble formation.
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Introduction

Statistical physics has got the edge over socio-economic sciences

in the understanding of complex systems [1–7]. This happened

due to the fact that physicists were able to start from the

understanding of simple phenomena via simple models and later

built the complexity up together with the increasing complexity of

the considered phenomena. On the other hand socio-economic

sciences had to face complexity right from the start as socio-

economic systems are in no way simple systems - they are

intrinsically complex at many different levels at the same time.

Financial markets are one of the most interesting examples of such

complex systems. Unlike in physics we have no direct way to gain

insights into the nature of microscopic interactions in financial

markets, thus the understanding of the financial market fluctua-

tions may become rather limited and very ambiguous. Yet the

understanding might be improved indirectly through the further

development of the complex systems approach [8]. First of all,

currently there are huge amounts of the available empirical data,

which itself is attracting representatives of the experimental

sciences [9]. Also there is an agent-based modeling framework,

which may provide qualitative and quantitative understanding of

the financial markets. The intense applications of these ideas is still

ongoing [9–11] and the challenge is still open.

Agent-based modeling has become one of the key tools, which

could improve the understanding of the financial markets as well

as lead to the potential applications [12–17]. Currently there are

many differing agent-based approaches in the modeling of the

financial markets. Some of them aim to be as realistic as possible,

yet they usually end up being too complex to posses analytical

treatment. One of the most prominent examples of these kind of

models is the Lux-Marchesi model [18]. The more recent

approaches in the similar direction consider modeling order books

[19–21]. Other approaches, on the other hand, aim to capture the

most general properties of the many complex socio-economic

systems (some of the examples include [22,23]). Though there are

also some interesting approaches which combine realism and

analytical tractability, e.g. Feng et al. [24] have used both

empirical data and trader survey data to construct agent-based

and stochastic model for the financial market. Looking for the

ideal agent-based approach we would consider as a primary

necessity to build bridges between microscopic, agent based, and

macroscopic, phenomenological, modeling [25]. Following this

trace of thought it would be rational to combine two origins of the

noise: exogenous one, related to the information flow, and

endogenous one, arising form the complex stochastic dynamics

of agents. Such integral view of the financial markets can be

achieved only with very simple zero-intelligence agent-based
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models and macroscopic, phenomenological, approaches incor-

porating external information flow. This is the main idea of our

present consideration of the financial markets.

The expected properties of such model lead us to the return

fluctuations, characterized by the power law distributions and the

power law autocorrelations of absolute return considered in [26–

32]. We investigate an agent-based herding model of the financial

markets, which proves to be rather realistic and also simple

enough to be analytically tractable [33,34]. Namely we consider a

three agent states’ model [34] and incorporate it into the standard

model of the stock price described by the geometric Brownian

motion or into process with statistical feedback [35], exhibiting

Tsallis statistics. We find that the improved three state agent-based

herding model reproduces the power law statistics observed in the

empirical data extracted from the NYSE Trades and Quotes

database, Warsaw Stock Exchange and NASDAQ OMX Vilnius

Stock Exchange.

We start by discussing the possible alternatives in macroscopic

and phenomenological modeling providing some insight into the

possible connection to the agent-based microscopic approach.

Next we develop the microscopic approach by defining the

herding interactions between three agent groups and incorporate it

into a consistent model of the financial markets. Further we couple

the endogenous fluctuations of the agent system with the

exogenous information flow noise incorporated in macroscopic

approach and provide detailed comparison with the empirical

data. Finally we discuss the obtained results in the context of the

proposed double stochastic model of the return in the financial

markets.

Methods

Macroscopic and phenomenological versus microscopic
and agent-based treatment of the financial markets

It is the natural peculiarity of the social systems to be treated

first of all from the macroscopic and phenomenological point of

view. In contrast to the natural sciences microscopic treatment of

the social systems is ambiguous and hardly can be considered as a

starting point for the consistent modeling. The complexity of

human behavior leaves us without any opportunity to consider

human agent in action as a determined dynamic trajectory. The

financial markets as an example of the social behavior first of all

are considered as a macroscopic system exhibiting stochastic

movement of the variables such as asset price, trading volume or

return [10]. Despite lack of knowledge regarding microscopic

background of the financial systems there is considerable progress

in stochastic modeling producing very practical applications

[36,37]. The standard model of stock prices, S(t), referred to as

geometric Brownian process, is widely accepted in financial

analysis

dS~m(t)Sdtzs(t)SdW : ð1Þ

In the above Wiener process W can be considered as an

external information flow noise while s(t) accounts for the

stochastic volatility. Though one must consider the model of

stock prices following geometric Brownian motion as a hypothesis

which has to be checked critically, this serves as a background for

many empirical studies and further econometric financial market

model developments. Acknowledgment that analysis taking m(t)
and s(t) constant have a finite horizon of application has become

an important motivation for the study of the ARCH and GARCH

processes [38–40] as well as for the stochastic modeling of volatility

s(t) [37].

We acknowledge this phenomenological approach as a good

starting point for the macroscopic financial market description

incorporating external information flow noise W and we will go

further by modeling volatility s(t) as an outcome of some agent-

based herding model. The main purpose of this approach is to

demonstrate how sophisticated statistical features of the financial

markets can be reproduced by combining endogenous and

exogenous stochasticity.

Here we consider only the most simple case, when s(t)
fluctuations are slow in comparison with external noise W . In

such case the return, rt(T)~ ln
S(tzT)

S(t)
, in the time period T can

be written as a solution of Eq. (1)

rt(T)~ m(t){
1

2
s(t)2

� �
Tzs(t)W (T): ð2Þ

This equation defines instantaneous return fluctuations as a

Gaussian random variable with mean (m{
1

2
s2)T and variance

s2T . Let us exclude here from the consideration long term price

movements defined by the mean (m{
1

2
s2)T as we will define the

dynamics of price from microscopic agent-based part of model.

This assumption means that we take from phenomenological

model only the general idea how to combine exogenous and

endogenous noise. Then Eq. (2) simplifies to the instantaneous

Gaussian fluctuations N½0,s(t)2T � with zero mean and variance

s(t)2T .

In [41,42], while relying on the empirical analysis, we have

assumed that the return, rt(T), fluctuates as instantaneous q-

Gaussian noise Nq½r0(x),l� with some power-law exponent

l~
2

q{1
~5, and driven by some stochastic process x(t) defining

second parameter of fluctuations r0(x). r0(x) was introduced as a

linear function of absolute return moving average DxD calculated

from some nonlinear stochastic model [42]

r0(x)~bzaDxD, ð3Þ

where parameter b serves as a time scale of exogenous noise and
b

a
quantifies the relative input of exogenous noise in comparison with

endogenous one described by Dx(t)D.
A more solid background for this kind of approach can be found

in the work by L. Borland [43]. The idea to replace geometric

Brownian process of market price by process with statistical

feedback [35] leads to the equation of return rt(T) as function of

time interval T given by

drt(T)~s(t)dVT , ð4Þ

where VT evolves according to the statistical feedback process [35]

dVT~P(V,T)
(1{q)

2 dWT , ð5Þ

and P(V,T) satisfies the nonlinear Fokker-Planck equation
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L
LT

P(V,T)~
L

LV2
P2{q(V,T): ð6Þ

The explicit solution for P in the region of q values 1vqv5=3
can be written as one of the Tsallis distributions [44]

Pq(V,T)~
1

C(T)
1{c(T)(1{q)V2
� � 1

1{q, ð7Þ

where C(T) and c(T) are as follows

C(T)~

ffiffiffi
p
p

C
3{q

2(q{1)

� �
ffiffiffiffiffiffiffiffiffiffi
q{1
p

C
1

q{1

� �
2
664

3
775

2
3{q

(2{q)(3{q)T½ �
1

3{q,

c(T)~

C
1

q{1

� �
ffiffiffi
p
p

C
3{q

2(q{1)

� �
2
664

3
775

2(q{1)
3{q

(q{1)
q{1
3{q

(2{q)(3{q)T½ �
2

3{q

: ð8Þ

Assuming s(t) as slow stochastic process in comparison with VT

from Eq. (4) one gets that rt(T)~s(t)VT . This sets PDF for rt(T)
the same as for VT Eq. (7), one just has to replace V and, C(T)

defined in Eqs. (8) by
rt(T)

s(t)
and s(t)C(T) accordingly. This gives a

Tsallis distribution for rt(T) as

Pq(rt(T))~
1

s(t)C(T)
1{(1{q)

rt(T)2

(3{q)s(t)2sq(T)2

( ) 1
1{q

, ð9Þ

where sq(T) as new parameter related to previous one c(T) can

be written as

sq(T)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p

3{q

q{

s C
3{q

2(q{1)

� �

C
1

q{1

� �
2
664

3
775

(q{1)
3{q

(2{q)T½ �
1

3{q~ ð10Þ

~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p(l{1)

p C
l{1

2

� �

C
l

2

� �
2
664

3
775

1
l{1

(l{2)

l
T

� � l
2(l{1)

: ð11Þ

Now we are prepared to combine two phenomenological

approaches introduced by Eqs. (2) and (4) with agent-based

endogenous three state herding model. s(t) serves as a measure of

system volatility in both of the phenomenological approaches. It is

reasonable to assume that financial market is in the lowest level of

possible volatility when assets market value P(t) is equal to the it’s

fundamental value Pf (t), lets define it as constant s(t)~b.

Volatility of financial system increases when market value of the

asset deviates from the fundamental value. These deviations can

be accounted as p(t)~ ln
P(t)

Pf (t)
. Further in this contribution we

will assume that volatility s(t) is defined by Dp(t)D through the

linear relation

s(t)~b(1zaDp(t)D), ð12Þ

where parameter b serves as a scale of exogenous noise and a

quantifies the relative input of endogenous noise. Both parameters

a and b have to be defined from empirical data. To complete the

model we have to propose agent-based consideration of log price

p(t). In the following section we present the three state herding

model giving stochastic equations for the log price p(t).

The three state herding model as a source for the
endogenous stochastic dynamics

Having discussed a macroscopic view of the financial fluctua-

tions we now switch to the microscopic consideration of the

endogenous fluctuations. Let us derive the system of stochastic

differential equations defining the endogenous log-price fluctua-

tions from a setup of appropriate agent groups composition. We

consider a system of N heterogenous agents - market traders

continually changing their trading strategies between three

possible choices: fundamentalists, chartists optimists and chartists

pessimists. We further develop this commonly used agent group

setup [24] by considering all transitions between three agent states

to be a result of binary herding interactions between agents during

their market transactions.

Fundamentalists are traders with fundamental understanding of

the true stock value, which is commonly quantified as the stock’s

fundamental price, Pf (t). We exclude from our consideration any

movements of the fundamental price. The assumption of constant

fundamental price means that we further will consider price

fluctuations around its fundamental value. Taking into account a

long-term rational expectations of the fundamentalists their excess

demand, EDf (t), might be assumed to be given by [45]

EDf (t)~Nf (t) ln
Pf

P(t)
, ð13Þ

where Nf (t) is a number of the fundamentalists inside the market

and P(t) is a current market price. The rationality of fundamental

traders keeps asset price around its fundamental value as they sell

when Pf vP(t), and buy when Pf wP(t).

Short term speculations cause unpredictable price movements.

There is a huge variation of speculative trading strategies, so it is

rational, from the statistical physics point of view, to consider these

variations as statistically irrelevant. We make only two distinctions

between chartists: optimists suggest to buy and pessimist suggest to

sell at a given moment. Thus the excess demand of the chartist

traders, EDc(t), can be written as:

EDc(t)~�rr½No(t){Np(t)�, ð14Þ

where �rr is a relative impact factor of the chartist trader and further

will be integrated into a certain empirical parameter, No and Np

are the total numbers of optimists and pessimists respectively. So,

as you can see, we replace a big variety of ‘‘rational’’ chartist

trading strategies by herding kinetics between just two options: buy

or sell.
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The proposed system of heterogenous agents defines asset price

movement by applying the Walrasian scenario. A fair price reflects

the current supply and demand and the Walrasian scenario in its

contemporary form may be written as

1

bN

dp(t)

dt
~{nf (t)p(t)z�rr½no(t){np(t)�, ð15Þ

here b is a speed of the price adjustment, N a total number of

traders in the market, p(t)~ ln
P(t)

Pf

and ni(t)~
Ni(t)

N
. By assuming

that the number of traders in the market is large, N??, one

obtains:

p(t)~�rr
no(t){np(t)

nf (t)
: ð16Þ

Stochastic dynamics of the proposed agent-based system is

defined by the occupations of the three agent states:

nf ~
Nf

N
, np~

Np

N
, no~

N0

N
: ð17Þ

One can model the evolution of occupations as a Markov chain

with some reasonable assumptions for the sake of simplicity. There

are six one agent transition possibilities in three group setup, see

Fig. 1 and [34]. Few assumptions are natural for the financial

markets as there is some symmetry. With the notation of agent

transitions from state i to j as subscripts to any parameter Aij ,

where i and j take values from the set ff ,c,o,pg~
ffundamentalists, all chartists, optimists, pessimistsg, we will

use following assumptions, for the rates of spontaneous transitions:

sop~spo~scc, sfp~sfo~sfc=2, spf ~sof ~scf , and for the

herding transitions: hfp~hpf ~hfo~hof ~h. Finally it is reasonable

to assume that transitions between chartist states are much faster

than between chartists and fundamentalists hop~hpo~Hh, H&1,

scc&scf , scc&sfc. Taking into account the restraint Nf zNc~N

and having in mind that transitions f?o are equivalent to f?p,

one can can write one step herding transition rates between f and

c groups for given nf ~Nf =N and nc~Nc=N as [33]

pfc(nf )~nf

sfc

N
zh(1{nf )

h i
,

pcf (nf )~(1{nf )
scf

N
zhnf

h i
: ð18Þ

Here transition rates have the same form as in Kirman’s

herding model [46]. Using Eq. (18) one can write the Master

equation for PDF P(nf ,t) and derive Fokker-Planck equation in

the limit N?? [33]. One dimensional Fokker-Planck equations

has its equivalent stochastic differential equation which for the nf

can be written as

dnf ~ (1{nf )scf {nf sfc

	 

dtz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2hnf (1{nf )

p
dWf : ð19Þ

The next step in this approach is to define dynamics of np under

restraint nf znpzno~1. An adiabatic approximation assuming

variable nf changes slowly in comparison with np or no is helpful

here. This enables to consider np dynamics as one dimensional

process as well. Let us write the transition rates for np in the same

way as in Eq. (18)

ppo(np)~np
scc

N
zHh(1{nf {np)

h i
,

pop(np)~(1{nf {np)
scc

N
zHhnp

h i
: ð20Þ

As in other similar cases [33] these one step transitions lead to

the SDE for np

dnp~(1{nf {2np)sccdtz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Hhnp(1{nf {np)

p
dWp: ð21Þ

Equations (19) and (21) form a system of coupled SDEs and

define the agent population dynamics in three state agent model

taking into account the previous assumptions. It is possible to

rewrite Eq. (21) in the form without direct dependance on nf by

introducing another variable j(t)~
no(t){np(t)

no(t)znp(t)
, average mood of

the chartists, instead of np. Such variable substitution makes

second SDE independent of the first one

dj~{2sccjdtz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Hh(1{j2)

q
dWj: ð22Þ

Equations (19) and (22) are independent and define occupation

dynamics of the same three state agent-based herding model.

In the previous work we considered generalization of the

herding model introducing variable interevent time t, see [33,34].

It is a natural feedback of a macroscopic state on the microscopic

behavior, activity of agents. Such feedback is an empirically

defined phenomena and can be quantified through the relation of

trading volume with return [47]. We introduce this feedback into

proposed three state herding model as a trading activity, rate of

transactions,
1

t(nf ,j)
defined as

1

t(nf ,j)
~ 1za

1{nf

nf

j

����
����

� �a

~ 1za p(t)j jð Þa, ð23Þ

where empirical parameter a is the same as in Eq. (12). Such power-

law behavior is consistent with empirical data quantifying relation of

short term return r with trading volume V , V (r)*ra, where a^2,

[48–50]. Notice that for the geometric Brownian motion model of

stock price the return as increment of log-price is proportional to the

log-price. This is the another reason together with search of

simplicity we use log-price instead of return in Eq. (23).

Taking into account the discussed feedback mechanism, intro-

ducing scaled time, ts~ht, and appropriately redefining model

parameters: "cf ~scf =h, "fc~sfc=h, "cc~scc=(Hh), we are able to

rewrite stochastic differential equations of endogenous model as

dnf ~
(1{nf )"cf

t(nf ,j)
{nf "fc

� �
dtsz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nf (1{nf )

t(nf ,j)

s
dWs,f , ð24Þ
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dj~{
2H"ccj

t(nf ,j)
dtsz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2H(1{j2)

t(nf ,j)

s
dWs,j, ð25Þ

Then log-price defined in Eq. (16) can be expressed through the

stochastic variables of the model nf and j

p(t)~
1{nf (t)

nf (t)
j(t): ð26Þ

In Eq. (26) and further we omit parameter �rr as consider it

integrated into parameter a.

This concludes the definition of consentaneous agent-based and

stochastic model of the financial markets as Eq. (26) defines joint

endogenous and exogenous volatility s(t) introduced by Eq. (12).

Numerical algorithm
We solve Eqs. (24) and (25) by using Euler-Maruyama method

[51] with variable time step, Dti. Namely we have transformed a

set of stochastic differential equations into a set of difference

equations:

xiz1~xizh
(1{xi)"cf

t(xi,ji)
{xi"fc

� �
Dtiz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2hxi(1{xi)

t(xi,ji)
Dti

s
f1,i, ð27Þ

jiz1~ji{
2hH"ccji

t(xi,ji)
Dtiz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2hH(1{j2

i )

t(xi,ji)
Dti

s
f2,i, ð28Þ

tiz1~tizDti, Dti~
k2t(xi,ji)

h(1z"cf z"fczH(1z2"cc))
: ð29Þ

In the above we have changed the notation, xi~nf ,i, to improve

readability of the difference equations. While fj,i stands for the

uncorrelated normally distributed random variables with zero

mean and unit variance. Also note that in the difference equations

above we have introduced additional parameter k, which is

responsible for the precision of the numerical results. The smaller

k value gets, the more precise numerical simulations are, but the

longer computation time grows. During the numerical simulations

we found k~0:03 to be the optimal value precision-wise and time-

wise.

In order to keep nf and j well defined we introduce absorbing

boundaries near the edges of the intervals in which these variables

are defined. Namely, we require that each nf belongs to ½d,1{d�
and j belongs to ½{1zd,1{d�. In other words before using xiz1

and ji1 obtained from the Eqs. (27) and (28), we apply min( . . . )

and max( . . . ) functions on them:

x’iz1~min(max(xiz1,d),1{d), ð30Þ

Figure 1. Schematic representation of the three state herding model, where relevant parameters are shown. The arrows point in the
directions of the possible transitions, each of the transitions pairs is modeled using original Kirman’s model.
doi:10.1371/journal.pone.0102201.g001
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j’iz1~min(max(jiz1,{1zd),1{d): ð31Þ

The new x’iz1 and j’iz1 are certainly well defined and may be

used in further simulations. In our simulations we have used

d~10{6.

Next step in our numerical simulation is to obtain time series of

pi, discretized at one minute time periods, and apply q-Gaussian,

r(t,T)~b 1zaD1{xt

xt

jtD
� �

sq(T)Nq 0,1ð Þ, ð32Þ

or, in certain cases, Gaussian,

r(t,T)~b 1zaD1{xt

xt

jtD
� � ffiffiffiffi

T
p

N 0,1ð Þ, ð33Þ

noise on it. Afterwards we normalize the obtained one minute

return time series so in the end it would have unit variance.

Finally we add as many one minute returns as we need to obtain

the final return time series at a desired discretization intervals. In

the second section we analyze empirical data from New York,

Warsaw and NASDAQ OMX Vilnius Stock Exchanges and

reproduce it’s statistical properties in the numerical simulation.

Results and Discussion

Comparison of model simulation and empirical data
Now we will adjust model parameters to reproduce empirical

data of the return in three different markets. The model return

rt(T) in the time interval T can be written as

r(t,T)~s(t)
ffiffiffiffi
T
p

N(0,1), ð34Þ

for the Gaussian external noise, see Eq. (2), and

r(t,T)~Nq(0,s(t)sq(T)), ð35Þ

for the q-Gaussian one, see Eq.(9). Here N(0,1) denotes normally

distributed random variable with zero mean and unit variance,

and Nq(0,s(t)sq(T)) denotes Tsallis random variable distributed

as defined by Eq.(9). We choose T~1 minute as primary

sufficiently short time interval where s(t) fluctuations are

negligible and solve equations (24) and (25) numerically in

successive time intervals to get 1 minute time series of p(t), Eq.

(26). From the price time series one can produce time series for the

volatilities s(t) and returns r(t,T) using Eq. (34) or Eq. (35).

We compare model return series with empirical return time

series extracted from high frequency trading data on New York,

Warsaw, and NASDAQ OMX Vilnius Stock Exchanges. These

series were transformed into successive sequences of empirical 1

minute returns. Produced empirical return series were normalized

by standard deviation calculated on the entire time sequence of

selected stock. For this comparison with empirical data we select

only a few stocks from each stock exchange, which have more or

less constant long term average trading activity to avoid

considerable input of possible trend into time series statistics.

From NYSE data we have selected stocks: BMY, GM, MO, T,

traded for 27 months from January, 2005. From Warsaw SE

stocks: TPSA, KGHM, traded from Novemver 2000 to January

2014, and PZU traded from May 2010 to January 2014. From

NASDAQ OMX Vilnius data stocks: APG1L, IVL1L, PTR1L,

SAB1L, TEO1L, traded from May 2005 to December 2013. We

do not extend this analysis into more wide representation of stocks

as only few stocks from NASDAQ OMX Vilnius are liquid

enough for such analysis. Comparable demonstration of general

features across markets is the main purpose of this consideration.

In every stock group series of different stocks are considered as

separate realizations of the same stochastic process and so we

present empirical statistical information as average over realiza-

tions (stocks).

In order to compare scaling of the statistics with increasing time

interval T of return definition we just sum 1 minute returns of

model and empirical time series in successive intervals of 3

minutes, of 10 minutes or 30 minutes. For each stock exchange

considered and each time interval T we calculate absolute return

probability density function (PDF) and power spectral density

(PSD). Both PDF and PSD are obtained by averaging over stocks

in the considered stock exchanges. Results are presented in four

figures: Fig. 2 - for NYSE data; Fig. 3 - for NYSE data with

Gaussian noise; Fig. 4 - for Warsaw Stock Exchange data; Fig. 5 -

for NASDAQ OMX Vilnius data. In figures: Fig. 2, Fig. 4, Fig. 5

empirical data (red lines) are compared with model statistics (black

line) calculated with the same choice of parameters: "cf ~0:1,

"fc~3, "cc~3, H~300, h~10{8s{1, a~0:5, b~1, l~4, a~2.

From our point of view the achieved coincidence of empirical

and model statistics is better than expected. PDF and PSD

coincide almost for all markets and all time T scales. q-Gaussian

noise suites much better for this model, compare Fig. 2 calculated

with q-Gaussian noise and Fig. 3 calculated with Gaussian one.

The use of q-Gaussian noise can be confirmed by more detailed

study of empirical data as well.

There are some observed discrepancies of empirical and model

results, which have reasonable explanations. For example, spikes

observed in empirical PSD are related with one trading day

seasonality, this is not included in the presented model and not

observed in the model PSD. Thanks to reviewer, who has

stimulated us to think how could be empirically observed intra-day

pattern of return volatility and trading activity introduced into our

model. The answer is not so simple as one could expect because

we use simplified, assumed as only statistically valid, relation

between log price p(t) and trading activity, see Eq.(23). The

proposed model does not include trading activity as independent

dynamic variable and this makes introduction of discussed

seasonality regarding trading activity not straightforward. Never-

theless, this intraday seasonality first of all has to be reflected in

volatility pattern of total return fluctuations quantified by

parameter b. Let us to replace constant value of b~1 by some

intra-day exponential variation

b(t)~ exp ½{(t{195)2=w2�z0:5, ð36Þ

where w~20 quantifies in minutes the width of b variation and

time t is closed in the circle of total duration of NYSE trading day

equal to 390 minutes, note t~0 or t~390 corresponds to the

middle point of trading day. In Fig. 6 we present results of such

numerical experiment, where power spectral density of absolute

return for NYSE stocks is compared with model accounting for b
seasonality, Eq. (36). As one can see, such a simple introduction of

volatility seasonality reproduces empirical resonance structure of

absolute return very well.

For such emerging markets as Baltic region the intensity of stock

trading is up to 50 time lower than in NYSE. This makes a

considerable impact on return in such short time interval as 1
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minute PDF as for over 90% of time intervals no transactions are

registered. Consequently, one observes considerable discrepancy

in PDF for low return values as main part of returns are equal to

zero. Nevertheless, it is worth to notice that power law part of PDF

and PSD is in pretty good agreement with model one. Mentioned

discrepancy disappears with increasing T or for the markets with a

more intensive trading. Some PDF discrepancy for low returns

values is observed for NYSE and Warsaw stocks as well and this is

Figure 2. Probability density function (PDF) and power spectral density (PSD) of return with q-Gaussian noise for NYSE stocks:
BMY, GM, MO, T. Empirical (red) and model (black) PDF (first column) and PSD (second column). (a) and (b) - 1 minute; (c) and (d) - 3 minutes; (e)
and (f) - 10 minutes; (g) and (h) - 30 minutes. Model parameters are as follows: "cf ~0:1, "fc~3, "cc~3, H~300, h~10{8s{1 , a~0:5, b~1, l~4, a~2.
doi:10.1371/journal.pone.0102201.g002

Consentaneous Model of the Financial Markets

PLOS ONE | www.plosone.org 7 July 2014 | Volume 9 | Issue 7 | e102201



related with some impact of discrete nature of price values

measured in cents, namely on the discrete tick size. Certainly,

prices are smooth in the model.

Finally we can conclude that three state herding model of

absolute return in financial markets works very well and explains

general origins of power law statistics for very different markets

starting from most developed to emerging.

Figure 3. Probability density function (PDF) and power spectral density (PSD) of return with Gaussian noise for NYSE stocks: BMY,
GM, MO, T. Empirical (red) and model (black) PDF (first column) and PSD (second column). (a) and (b) - 1 minute; (c) and (d) - 3 minutes; (e) and (f) -
10 minutes; (g) and (h) - 30 minutes. Model parameters are as follows: "cf ~0:1, "fc~3, "cc~3, H~300, h~10{8s{1 , a~0:5, b~1, a~2.
doi:10.1371/journal.pone.0102201.g003
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Conclusions

The proposed consentaneous agent-based and stochastic model

of the financial markets is a result of our previous research in

stochastic modeling, see references in [25,41], and agent-based

modeling of herding interaction [33,34]. The idea to combine two

approaches comes from the properties of nonlinear stochastic

differential equations generating power law statistics [41,52] and

Figure 4. Probability density function (PDF) and power spectral density (PSD) of return with q-Gaussian noise for Warsaw Stock
Exchange stocks: KGHM, PZU, TPSA. Empirical (red) and model (black) PDF (firs column) and PSD (second column). (a) and (b) - 1 minute; (c) and
(d) - 3 minutes; (e) and (f) - 10 minutes; (g) and (h) - 30 minutes. Model parameters are the same as in Fig. 2.
doi:10.1371/journal.pone.0102201.g004
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possibility to derive these equations as macroscopic outcome of

microscopic herding model [33]. The possibility to reproduce

power law statistical features of absolute return observed in the

financial markets in such details as power spectrum with two

different exponents distinguishes this approach as compromise of

sophistication and simplicity. Nevertheless, the main value of this

model comes form its very clear microscopic background of

herding interactions between agents. Very general idea, which has

Figure 5. Probability density function (PDF) and power spectral density (PSD) of return with q-Gaussian noise for NASDAQ OMX
Vilnius stocks: APG1L, IVL1L, PTR1L, SAB1L, TEO1L. Empirical (red) and model (black) PDF (first column) and PSD (second column). (a) and (b) -
1 minute; (c) and (d) - 3 minutes; (e) and (f) - 10 minutes; (g) and (h) - 30 minutes. Model parameters are the same as in Fig. 2.
doi:10.1371/journal.pone.0102201.g005
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roots in the entomological studies of ant colonies [46], can be

adopted to build system of three agent groups acting in the

financial markets. Further complexity of the behavioral aspects of

agents can be treated as irrelevant for the macroscopic outcome of

this complex system as herding alon reproduces statistical

properties.

It is worth to notice that some feedback of observed return

increases trading activity in the market and the degree of

nonlinearity, which we account by empirical value of the exponent

a~2, [48–50]. Other model parameters are less grounded by the

empirical market analysis and are defined by adjusting proposed

model to the here presented statistical properties of the considered

financial markets. Parameters "cf ~0:1 and "fc~3 define the most

fundamental tradeoff between fundamental and speculative

behavior of agents in financial markets. It is clear from the

defined values of the parameters, exhibiting strong asymmetry

between fundamentalism and chartism, that bubbles in the

financial markets can be explained just by the disappearance of

the fundamental trading behavior and markets become stable

when considerable part of agents return to the trading according

to the fundamental values. The tradeoff between fundamental and

speculative behavior is the slowest process in the model defined by

adjusted parameter h~10{8s{1. It looks like that this long term

herding process has global nature and impacts all markets in the

similar way.

Much more rapid process defined by parameter H~300
describes tradeoff between choices to sell or buy and probably is

more related with local stock price dynamics. Nevertheless, the

same value of H appropriate for all markets and all stocks makes

some surprise and probably is related with universal behavior of

power spectral density. Notice that value "cc~3 is higher than 1

making these rapid fluctuations symmetric and localized around

equilibrium j~0.

From our point of view this study based on the concepts of

statistical physics contributes to the behavior finance supporting

the general idea of market inefficiency [53,54] as exhibits possible

dominance of herding interactions over agent’s rationality. In

other words, rationality is too heterogeneous to resist herding

tendencies. This rises the question whether markets are able to

determine true values of assets or one needs other more

fundamental sources of economic information. Fortunately the

tendencies of imitation open the new possibility that herding itself

can be used to stabilize unwanted fluctuations of the financial

markets [55].

Supporting Information

Dataset S1 Compressed set of time series for one
minute empirical returns. Time series for each stock are

given as separate. txt files, file names are self-explanatory.
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