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Introduction

We analyze endogenous capacity formation in a large market
with frictions when the good for sale is perfectly divisible. The
sellers post prices and decide on costly capacities. Buyers
individually decide which seller to visit based on what is posted.
This leads to the usual coordination frictions as the buyers don’t
know which sellers the other buyers visit. This approach is called
directed search. Standard references include [1-5].

We determine the conditions that guarantee the existence and
uniqueness of a symmetric equilibrium both under free entry and
when the measure of sellers is fixed. When capacities are
observable, both price posting and auctions give rise to the same
equilibrium quantities. When only prices are observable before the
matching takes place, there is a continuum of equilibria. We show
that the “best” of these equilibria yields the same seller capacity as
the case of observable capacities and leads to the same number of
traded goods. All equilibria under unobservable capacities give the
sellers positive expected profits. Free entry of sellers therefore leads
to a very large number of sellers each offering very small
quantities. This is clearly inefficient and different than under
observable capacity.

Two assumptions let us simplify the analysis compared to earlier
papers. First, we focus on perfectly divisible goods. This is in
contrast to several recent papers analyzing frictional markets and
seller capacity for goods that are sold in units. (For example [5-9].)
In these models, equilibrium is cumbersome to find when sellers
can chose between more than two capacities. In [9], chap. 2 the
existence of a free entry equilibrium under strongly convex costs is
established. The equilibrium is straightforward to find, but
uniqueness is not guaranteed. Second, we make the sellers’
problem quasiconcave in a particular way by assuming convex
costs but linear utility functions over capacity for the buyers. The
linearity of the utility functions makes the distinction between
capacity and quality somewhat arbitrary as any buyer who is
willing to buy any amount given the unit price would buy

PLOS ONE | www.plosone.org

everything a seller has to offer. As quality is seldom measured or
priced in units we choose to frame the analysis in terms of
quantity. Regardless, the setting resembles [10], with the
distinction that we allow the sellers to chose any positive
capacity/quality on the real line, whereas they study the choice
between two levels.

The Model

The environment consists of a unit interval of buyers and a large
continuum of potential sellers of which 0~' e RT are active in the
market. The overall market tightness, i.e., the ratio of buyers to
active sellers, is 0. The sellers choose their capacity and post
binding prices. The good is assumed to be perfectly divisible. Both
the capacity and the price of each seller are observable. The cost of
capacity ¢ is ¢(q), where ¢(0)=0, ¢ (g)>0 and ¢"(g) > 0. This cost
is borne before the matching takes place as in [9], chap. 2 and [8].

The utility function of the buyers is linear,

u(q)=Aq, )

where ¢ is the quantity that the buyer consumes and 4 is a
constant. The sellers choose their capacity and price so as to
maximize their profit. Because the buyers’ utility is linear and
there is no upper bound on how much of a good a single buyer
wants, a seller trades his whole quantity even if he is visited by just
one buyer. Similarly, if two buyers contact a seller with capacity ¢
then they are indifferent between whether the good is divided
equally between them or whether both get the whole quantity ¢
with probability 1/2. Thus the expected utility of a buyer visiting a
seller with capacity ¢ and unit price p is simply (4 —p)g multiplied
by the probability that the buyer ends up with quantity g of the
good.

The order of events is as follows: At stage 1, each active seller
chooses a capacity ¢ € R* and bears the cost ¢(g). At stage 2, each
seller posts a binding unit price p, which depends on the
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distribution of capacities and his own capacity. At stage 3, each
buyer chooses which seller to visit. There is perfect information as
the actions of the previous stages are perfectly observed by the
players. The symmetric equilibrium outcome would remain
unchanged if the sellers were allowed to set both capacities and
prices in the same stage, although new equilibria might arise. The
real world motivation for the three stages is that revising pricing
decisions is often easy whereas changing capacity/production is
not. Consequently, sellers could always revise their prices after
observing the capacities.

We capture the frictions by focusing on symmetric equilibrium
strategies for the buyers. We further assume that the strategies of
both the sellers and the buyers are anonymous so that sellers with
the same capacity and the same price are treated identically by the
buyers and all the buyers are treated identically by the sellers.

When there are different capacity-price pairs the buyers adjust
their behavior so that they are indifferent between visiting the
different types of sellers and expect the market utility M from
them all. The idea can be traced back to [11],[3] and [4] and is
often called the market utility approach. This adjustment of
behavior leads to different ratios of buyers to sellers, i.e., queue
lengths, B, ,(0,M), for sellers with different (g,p) -pairs. When the
queue length is f the probability that exactly j buyers visit a seller

is given by the Poisson distribution, i.c., P[x=/j]=e~# g' Next we
J
define the equilibrium. It consists of the following parts.

a) At stage 1, all sellers choose their capacity ¢* so as to
maximize their profit given that they have to offer the buyers
at least the market utility M

argmax (M) = arg max{p*(q)q(l —e’ﬁllvl’(()’M)) — c(q)}s‘t.
q q

(1 _e_ﬂq,p(osM))

A—p* AN
(A—p*(@)q B, (0.30) M

b) At stage 2, all sellers choose their price p*(¢g) given their
capacity ¢, so that it maximizes their profit while giving the
buyers the market utility M

arg m(a)xp(q)q(l —e Pap®My g,
plg

1 _ e*Bq,p(G,M)

(A—p(@)q T =

c) At stage 3, buyers maximize their expected utility. Given a
distribution of different capacity-price pairs J(p,q) they adjust
their behavior so that they are indifferent between visiting
sellers with different (g,p) -pairs and expect to receive the same
utility from all. This leads to different expected queue lengths
B, p(0.M) to the different types of sellers so that the expected

utility of each buyer is M and [ f, ,(0,M)dJ(q.p)=0.

Definition 1 Let max, ny(M)=my(M). A symmetric equilib-
rium is a capacity-price pair (q*,p*), a market utility M, and queue
lengths B, ,(0.M) such that (g (M)=m(M); (i)
Typ(M) <7, (M) for any other capacity-price pairs. (i) M and
By p(0.M) constitute an equilibrium of the last stage subgame where
each buwyer contacts a seller, which means that the queue lengths
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By p(0.M) are given by the market utility condition (part a))
whenever M < (1—p)q, and are set al zero whenever M > (1—p)gq.
In a symmetric equilibrium B, ,.(0,M)=0 and M is determined by

1— —0
(A=p)q* =M.

Analysis

Price formation

We begin by analyzing the second stage of the game where
sellers have chosen their capacity. To find a symmetric equilibrium
price, we first make the assumption that all sellers have the same
capacity ¢ (we later show that this is the equilibrium outcome).
The equilibrium price, if it exists, is then a unit price p from which
no seller has a profitable deviation. A possible deviator has the
maximization problem

max pg(1—e~ "),
Iz

where p is his unit price. He sells his whole quantity ¢ if he is
visited by at least one buyer; the probability of which is (1 —e P )
The queue length f that the deviator faces is determined by the
buyers’ indifference condition between contacting the deviator and
the non-deviators. This is the market utility condition: to get any
buyers the deviator must offer at least the same expected utility as
the non-deviators.

(1-c ")

(1-c)
B

(4—Dp)q 9

=(A—p)q

The LHS is the expected utility of a buyer visiting a deviating
seller. As described in the set up, the linearity of the utility function
allows us to write the expression for the expected utility as (4 —p)g
multiplied by the probability that the buyer ends up with the whole
quantity ¢ of the good. With probability e~# no other buyers show
up and our buyer acquires quantity g. If i other buyers show up

1
our buyer acquires ¢ with probability T The probability that at
i

w i
least one other buyer shows up is 3 e~ # El Thus the probability
i=1 L

0 i 1
that our buyer manages to acquire ¢ is e 4 > e*ﬁﬁl—,+1,
=1 ili

e b

which simplifies to . The RHS is the market utility or the

expected utility of a buyer visiting the non-deviating firms. It is
derived similarly as the LHS.
The first order condition of the deviating seller’s problem is

_ g dp
—e Ngt+e Pgp—= =
(1 e )q e qu,ﬁ 0.

To find out how the queue length is affected by the price we
totally differentiate the indifference condition of the buyers with
respect to f and p to get
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l—eF
pli—e =)

SIS

(4—p)

In equilibrium p=p and f=0, thus the first order condition
implies that

l—e ?—0e=%)4
P:% )

We show in the appendix that there are no profitable deviations
from (2). Thus it is the equilibrium price.
Proposition 2 When all sellers have capacity q the symmetric
(1—e"—0e")4
l—e0 '
Proof. The first order conditions can be found above. The rest
of the analysis is in the appendix S1. H
The equilibrium price above in (2) depends only on the overall
market tightness 6. Capacity doesn’t enter the price because all
sellers have the same capacity and the buyers have linear
demands; therefore a seller sells his whole capacity even if visited
by a single buyer. This does not mean that capacity is
unimportant. To see why consider the case where there are sellers
of two different capacities. For simplicity assume that proportion
sk of sellers have capacity gx and the rest have capacity ¢;. Then,
following the steps above (for details consult the appendix S1.2),
(1—e *—ae™)A4
l—e—2

equilibrium price is given by p=

the equilibrium prices are and

(1—e=F—pe=F)a

Py =

Py = I 3 . Note that the difference in the price
_e_
comes from the different queue lengths o= i@, and
Sk
(1—bi)

0, where by is the proportion of buyers visiting sellers

ﬂ B ( 1— Sk)
with capacity gx. This proportion (and hence the queue lengths) is
determined by  the  buyers’ indifference  condition

(1—e=) (1=c)
o

=(4 qul)qlT which depends on

(A 7qu)qk

the sellers capacities.
When all the sellers have capacity g and post price
p as per Proposition 2, their expected profit is

Auctions.

n(g)=(1—e""—0e"")Ag—c(q). (3)
The buyers’ expected utility is then
ug.p)=e"Aq )

When the terms of trade are decided by auction at the sellers’
locations a single buyer would bid zero and still acquire quantity ¢
of the good. If there were two or more buyers they would compete
for the good and thus bid up the per unit price to their valuation
Agq. It is then easy to see that a buyer’s expected utility from
visiting a seller with quantity ¢ is e”’4g where e~? is the
probability that no other buyers show up. By similar reasoning a
seller receives a positive profit only if at least two buyers visit his
auction. The probability that this happens is 1 —e~? —0e~". Thus
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the expected profit of an auction is given by
(q)=(1—e"?—0e=")Aq—c(g). This is in essence the equiva-
lence result from [12].

Observation The expected profits of the sellers are the same
under posted prices and when trades are consummated by auction.

It turns out that the equivalence result also holds when there are
sellers with differing capacities, just as in [9], chap. 2. The proof
for the current setting with perfectly divisible capacities is in the
appendix S1. As the auctions approach is easy to work with, we

will use it to derive the equilibrium capacities of the sellers.

Choice of capacity

With perfectly divisible goods it is straightforward to determine
the conditions for existence and uniqueness of the symmetric
equilibrium and to find the equilibrium. This is the main
advantage compared to the approach with integer capacities.
We proceed as in the last subsection. Namely, we assume that all
sellers have capacity ¢ and analyze a potential deviator’s problem
and derive the queue length he faces by choosing capacity ¢. He
must still offer the buyers the same expected utility, namely the
market utility, that they would get from going to the sellers with
capacity g. Thus the queue length of the deviator, ie., f is
determined by the buyers’ indifference condition

e’BA§=e’0Aq,

keeping in mind that the queue length cannot be negative.
Simple algebra allows us to write the queue length f, that a
deviator faces as

B= maX(G— ln(%),O). (5)

A seller deviating to capacity ¢ maximizes his expected profit

max n(p)= max[(1—e  —peHAG—c@].  (6)
q q

where f is determined by (5). The first order condition is

(1—e P—peF)4 +[)’e*5A'q“ii—ﬁ —J@=0.

In order to solve the FOC we first derive

df 1
o = =, 7
G 7 ()

which tells us how the expected queue length reacts to changes in
capacity. In a symmetric equilibrium g=¢ and f=60. By
substituting (7) into the first order condition we solve for C,(q).
We get

C@=1—e"4. (8)

August 2014 | Volume 9 | Issue 8 | 101766



The necessary condition for equilibrium thus gives us
* N1 —0
q= (c > (1—e=")4)

Unfortunately, it turns out that we need to make an extra
assumption on the cost function in order to guarantee that the
sufficient conditions hold, i.e., to show existence and uniqueness of
the symmetric equilibrium. The reason is that the MR function of
a potential deviator is increasing and concave in capacity.
Therefore convexity of the cost function is not enough to
guarantee that there are no profitable deviations. (The MC curve
might be increasing and convex as well and might therefore cross
the MR curve any number of times.) One way to guarantee
existence and uniqueness is to assume that the MC increases more
steeply than the MR curve after the potential equilibrium, but this
is rather ad hoc as the condition then depends on the parameter
values. A better way is to assume that ¢ (¢) is non-negative. Then
the MC curve is convex and the MR and MC curves cross at most
twice and we can show that the sufficient conditions hold.

Assumption A ¢’ (g) >0.

Proposition 3 The unique symmetric pure strategy equilibrium
capacity of the sellers is given by ¢ (¢*)=(1—e~")A whenever this
gives the sellers’ a positive expected profit and assumption A holds.

Proof. The necessary conditions are above, the sufficient
conditions can be found in the appendix S1. W

It is somewhat surprising that Assumption A is needed for
existence and uniqueness. The reason is that a seller can increase
his queue length, and therefore the probability of trading, by
deviating to a higher capacity. This in turn implies that the
deviator has an increasing and convex revenue function. If the cost
function is not convex enough, there might exist a profitable
deviation to a high enough capacity. With a linear cost function no
equilibrium exists as there is always a profitable deviation to a
higher capacity just as in [9], chap. 2.

With Assumption A the equilibrium is straightforward to derive
and easy to analyze. We elaborate with the following example.

Example When ¢(q)=ag’ the equilibrium capacity is

1—e 94
L=, 9)

*

The sellers’ profit from capacity g* is

A (1—e ") (1—e"?—20e7")
4a

n(q")= (10)

One notices that 7(¢*) <0 whenever 6 is smaller than or equal

d *
to the threshold ¢ where tx1.2564 (as 7;;] ) >0 for 0> 1n(2)

and 7n(g*) is continuous in 6 it follows that n(¢*)>0 when 0> 7).
For 0 <t capacity g* clearly isn’t an equilibrium as there exists a
profitable deviation to ¢g=0. We can thus conclude that there
exists no symmetric equilibrium in pure strategies when 0<0<t.
Whenever 0> ¢ the equilibrium capacity of the sellers is given by
proposition 3.

Even though no equilibrium with symmetric quantities for the
sellers exist when 0 <, there exists an asymmetric equilibrium. In

this equilibrium measure ¢~! of the sellers have capacity
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. (I—e™H4
=" (an

and make zero profits and the rest of the sellers have capacity zero
(or become inactive). For 4=1 and a=1 the equilibrium capacity

l—e~ 1A
for the active sellers is then ¢* = u ~0.36

2a
Constrained Efficiency. We analyze the efficiency of the

decentralized equilibrium in a standard way by comparing it to the
choice of a benevolent planner that maximizes overall utility. The
planner chooses the capacities and the proportion of sellers
offering each capacity and allocates the buyers over the sellers (see
e.g. [13]). For the comparison to be fair it is assumed that the
planner is constrained by the same frictions as the market
participants. Namely, she cannot overcome the coordination
problem by assigning specific buyers to specific sellers. If the
planner cannot improve upon the market outcome the equilibrium
is called constrained efficient. In this subsection we assume that the
overall measure of sellers is fixed and not a choice variable of the
planner.

We define social welfare directly as the expected value of the
trades minus the sellers’ capacity cost. We show in the appendix
that the planner has no solution in which there are sellers with
different (positive) capacities. When all sellers have the same
capacity the social welfare is

SW=e"Ag+0" " [(1—e "—0e ") Ag—c(g)].  (12)

The planner maximizes welfare by choosing the capacity of the
sellers. As noted above, she can’t base her decisions on the
identities of the agents. Assuming that she chooses the same
capacity for all sellers, the planner’s problem is

m?X(SW). (13)

The FOC is

asw

-0 —1 -0 —0 ! _
4 = A [(1=e™"—0e7") 4~ (g)] =0.

Solving for ¢ (g) we get
(1 — eiH)A = cl(qso).

To see that ¢ uniquely maximizes social welfare note that
¢ (q) is non decreasing, ¢(g) is continuous and SW(0)=0 and
lim,—,., SW(g)=—c0. In addition SW(¢59)=>0 for any non
negative value of ¢5¢. The competitive outcome is thus identical to
the planners solution or

! ! *
c(¢*)=c(q"), (14)
whenever the overall market tightness is such that the competitive

solution gives the sellers a non negative expected profit or

n(g*)=>0.
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Free entry

Equilibrium is constrained efficient when the number of sellers
is determined by free entry. In this case the measure of sellers, 0",
adjusts so that their zero profit condition is satisfied. Thus for any

q

n(q)=(1—e""—0e™")Ag—c(g)=0. (15)
From Eq. (8) we know that in any equilibrium
¢q)=(1—e"A.

With the two equations we can solve for the free entry
equilibrium. Returning to our example with cost function
c(q)=aq* the free entry equilibrium capacity is given by (11).
The measure of sellers is the solution in 0 to

n(q") = %Az(e_”— 1)(e " +20e"~1)=0.

We find that 0" =1, where 1~ 1.2564 just as earlier in the case
with too many sellers. Thus, in a free entry equilibrium measure
(I—e 94

2

t~! of the sellers have capacity ¢* = and the rest have

capacity zero.

Planner’s solution. When the social planner is free to chose
both the overall market tightness and the capacity of the sellers the
social optimum is given by

max SW. (16)
q,0

The FOC’s are

dSW_ -0 —1 -0 -0 / _
Tq—e A+0 [(l—e —0e )A—c(q)}—O
and
dsw (1—e="—0e=%) Ag—c(q) o
o 0> e
Rearranging we get
g)=(1—e")4 (17)
and
cg)=(1—e"—0e"") Aq. (18)

As (17) and (18) are identical to (8) and (15) the free entry
equilibrium is constrained efficient.
Proposition 4 The symmetric equilibrium is constrained

efficient
Proof. The proof can be found above. B
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Constrained efficiency is not a surprising result. It is almost a
defining property of directed search and has been demonstrated
several times with fixed capacities and free entry. Here capacity is
not fixed but it is observable and there is an optimal price for each
capacity. Thus capacity choices are reflected in the queue lengths
and hence in the trading probabilities of the sellers. With free entry
the sellers fully internalize the effect their decisions have on
welfare. Analogous results can be found for example in [9], chap.
2, [8] and [7].

Our results on the constrained efficiency of equilibrium are a
useful benchmark in the following section where capacities are
unobservable.

Unobservable capacity

In this section we let the sellers’ capacities be unobservable
before matching takes place. The definition of equilibrium from
section 2.1 needs to be changed accordingly. To derive the queue
lengths we need to describe the beliefs. The standard way is to
impose strict beliefs of the type that all sellers that post price p have
a ‘“high” capacity and others have “low” capacity. With
continuous capacities this can be modified to: all sellers that post
price p have capacities that maximize their profit and therefore
satisty

g=argmax (1 —e~")pg—c(q), (19)
q
i.e., where g is determined by MR=MC or (l —efg)ﬁ=c,(q).

Any seller posting any other price than p is assumed to have
capacity zero. In the candidate equilibrium the price is therefore

‘@
l—e 0"

= (20)

The equilibrium capacity ¢ is
— Nl —0
qz(c) (p(1=e77)). (21)

Unfortunately there is a continuum of equilibria satisfying these
beliefs as any (p,q) pair such that ¢ (¢) = p(1—e~") and p € [0,4]
yields non negative expected payoffs and can be supported as
equilibrium. Refinements such as the Cho-Kreps intuitive
criterion have no bite.

Equilibrium selection. Let us first focus on the equilibrium
capacity that maximizes social welfare. We define social welfare as
the overall utility from trade minus the costs of production or

1— —0
sw=l2¢" 4,9

0 0

where the first term on the RHS is a buyer’s expected utility
multiplied with the measure of buyers. The second term is the cost
of capacity ¢ multiplied by 0~!, iec., the measure of sellers. We
find the “best” equilibrium by maximizing SW with respect to p.
By substituting (20) and (21) in the social welfare function the
maximization can be written as
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(22)
The FOC is
(=t ((¢) - )
(@) —e)
1—é
' ((C’) —1 (]7(1 —676))>
which can be simplified to
(1—e ") A—p(1—¢€") =0, (23)
which holds when
p=A (24)
The equilibrium capacity is then given by
C@=(1-e")4 (25)

just as when capacities are observable. The price p=4 1s,
however, much higher than than under observable capacities. In
fact all the gains from trade befall the sellers while the buyers get
zero utility.
Auctions. When trade is determined by auction (without

reserve price) the equilibrium capacity is simply
g=argmax(l—e "—0e~") 4g—c(q). (26)
q

which gives us
C@=(1-e""—0e7")4. (27)

The unique symmetric equilibrium capacity under auctions is
given by (27). It is lower than (25), the capacity in the “best”
equilibrium. To further analyze the differences between the
different cases we again let the cost function be given by
o(q)=aq’.

Example (continued): The equilibrium capacity under
auctions 1s smaller than in the “best” equilibrium under price
posting.

l—e ?—0e=4
o )

_(—eha _

2a 2a ¢ (28)

This is not surprising as the gains from trade are divided more
equally between the market participants under auctions but the
capacity costs are still borne by the sellers. It is likewise clear that
the expected profits of the sellers are higher in the “best” price
posting equilibrium
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2

A _
me)” = 2a 2a

(1—e=0—0e=") )’ 7a<(1 —e*G—He*H)A>

(29)
(1—e =042 (1—e 42

_ _ PP
N 4a < 2a ™)y

The buyers’ expected utility is, on the other hand, zero in the
“best” price posting equilibrium whereas it is positive under
auctions.

e I(1—e "—0e0) 4>
2a

u(gy'=e"Ag= (30)

The “best” equilibrium under price posting and unobservable
capacity achieves the same welfare as the symmetric equilibrium
under observable capacities. In doing so it allocates all the gains
from trade to the sellers. Auctions result in lower equilibrium
capacities than the “best” price posting equilibrium, but the
benefits of trade are more evenly distributed by the market
participants.

By substituting the equilibrium capacity under auctions g*
(unobservable capacities) into (20), and imposing suitable beliefs,
we solve for the price that yields the same equilibrium capacity as
auctions. This price is

(31)

Interestingly 7 is identical to the symmetric equilibrium unit
price under observable capacity (see Proposition 2). Just as under
observable capacity, it results in both the buyers and the sellers
receiving the same expected utilities as under auctions.

Above we analyze capacity choice when only prices are
observable. To do so we impose strict beliefs. The downside of
this assumption is that it kills any interesting link between queue
length and capacity. In addition, it gives rise to a continuum of
equilibria of which we focus on two. The “best” equilibrium
maximizes social welfare and leads to the same capacities as under
observable capacity. The reason is that now the whole surplus of
trade befalls the sellers and hence they fully internalize the effect of
their capacity decisions. The equilibrium is therefore constrained
efficient with a fixed number of sellers.

In the second equilibrium the trades are determined by auction.
The equilibrium leads to too small capacities compared to
observable capacity. Somewhat interestingly it is outcome-wise
equivalent to one where sellers post the same price as under
observable capacity.

Conclusion

Directed search is a standard method to analyze frictional
markets. At its core is the trade-off that sellers face between asking
a higher price and attracting fewer buyers; hence trading more
slowly. Typically, all sellers are assumed to have a fixed capacity,
often one unit. Several recent papers relax this assumption by
allowing the sellers to choose their capacity. This makes it possible
to compare markets with a few large sellers to markets with many
small sellers in terms of welfare and to find the equilibrium size
and number of sellers given the cost function. In the realistic
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setting where production takes place before trading these models
usually yield equilibria that can be analyzed only numerically (see
[9], chap. 2). In the current paper we simplify the setting by letting
the goods be perfectly divisible and the buyers’ utility functions be
linear. For a unique symmetric equilibrium to exist we still have to
assume a very convex cost function. The gain is that the
equilibrium is straightforward to analyze and easy to work with
whether capacities are observable or not.

Were we to relax the assumption of linear demands, for
example, by assuming that buyers have diminishing marginal
utilities even the observable capacities case would be quite
cumbersome to analyze as can be seen e.g. in [9], chap. 3. The
analysis is, while interesting, outside the scope of the current paper
and is left for future work.
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