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Abstract

We analyze endogenous capacity formation in a large frictional market with perfectly divisible goods. Each seller posts a
price and decides on a capacity. The buyers base their decision on which seller to visit on both characteristics. In this setting
we determine the conditions for the existence and uniqueness of a symmetric equilibrium. When capacity is unobservable
there exists a continuum of equilibria. We show that the ‘‘best’’ of these equilibria leads to the same seller capacities and the
same number of trades as the symmetric equilibrium under observable capacity.
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Introduction

We analyze endogenous capacity formation in a large market

with frictions when the good for sale is perfectly divisible. The

sellers post prices and decide on costly capacities. Buyers

individually decide which seller to visit based on what is posted.

This leads to the usual coordination frictions as the buyers don’t

know which sellers the other buyers visit. This approach is called

directed search. Standard references include [1–5].

We determine the conditions that guarantee the existence and

uniqueness of a symmetric equilibrium both under free entry and

when the measure of sellers is fixed. When capacities are

observable, both price posting and auctions give rise to the same

equilibrium quantities. When only prices are observable before the

matching takes place, there is a continuum of equilibria. We show

that the ‘‘best’’ of these equilibria yields the same seller capacity as

the case of observable capacities and leads to the same number of

traded goods. All equilibria under unobservable capacities give the

sellers positive expected profits. Free entry of sellers therefore leads

to a very large number of sellers each offering very small

quantities. This is clearly inefficient and different than under

observable capacity.

Two assumptions let us simplify the analysis compared to earlier

papers. First, we focus on perfectly divisible goods. This is in

contrast to several recent papers analyzing frictional markets and

seller capacity for goods that are sold in units. (For example [5–9].)

In these models, equilibrium is cumbersome to find when sellers

can chose between more than two capacities. In [9], chap. 2 the

existence of a free entry equilibrium under strongly convex costs is

established. The equilibrium is straightforward to find, but

uniqueness is not guaranteed. Second, we make the sellers’

problem quasiconcave in a particular way by assuming convex

costs but linear utility functions over capacity for the buyers. The

linearity of the utility functions makes the distinction between

capacity and quality somewhat arbitrary as any buyer who is

willing to buy any amount given the unit price would buy

everything a seller has to offer. As quality is seldom measured or

priced in units we choose to frame the analysis in terms of

quantity. Regardless, the setting resembles [10], with the

distinction that we allow the sellers to chose any positive

capacity/quality on the real line, whereas they study the choice

between two levels.

The Model

The environment consists of a unit interval of buyers and a large

continuum of potential sellers of which h{1 [ Rz are active in the

market. The overall market tightness, i.e., the ratio of buyers to

active sellers, is h. The sellers choose their capacity and post

binding prices. The good is assumed to be perfectly divisible. Both

the capacity and the price of each seller are observable. The cost of

capacity q is c(q), where c(0)~0, c
0
(q)§0 and c

00
(q)w0: This cost

is borne before the matching takes place as in [9], chap. 2 and [8].

The utility function of the buyers is linear,

u(q)~Aq, ð1Þ

where q is the quantity that the buyer consumes and A is a

constant. The sellers choose their capacity and price so as to

maximize their profit. Because the buyers’ utility is linear and

there is no upper bound on how much of a good a single buyer

wants, a seller trades his whole quantity even if he is visited by just

one buyer. Similarly, if two buyers contact a seller with capacity q
then they are indifferent between whether the good is divided

equally between them or whether both get the whole quantity q
with probability 1=2. Thus the expected utility of a buyer visiting a

seller with capacity q and unit price p is simply (A{p)q multiplied

by the probability that the buyer ends up with quantity q of the

good.

The order of events is as follows: At stage 1, each active seller

chooses a capacity q [ Rz and bears the cost c(q). At stage 2, each

seller posts a binding unit price p, which depends on the
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distribution of capacities and his own capacity. At stage 3, each

buyer chooses which seller to visit. There is perfect information as

the actions of the previous stages are perfectly observed by the

players. The symmetric equilibrium outcome would remain

unchanged if the sellers were allowed to set both capacities and

prices in the same stage, although new equilibria might arise. The

real world motivation for the three stages is that revising pricing

decisions is often easy whereas changing capacity/production is

not. Consequently, sellers could always revise their prices after

observing the capacities.

We capture the frictions by focusing on symmetric equilibrium

strategies for the buyers. We further assume that the strategies of

both the sellers and the buyers are anonymous so that sellers with

the same capacity and the same price are treated identically by the

buyers and all the buyers are treated identically by the sellers.

When there are different capacity-price pairs the buyers adjust

their behavior so that they are indifferent between visiting the

different types of sellers and expect the market utility M from

them all. The idea can be traced back to [11],[3] and [4] and is

often called the market utility approach. This adjustment of

behavior leads to different ratios of buyers to sellers, i.e., queue

lengths, bq,p(h,M), for sellers with different (q,p) -pairs. When the

queue length is b the probability that exactly j buyers visit a seller

is given by the Poisson distribution, i.e., P x~j½ �~e{b bj

j!
. Next we

define the equilibrium. It consists of the following parts.

a) At stage 1, all sellers choose their capacity q� so as to

maximize their profit given that they have to offer the buyers

at least the market utility M

arg max
q

pq(M)~ arg max
q

p�(q)q 1{e{bq,p(h,M)
� �

{c(q)
� �

s:t:

(A{p�(q))q
1{e{bq,p(h,M)
� �

bq,p(h,M)
~M

b) At stage 2, all sellers choose their price p�(q) given their

capacity q, so that it maximizes their profit while giving the

buyers the market utility M

arg max
p(q)

p(q)q 1{e{bq,p(h,M)
� �

s:t:

(A{p(q))q
1{e{bq,p(h,M)

bq,p(h,M)
~M

c) At stage 3, buyers maximize their expected utility. Given a

distribution of different capacity-price pairs J(p,q) they adjust

their behavior so that they are indifferent between visiting

sellers with different (q,p) -pairs and expect to receive the same

utility from all. This leads to different expected queue lengths

bq,p(h,M) to the different types of sellers so that the expected

utility of each buyer is M and
Ð

bq,p(h,M)dJ(q,p)~h.

Definition 1 Let maxq pq(M)~p�q(M). A symmetric equilib-

rium is a capacity-price pair (q�,p�), a market utility M, and queue
lengths bq,p(h,M) such that (i)pq� ,p� (M)~p�q(M); (ii)

pq,p(M)ƒp�q(M) for any other capacity-price pairs. (iii) M and

bq,p(h,M) constitute an equilibrium of the last stage subgame where
each buyer contacts a seller, which means that the queue lengths

bq,p(h,M) are given by the market utility condition (part a))

whenever Mv 1{pð Þq, and are set at zero whenever M§ 1{pð Þq.

In a symmetric equilibrium bq�,p� (h,M)~h and M is determined by

(A{p�)q�
1{e{h

h
~M.

Analysis

Price formation
We begin by analyzing the second stage of the game where

sellers have chosen their capacity. To find a symmetric equilibrium

price, we first make the assumption that all sellers have the same

capacity q (we later show that this is the equilibrium outcome).

The equilibrium price, if it exists, is then a unit price p from which

no seller has a profitable deviation. A possible deviator has the

maximization problem

maxep eppq 1{e{b
� �

,

where epp is his unit price. He sells his whole quantity q if he is

visited by at least one buyer; the probability of which is 1{e{b
� �

.

The queue length b that the deviator faces is determined by the

buyers’ indifference condition between contacting the deviator and

the non-deviators. This is the market utility condition: to get any

buyers the deviator must offer at least the same expected utility as

the non-deviators.

(A{epp)q
1{e{b
� �

b
~(A{p)q

1{e{h
� �

h
:

The LHS is the expected utility of a buyer visiting a deviating

seller. As described in the set up, the linearity of the utility function

allows us to write the expression for the expected utility as (A{epp)q
multiplied by the probability that the buyer ends up with the whole

quantity q of the good. With probability e{b no other buyers show

up and our buyer acquires quantity q. If i other buyers show up

our buyer acquires q with probability
1

iz1
. The probability that at

least one other buyer shows up is
P?
i~1

e{b bi

i!
. Thus the probability

that our buyer manages to acquire q is e{bz
P?
i~1

e{b bi

i!

1

iz1
,

which simplifies to
1{e{b

b
. The RHS is the market utility or the

expected utility of a buyer visiting the non-deviating firms. It is

derived similarly as the LHS.

The first order condition of the deviating seller’s problem is

1{e{b
� �

qze{bqepp db

depp ~0:

To find out how the queue length is affected by the price we

totally differentiate the indifference condition of the buyers with

respect to b and p to get

Capacity Choice in a Large Market
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db

depp ~{
1{e{b

(A{epp)
1

b
1{e{b{be{b
� � :

In equilibrium epp~p and b~h, thus the first order condition

implies that

p~
1{e{h{he{h
� �

A

1{e{h
ð2Þ

We show in the appendix that there are no profitable deviations

from (2). Thus it is the equilibrium price.

Proposition 2 When all sellers have capacity q the symmetric

equilibrium price is given by p~
1{e{h{he{h
� �

A

1{e{h
:

Proof. The first order conditions can be found above. The rest

of the analysis is in the appendix S1. &

The equilibrium price above in (2) depends only on the overall

market tightness h. Capacity doesn’t enter the price because all

sellers have the same capacity and the buyers have linear

demands; therefore a seller sells his whole capacity even if visited

by a single buyer. This does not mean that capacity is

unimportant. To see why consider the case where there are sellers

of two different capacities. For simplicity assume that proportion

sk of sellers have capacity qk and the rest have capacity ql . Then,

following the steps above (for details consult the appendix S1.2),

the equilibrium prices are pqk
~

1{e{a{ae{að ÞA
1{e{a

and

pql
~

1{e{b{be{b
� �

A

1{e{b
. Note that the difference in the price

comes from the different queue lengths a~
bk

sk

h, and

b~
1{bkð Þ
1{skð Þ h, where bk is the proportion of buyers visiting sellers

with capacity qk. This proportion (and hence the queue lengths) is

determined by the buyers’ indifference condition

(A{pqk
)qk

1{e{að Þ
a

~(A{pql)ql

1{e{b
� �

b
which depends on

the sellers capacities.

Auctions. When all the sellers have capacity q and post price

p as per Proposition 2, their expected profit is

p(q)~(1{e{h{he{h)Aq{c(q): ð3Þ

The buyers’ expected utility is then

u(q,p)~e{hAq ð4Þ

When the terms of trade are decided by auction at the sellers’

locations a single buyer would bid zero and still acquire quantity q
of the good. If there were two or more buyers they would compete

for the good and thus bid up the per unit price to their valuation

Aq. It is then easy to see that a buyer’s expected utility from

visiting a seller with quantity q is e{hAq where e{h is the

probability that no other buyers show up. By similar reasoning a

seller receives a positive profit only if at least two buyers visit his

auction. The probability that this happens is 1{e{h{he{h. Thus

the expected profit of an auction is given by

p(q)~(1{e{h{he{h)Aq{c(q). This is in essence the equiva-

lence result from [12].

Observation The expected profits of the sellers are the same

under posted prices and when trades are consummated by auction.

It turns out that the equivalence result also holds when there are

sellers with differing capacities, just as in [9], chap. 2. The proof

for the current setting with perfectly divisible capacities is in the

appendix S1. As the auctions approach is easy to work with, we

will use it to derive the equilibrium capacities of the sellers.

Choice of capacity
With perfectly divisible goods it is straightforward to determine

the conditions for existence and uniqueness of the symmetric

equilibrium and to find the equilibrium. This is the main

advantage compared to the approach with integer capacities.

We proceed as in the last subsection. Namely, we assume that all

sellers have capacity q and analyze a potential deviator’s problem

and derive the queue length he faces by choosing capacity eqq. He

must still offer the buyers the same expected utility, namely the

market utility, that they would get from going to the sellers with

capacity q. Thus the queue length of the deviator, i.e., b is

determined by the buyers’ indifference condition

e{bAeqq~e{hAq,

keeping in mind that the queue length cannot be negative.

Simple algebra allows us to write the queue length b, that a

deviator faces as

b~ max h{ ln (
qeqq ),0

� �
: ð5Þ

A seller deviating to capacity eqq maximizes his expected profit

maxeq p(ep)~ maxeq (1{e{b{be{b)Aeqq{c(eqq)
� 	

, ð6Þ

where b is determined by (5). The first order condition is

(1{e{b{be{b)Azbe{bAeqq db

deqq {c
0
(eqq)~0:

In order to solve the FOC we first derive

db

deqq ~
1eqq , ð7Þ

which tells us how the expected queue length reacts to changes in

capacity. In a symmetric equilibrium eqq~q and b~h. By

substituting (7) into the first order condition we solve for c
0
(q).

We get

c
0
(q)~(1{e{h)A: ð8Þ

Capacity Choice in a Large Market
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The necessary condition for equilibrium thus gives us

q�~ c
0
 �{1

(1{e{h)A
� �

Unfortunately, it turns out that we need to make an extra

assumption on the cost function in order to guarantee that the

sufficient conditions hold, i.e., to show existence and uniqueness of

the symmetric equilibrium. The reason is that the MR function of

a potential deviator is increasing and concave in capacity.

Therefore convexity of the cost function is not enough to

guarantee that there are no profitable deviations. (The MC curve

might be increasing and convex as well and might therefore cross

the MR curve any number of times.) One way to guarantee

existence and uniqueness is to assume that the MC increases more

steeply than the MR curve after the potential equilibrium, but this

is rather ad hoc as the condition then depends on the parameter

values. A better way is to assume that c
000

(q) is non-negative. Then

the MC curve is convex and the MR and MC curves cross at most

twice and we can show that the sufficient conditions hold.

Assumption A c
000

(q)§0:
Proposition 3 The unique symmetric pure strategy equilibrium

capacity of the sellers is given by c
0
(q�)~(1{e{h)A whenever this

gives the sellers’ a positive expected profit and assumption A holds.
Proof. The necessary conditions are above, the sufficient

conditions can be found in the appendix S1. &

It is somewhat surprising that Assumption A is needed for

existence and uniqueness. The reason is that a seller can increase

his queue length, and therefore the probability of trading, by

deviating to a higher capacity. This in turn implies that the

deviator has an increasing and convex revenue function. If the cost

function is not convex enough, there might exist a profitable

deviation to a high enough capacity. With a linear cost function no

equilibrium exists as there is always a profitable deviation to a

higher capacity just as in [9], chap. 2.

With Assumption A the equilibrium is straightforward to derive

and easy to analyze. We elaborate with the following example.

Example When c(q)~aq2 the equilibrium capacity is

q�~
(1{e{h)A

2a
: ð9Þ

The sellers’ profit from capacity q� is

p(q�)~
A2 1{e{h
� �

1{e{h{2he{h
� �

4a
ð10Þ

One notices that p(q�)v0 whenever h is smaller than or equal

to the threshold t where t&1:2564 (as
dp(q�)

dh
w0 for hw ln (2)

and p(q�) is continuous in h it follows that p(q�)w0 when hwt).

For hƒt capacity q� clearly isn’t an equilibrium as there exists a

profitable deviation to q~0. We can thus conclude that there

exists no symmetric equilibrium in pure strategies when 0vhƒt.

Whenever hwt the equilibrium capacity of the sellers is given by

proposition 3.

Even though no equilibrium with symmetric quantities for the

sellers exist when hvt, there exists an asymmetric equilibrium. In

this equilibrium measure t{1 of the sellers have capacity

q�~
(1{e{t)A

2a
ð11Þ

and make zero profits and the rest of the sellers have capacity zero

(or become inactive). For A~1 and a~1 the equilibrium capacity

for the active sellers is then q�~
(1{e{t)A

2a
&0:36

Constrained Efficiency. We analyze the efficiency of the

decentralized equilibrium in a standard way by comparing it to the

choice of a benevolent planner that maximizes overall utility. The

planner chooses the capacities and the proportion of sellers

offering each capacity and allocates the buyers over the sellers (see

e.g. [13]). For the comparison to be fair it is assumed that the

planner is constrained by the same frictions as the market

participants. Namely, she cannot overcome the coordination

problem by assigning specific buyers to specific sellers. If the

planner cannot improve upon the market outcome the equilibrium

is called constrained efficient. In this subsection we assume that the

overall measure of sellers is fixed and not a choice variable of the

planner.

We define social welfare directly as the expected value of the

trades minus the sellers’ capacity cost. We show in the appendix

that the planner has no solution in which there are sellers with

different (positive) capacities. When all sellers have the same

capacity the social welfare is

SW~e{hAqzh{1 1{e{h{he{h
� �

Aq{c(q)
� 	

: ð12Þ

The planner maximizes welfare by choosing the capacity of the

sellers. As noted above, she can’t base her decisions on the

identities of the agents. Assuming that she chooses the same

capacity for all sellers, the planner’s problem is

max
q

(SW ): ð13Þ

The FOC is

dSW

dq
~e{hAzh{1 1{e{h{he{h

� �
A{c

0
(q)

h i
~0:

Solving for c
0
(q) we get

1{e{h
� �

A~c
0
(qSO):

To see that qSO uniquely maximizes social welfare note that

c
0
(q) is non decreasing, c(q) is continuous and SW (0)~0 and

limq?? SW (q)~{?. In addition SW (qSO)§0 for any non

negative value of qSO. The competitive outcome is thus identical to

the planners solution or

c
0
(qSO)~c

0
(q�), ð14Þ

whenever the overall market tightness is such that the competitive

solution gives the sellers a non negative expected profit or

p(q�)§0.

Capacity Choice in a Large Market
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Free entry
Equilibrium is constrained efficient when the number of sellers

is determined by free entry. In this case the measure of sellers, h{1,

adjusts so that their zero profit condition is satisfied. Thus for any

q

p(q)~(1{e{h{he{h)Aq{c(q)~0: ð15Þ

From Eq. (8) we know that in any equilibrium

c
0
(q�)~(1{e{h)A:

With the two equations we can solve for the free entry

equilibrium. Returning to our example with cost function

c(q)~aq2 the free entry equilibrium capacity is given by (11).

The measure of sellers is the solution in h to

p(q�)~
1

4
A2 e{h{1
� �

e{hz2he{h{1
� �

~0:

We find that h�~t, where t&1:2564 just as earlier in the case

with too many sellers. Thus, in a free entry equilibrium measure

t{1 of the sellers have capacity q�~
(1{e{t)A

2
and the rest have

capacity zero.

Planner’s solution. When the social planner is free to chose

both the overall market tightness and the capacity of the sellers the

social optimum is given by

max
q,h

SW : ð16Þ

The FOC’s are

dSW

dq
~e{hAzh{1 1{e{h{he{h

� �
A{c

0
(q)

h i
~0

and

dSW

dh
~{

1{e{h{he{h
� �

Aq{c(q)

h2
~0:

Rearranging we get

c
0
(q)~ 1{e{h

� �
A ð17Þ

and

c(q)~ 1{e{h{he{h
� �

Aq: ð18Þ

As (17) and (18) are identical to (8) and (15) the free entry

equilibrium is constrained efficient.

Proposition 4 The symmetric equilibrium is constrained
efficient

Proof. The proof can be found above. &

Constrained efficiency is not a surprising result. It is almost a

defining property of directed search and has been demonstrated

several times with fixed capacities and free entry. Here capacity is

not fixed but it is observable and there is an optimal price for each

capacity. Thus capacity choices are reflected in the queue lengths

and hence in the trading probabilities of the sellers. With free entry

the sellers fully internalize the effect their decisions have on

welfare. Analogous results can be found for example in [9], chap.

2, [8] and [7].

Our results on the constrained efficiency of equilibrium are a

useful benchmark in the following section where capacities are

unobservable.

Unobservable capacity
In this section we let the sellers’ capacities be unobservable

before matching takes place. The definition of equilibrium from

section 2.1 needs to be changed accordingly. To derive the queue

lengths we need to describe the beliefs. The standard way is to

impose strict beliefs of the type that all sellers that post price p have

a ‘‘high’’ capacity and others have ‘‘low’’ capacity. With

continuous capacities this can be modified to: all sellers that post

price p have capacities that maximize their profit and therefore

satisfy

q~ arg max
q

(1{e{h)pq{c(q), ð19Þ

i.e., where q is determined by MR~MC or 1{e{h
� �

p~c
0
(q):

Any seller posting any other price than p is assumed to have

capacity zero. In the candidate equilibrium the price is therefore

p~
c
0
(q)

1{e{h
: ð20Þ

The equilibrium capacity q is

q~ c
0
 �{1

p 1{e{h
� �� �

: ð21Þ

Unfortunately there is a continuum of equilibria satisfying these

beliefs as any (p,q) pair such that c
0
(q)~ p 1{e{h

� �
and p [ 0,A½ �

yields non negative expected payoffs and can be supported as

equilibrium. Refinements such as the Cho-Kreps intuitive

criterion have no bite.

Equilibrium selection. Let us first focus on the equilibrium

capacity that maximizes social welfare. We define social welfare as

the overall utility from trade minus the costs of production or

SW~
1{e{h

h
Aq{

c(q)

h
,

where the first term on the RHS is a buyer’s expected utility

multiplied with the measure of buyers. The second term is the cost

of capacity q multiplied by h{1, i.e., the measure of sellers. We

find the ‘‘best’’ equilibrium by maximizing SW with respect to p.

By substituting (20) and (21) in the social welfare function the

maximization can be written as

Capacity Choice in a Large Market
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max
p

1{e{h

h
A

� �
c
0
 �{1

p 1{e{h
� �� �

{
1

h
c c

0
 �{1

p 1{e{h
� �� �� �

:

The FOC is

1{e{h
� �

A
1{e{h

c
00

c
0� �{1

p 1{e{hð Þð Þ

 �{c

0
c
0
 �{1

p 1{e{h
� �� �� �

1{eh

c
00

c
0� �{1

p 1{e{hð Þð Þ

 �~0,

which can be simplified to

1{e{h
� �

A{p 1{eh
� �

~0, ð23Þ

which holds when

p~A: ð24Þ

The equilibrium capacity is then given by

c
0
(q)~ 1{e{h

� �
A ð25Þ

just as when capacities are observable. The price p~A is,

however, much higher than than under observable capacities. In

fact all the gains from trade befall the sellers while the buyers get

zero utility.

Auctions. When trade is determined by auction (without

reserve price) the equilibrium capacity is simply

q~ arg max
q

1{e{h{he{h
� �

Aq{c(q): ð26Þ

which gives us

c
0
(q)~ 1{e{h{he{h

� �
A: ð27Þ

The unique symmetric equilibrium capacity under auctions is

given by (27). It is lower than (25), the capacity in the ‘‘best’’

equilibrium. To further analyze the differences between the

different cases we again let the cost function be given by

c(q)~aq2.

Example (continued): The equilibrium capacity under

auctions is smaller than in the ‘‘best’’ equilibrium under price

posting.

qA~
1{e{h{he{h
� �

A

2a
v

(1{e{h)A

2a
~qpp ð28Þ

This is not surprising as the gains from trade are divided more

equally between the market participants under auctions but the

capacity costs are still borne by the sellers. It is likewise clear that

the expected profits of the sellers are higher in the ‘‘best’’ price

posting equilibrium

p(q)A~
1{e{h{he{h
� �

A
� �2

2a
{a

1{e{h{he{h
� �

A

2a

� �2

~
1{e{h{he{h
� �2

A2

4a
v

(1{e{h)2A2

2a
~p(q)PP:

ð29Þ

The buyers’ expected utility is, on the other hand, zero in the

‘‘best’’ price posting equilibrium whereas it is positive under

auctions.

u(q)A~e{hAq~
e{h 1{e{h{he{h
� �

A2

2a
ð30Þ

The ‘‘best’’ equilibrium under price posting and unobservable

capacity achieves the same welfare as the symmetric equilibrium

under observable capacities. In doing so it allocates all the gains

from trade to the sellers. Auctions result in lower equilibrium

capacities than the ‘‘best’’ price posting equilibrium, but the

benefits of trade are more evenly distributed by the market

participants.

By substituting the equilibrium capacity under auctions qA

(unobservable capacities) into (20), and imposing suitable beliefs,

we solve for the price that yields the same equilibrium capacity as

auctions. This price is

bpp~
1{e{h{he{h
� �

A

1{e{h
: ð31Þ

Interestingly bpp is identical to the symmetric equilibrium unit

price under observable capacity (see Proposition 2). Just as under

observable capacity, it results in both the buyers and the sellers

receiving the same expected utilities as under auctions.

Above we analyze capacity choice when only prices are

observable. To do so we impose strict beliefs. The downside of

this assumption is that it kills any interesting link between queue

length and capacity. In addition, it gives rise to a continuum of

equilibria of which we focus on two. The ‘‘best’’ equilibrium

maximizes social welfare and leads to the same capacities as under

observable capacity. The reason is that now the whole surplus of

trade befalls the sellers and hence they fully internalize the effect of

their capacity decisions. The equilibrium is therefore constrained

efficient with a fixed number of sellers.

In the second equilibrium the trades are determined by auction.

The equilibrium leads to too small capacities compared to

observable capacity. Somewhat interestingly it is outcome-wise

equivalent to one where sellers post the same price as under

observable capacity.

Conclusion

Directed search is a standard method to analyze frictional

markets. At its core is the trade-off that sellers face between asking

a higher price and attracting fewer buyers; hence trading more

slowly. Typically, all sellers are assumed to have a fixed capacity,

often one unit. Several recent papers relax this assumption by

allowing the sellers to choose their capacity. This makes it possible

to compare markets with a few large sellers to markets with many

small sellers in terms of welfare and to find the equilibrium size

and number of sellers given the cost function. In the realistic

ð22Þ
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setting where production takes place before trading these models

usually yield equilibria that can be analyzed only numerically (see

[9], chap. 2). In the current paper we simplify the setting by letting

the goods be perfectly divisible and the buyers’ utility functions be

linear. For a unique symmetric equilibrium to exist we still have to

assume a very convex cost function. The gain is that the

equilibrium is straightforward to analyze and easy to work with

whether capacities are observable or not.

Were we to relax the assumption of linear demands, for

example, by assuming that buyers have diminishing marginal

utilities even the observable capacities case would be quite

cumbersome to analyze as can be seen e.g. in [9], chap. 3. The

analysis is, while interesting, outside the scope of the current paper

and is left for future work.
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