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Abstract

In this paper, based on the coupled social networks (CSN), we propose a hybrid algorithm to nonlinearly integrate both
social and behavior information of online users. Filtering algorithm, based on the coupled social networks, considers the
effects of both social similarity and personalized preference. Experimental results based on two real datasets, Epinions and
Friendfeed, show that the hybrid pattern can not only provide more accurate recommendations, but also enlarge the
recommendation coverage while adopting global metric. Further empirical analyses demonstrate that the mutual
reinforcement and rich-club phenomenon can also be found in coupled social networks where the identical individuals
occupy the core position of the online system. This work may shed some light on the in-depth understanding of the
structure and function of coupled social networks.
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Introduction

In the past two decades, the rapid development of Internet has

offered unlimited sources for us to search and find out what we

need [1]. For instance, we now can enjoy plenty of TV channels as

well as countless programs, while only few choices are available

twenty years ago. Moreover, the Internet not only offers various

games, but also becomes a versatile tool to change the lifestyle that

we have kept constantly over centuries. For example, online

shopping has become more and more popular due to the

exponential growth of e-commerce services (e.g. Amazon.com,

Ebay.com, Taobao.com, etc), which allow us to choose, compare

and purchase goods with single clicks. In addition, there is a vast

class of novel job opportunities arising with the emergence of web

related applications, such as SOHO workers (working at home but

communicating via Internet). However, everything has two sides.

Although Internet has changed the world a lot and greatly

improved our daily life through effectively and efficiently

contacting with others, it also brings many side effects and some

of which are becoming critically important and even disruptive to

our day-to-day routines. One of the most significant dilemmas is

the well-known problem of Information Overload. Let’s take the

aforementioned TV programs as an example. In despite of the fact

that we indeed enjoy more choices than ever before, it is

simultaneously surprising to see that it is even more difficult to find

a proper program that is satisfies to us. That is to say, we are facing

too many choices to be able to compare them and make the

appropriate decisions.

Recently, researchers from various disciplines, including com-

puter science, social science, physics, etc., have devoted much

effort to helping users avoid being drowned into the Information

Ocean [2]. Among numerous applications, the most successful one

is the Search Engine (SE) [3], whose emergence can be regarded as a

milestone. It can help users locate targets by filtering irrelevant

objects with designed keywords, hence has soon been widely

applied on the Internet. Despite its great success in information

filtering, the SE technology also has some apparent drawbacks

which interferes its further application in modern human society.

On one hand, SE does not consider the personalization of each

user, and return exactly the same results for every query with same

keywords, regardless of whatever they have searched before [4].

On the other hand, we need to know priori profiles of targets

which, however, normally are not very clear for us when the

searching is being performed. In addition, sometimes, it is difficult

for users to explicitly describe and express their potential

intentions in simple words or sentences. So it further increases

the difficulty in predicting their underlying preferences. Moreover,

SE can only when users proactive submit their queries [5], thus, it

lacks the power of actively providing results based on users’

searching histories and personalized preferences.

As a consequence, Recommender Systems (RS), focusing on mining

users’ potential options, is considered as a promising candidate to

address the excessive sources problem in the information era

[6,7,8,9,10]. RS has achieved a great success in the past few years

because it can significantly help users find relevant and interesting

items. A recommender system is able to automatically provide

personalized recommendations based on the historical records of

users’ activities. These activities are usually represented by the

connections in a user-object bipartite graph [11,12]. The majority

of relevant works in this area can be generally classified into six
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representative fields: i) Collaborative Filtering (CF) [13,14]; ii)

Content Based Algorithms (CB) [15,16]; iii) Probability Based

Models [17,18]; iv) Dimension Reduced Approaches [19]; v)

Network Based Inference (NB); [12,20]; vi) Hybrid Algorithms

[21,22]. CF tends to recommend to users with objects that people

with similar tastes and preferences favored in the past. There are

two categories respectively considering user-based [23] and object-

based [14,24] factors, which should be alternatively applied in

different online systems according to their own properties. For

instance, Amazon.com is a well-known book service provider in

which the number of books is more stable than the rapid growth of

readers, and thus object-based algorithms could achieve more

reliable recommendation results [24]. Comparatively, Del.i-

cio.us(http://www.delicious.com/) is a typical user-driven social

bookmarking platform [25], hence user-based algorithm is more

suitable and effective [26]. Content based methods mainly use text

mining techniques to automatically extract out meaningful content

and then provide recommendations. Both probability and

dimension reduced approaches require much more computational

time to obtain the latent variables or vectors [27]. By contrast,

Figure 1. Illustration of a coupled social network with five users and five items, where circles denote users and squares represent
objects. (upper layer) social network consists of five users; (lower layer) the information network consists of five objects and five users, while user
nodes are the same in the social network.
doi:10.1371/journal.pone.0101675.g001

Table 1. Basic properties of the two datasets. DU D, DI D, NR and NS respectively represent the number of users, items, ratings and

social activities. Sr~
R

DU D|DI D
and Sp~

S

DU D|(DU D{1)
denotes the data sparsity of information and social networks respectively.

Data sets DU D DI D NR NS Sr Sp

Epinions 4,066 7,649 154,122 217,071 5:0|10{3 1:3|10{2

FriendFeed 4,188 5,700 96,942 386,804 4:1|10{3 2:2|10{2

doi:10.1371/journal.pone.0101675.t001

Information Filtering on Coupled Social Networks

PLOS ONE | www.plosone.org 2 July 2014 | Volume 9 | Issue 7 | e101675

http://www.delicious.com/


network based models, making use of physical dynamics (e.g.

random walk [28,29,30], heat conduction [20,31,32]), try to apply

node diffusion process [33] to measure the likelihood of given pair

of users and objects to be connected. Such methods would be

adjusted to consider the effects of those small-degree (saying cold)

objects [34,35] and are especially efficient for recommendation on

sparse data sets [36]. Hybrid algorithms do not intend to design

new methods but to introduce one or more tunable parameters to

integrate different models [37,22].

Recently, Social Networks (SN) [38] have become a powerful tool

to characterize various online social services emerging with various

Web 2.0 applications [39] in evolutionary games [40,41],

community detection [42] and medical science [43], etc. A great

many websites have attracted millions of users active online daily.

For example, Twitter has more than 1.7 | 108 users all over the

world. Facebook has reported to have more than 900 million users

registered within two years. Sina Weibo, the largest microblogging

service provider in China, has been involved by almost 10% of the

national population. Therefore, SN provides rich and meaningful

social relations to weigh social similarities among users. Therefore,

it is expected to be a very useful ingredient to generate more

accurate, instructive and explainable recommendation results [44].

Coupled networks (CN), also known as interdependent networks

[45], contain a joint two-layer network, such as electricity and

Internet networks [46], airport and railway networks [47]. There is

a kind of coupled nodes, such as cities in the two aforementioned

networks, which play the roles of interconnection and mainte-

nance between these two-layer networks [45,48]. Consequently,

those nodes are critically important for the robustness of whole

networks [49]. Coupled social networks (CSN), similar with the

interdependent networks, also contain such coupling nodes (saying

users), which both make friends in the layer of social networks and

collect favorites in the layer of information networks. Therefore,

those users are especially vital to maintain the structure,

connectivity and robustness of social and information networks.

Fig. 1 shows an illustration of a simple CSN with five users and five

objects. It can be seen that the value of similarity between user U4

and user U5 is zero since they do not collect the same object in the

information network. So in the traditional complex network theory

[50], the relationship between U4 and U5 might be considered as

irrelevant. However, in fact U4 and U5 are friends and may have

frequent contacts in the social network and they might have many

common interests, such as making acquaintance with congenial

friends and performing other mutual social activities. Therefore, a

comprehensive consideration for the similarity for those two nodes

should help improve the consequent recommendation perfor-

mance. Based on users’ distance from a fixed propagation horizon,

Massa and Avesani [51] proposed a social propagation method

which increased the recommendation coverage while preserving

the quality of closeness. Some prior studies also brought social trust

and distrust relations to the research of recommender systems

[52,53]. For instance, Knapskog [54], the propagation approach

was used to combine pairs of trust and distrust. Bhuiyan [55], the

author discussed the definition of trust, and their results

demonstrated the positive relationship between trust and interest

similarity in online social networks. Crandall [56] proposed a

Figure 2. Precision results on Epinions and FriendFeed data sets. The length of recommendation list L is set as 10.
doi:10.1371/journal.pone.0101675.g002
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feedback effect between similarity and social influence in online

communities. Based collaborative filtering, Esslimani et al. [57]

proposed a new information network and exploited navigational

patterns and transitive links to model users, analyzed behavior

similarities, and eventually explored missing links. As we can see,

many relationships can constitute a social network such as trust,

friendship, community, organizational structure, etc. And some

relations are directed, like trust and follower-followee, while others

are undirected such as friendship. By utilizing those social

relations, we can obtain the strength of social relationship between

users, and we can use this weighted social relationship to generate

more accurate, explainable and acceptable recommendations

though user behavioral information or profiles are unavailable.

The authors [58,59,60] have already demonstrated that

recommendation performance can be improved by taking into

consideration the effect of users’ social network. However, how

much the effect of social network will take when the social

similarity and preference collaboratively work together on

recommendation is still unclear. Massa et al. [58], the authors

claimed that their purpose is to evaluate the possible contributions

of trust-awareness to recommender systems and not to propose a

combination technique that would require a dedicated evaluation.

Walter et al. [59], the authors presented a model of a trust-based

recommendation system on a social network. In their model,

agents use their social networks to obtain information and their

trust relationships to filter those useless information. However,

how to combine the social similarity and preference is still

unknown. Zeng et al. [60], the authors designed a social diffusion

recommendation algorithm that improves the performance of

recommendations. Moreover, they proposed a linear combination

of their method and the hybrid method [22]. In this paper, we

quantitatively investigate the relationship between social similarity

and personal preference for each pair of users through empirical

analysis and use a nonlinear method to adjust the effects of them.

Therefore, we proposed an algorithm based on CSN by

considering the similarities both from social and information

networks, and provided recommendations in the classical CF

framework. Numerical experiments on two benchmark data sets,

Epinions and Friendfeed, demonstrate that our method can offer

more accurate recommendations than previous methods. In

addition, extensive analyses show that the RWR-based social

similarity can not only enhance the connections between small-

degree and large-degree user pairs, but also reveal the large-

distance user pairs which cannot reveled by other direct metrics.

As a consequence, a wider range of similar users, which cannot be

discovered solely from information network, can be made use of to

generate more reliable and more precise recommendations.

Methods

In this section, we start by introducing the approaches to

respectively evaluating the social similarity and personalized

preference between two users. Then, we integrate them to

Figure 3. Recall results on Epinions and FriendFeed data sets. The length of recommendation list L is set as 10.
doi:10.1371/journal.pone.0101675.g003
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measure the final similarity of each pair of users, and apply them

in recommender systems. Generally, a recommender system

consists of two sets, respectively of users U~fU1,U2, . . . ,Ung,
and items I~fI1,I2, . . . ,Img: Denote Rm|n as the adjacent matrix

of the user-item bipartite network, of which each element Rij~1 if

user Ui has collected item Ij , and Rij~0 otherwise. Analogously,

Tm|m is an asymmetric matrix, denoting the directed social

network, where Tij~1 if the user Ui has linked to user Uj , and

Tij~0 otherwise.

1.1 Social Similarity
Firstly, we use the Random Walk with Restart (RWR)

[61,62,63] method to evaluate the social similarity of directed

networks. Consider a random walker starting at node i: At each

step, it can move to i’s nearest neighbors via directed links with

probability c[½0,1� or returns to node i with probability 1{c: And

the final probability of each node at the stationary state will be

considered as their respective peer-to-peer influence with node i:
Denote A as the transition matrix of the directed network, where

Aij~1=ki (ki is the out-degree of node i if node i and j are linked).

So, the final probability of i’s influence on others can be defined in

a vector manner, sRW R
i , as

sRW R
i

���!
~(1{c)(1{cA){1 ei

!, ð1Þ

where ei
! is a unit vector with dimension m|1, and m is the

number of users. Besides the RWR metrics, we also employ two

typical local methods: LIN and LOUT to evaluate the social

similarity, and use the adjusted Jaccad method, namely Tanimoto

coefficient [64,65], to compute the social similarity between two

users. They are defined as:

LIN:

sLIN
ij ~

Xm

k~1
TkiTkjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm

k~1
T2

ki

q
z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm

k~1
T2

kj

q
{
Xm

k~1
TkiTkj

, ð2Þ

LOUT:

sLOUT
ij ~

Xm

k~1
TikTjkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm

k~1
T2

ik

q
z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm

k~1
T2

jk

q
{
Xm

k~1
TikTjk

, ð3Þ

Then these metrics (Eq. (1)–Eq. (3)) will be used to quantify how

much one user influences others. It can be seen that both sLIN
ij and

sLOUT
ij only consider the local information. That is to say, only the

common linked nodes of users i and j are taken into account.

Comparatively, sRW R
ij

���!
, from the perspective of dynamic influence

flow, considers both the local and global structure of directed

networks. Therefore, it is expected to be a promising index to

Figure 4. F-measure results on Epinions and FriendFeed data sets. The length of recommendation list L is set as 10.
doi:10.1371/journal.pone.0101675.g004
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characterize the social similarity, hence it may provide better a

recommendation performance. In addition, when use the Eq. (2)–

Eq. (3), we remove the negative value and then normalize the

social similarity.

1.2 Personalized Preference
There are many methods to compute the common preference

between users or items in recommender systems, in which the

cosine metric [66] is one of the most frequently used one [67,68].

It reads as follows:

pij~

Xn

k~1
RikRjkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

k~1
R2

ik

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

k~1
R2

jk

q , ð4Þ

where pij is the examined common preference between nodes i

and j:

1.3 Hybrid Algorithm
To fully make use of the effects made both by influence and

preference of users, we adopt a nonlinear hybrid method to

integrate them. The final similarity between users i and j, Sij , is

denoted as

Sij~pa
ij � s

b
ij : ð5Þ

Data & Metrics

2.1 Data set
In this paper, we use two data sets (datasets are free to download

as Data S1), Epinions.com [69] and Friendfeed.com [70], to evaluate

the effect of the algorithm. Epinions not only allows users to rate

items but also permits them to make social connections with

others. Friendfeed is a microblogging service provider founded in

2007 and acquired by Facebook in 2009. To alleviate the sparse

problem [71], we purify the two data sets by making sure that each

user has at least twenty six out and in-links (2 for Friendfeed) in

the social network, and that each user at least collects 7 items (8

items for the Friendfeed data set) that each item is collected at

least 7 times (8 times for Friendfeed): Finally, we obtained a

purified data set with 4,066 users, 7,649 items, 217,071 social links

and 154,122 bipartite links for Epinions, and with 4,188 users,

5,700items, 386,804 social links and 96,942 bipartite links for

Friendfeed: Table 1 shows the basic statistics for two represen-

tative data sets).

Figure 5. AUC results on Epinions and FriendFeed data sets.
doi:10.1371/journal.pone.0101675.g005
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2.2 Metrics
Every data set is randomly divided into two parts: the training

set which is consisted of 80% of the entries and the testing set

consisted of the remaining 20%. For a general recommendation

process, the training set is treated as known information to run

algorithms and generate corresponding recommendations, yet the

information in testing set is unavailable while making recommen-

dations. In addition, we use five metrics to do evaluation in order

to fully explore the methods’ performance, and we consequently

employ five different metrics that characterize recommendation

performance:

1. Precision [8].– Precision represents the probability to what

extent a selected item is relevant in a given recommendation list,

defined as:

Pi~
Ni

rs

L
, ð6Þ

where L represents the length of recommendation list, and Ni
rs is

the number of truly recovered items for user i: We can obtain the

precision of the whole recommender system by averaging over all

individuals’ precisions,

P~
1

m

Xm

i~1

Pi, ð7Þ

where m represents the number of users. Obviously, a higher

precision means that the algorithm is more accurate.

2. Recall [8].— Recall represents the probability that a relevant

item will be picked from testing set, defined as:

Ri~
Ni

rs

Ni
p

, ð8Þ

where Ni
p is the number of items collected by user i in the testing

set, and Ni
rs is the number of recovered items of user i: We then

obtain the overall recall of the whole recommender system by

averaging over all individuals,

R~
1

m

Xm

i~1

Ri: ð9Þ

A higher recall means that the algorithm is more accurate.

3. F-measure [8] — The F-measure metric is a widely used metric

for alleviating the sensitivity of sole usage of precision or recall,

defined as,

Figure 6. HD results on Epinions and FriendFeed data sets. The length of recommendation list L is set as 10.
doi:10.1371/journal.pone.0101675.g006
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Figure 7. AUC results for HHP, BHC and PD methods on Epinions and FriendFeed data sets.
doi:10.1371/journal.pone.0101675.g007

Table 3. Performance of the MD with RWR-based methods obtained under the three-fold data division on Epinions data set. The
recommendation list is set as 10.

Methods precision recall f-measure HD AUC

MD 0.0275 0.0708 0.0344 0.5999 0.7757

RWR-based 0.0277 0.0723 0.0344 0.6545 0.7975

doi:10.1371/journal.pone.0101675.t003
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Fi~
2PiRi

PizRi

: ð10Þ

Anomalously, we can obtain the F-measure of the whole system

by averaging over all individuals,

F~
1

m

Xm

i~1

Fi: ð11Þ

4. AUC— AUC (Area Under ROC Curve) is different from the

above three metrics, for AUC evaluates the likelihood of all items

instead of the TOP L recommendation, where ROC stands for the

receiver operating characteristic [72,8]. It can be approached with

a sampling method

Table 4. Performance of the MD with RWR-based methods obtained under the three-fold data division on Friendfeed data set. The
recommendation list is set as 10.

Methods precision recall f-measure HD AUC

MD 0.0254 0.0908 0.0331 0.9258 0.7902

RWR-based 0.0301 0.112 0.0397 0.9397 0.8437

doi:10.1371/journal.pone.0101675.t004

Figure 8. Mean personal preference versus social similarity for Epinions and Friendfeed, respectively. From left to right, the metrics are
respectively RWR-, LIN-, LOUT-based social similarity. The personal preference is averaged according to each social similarity value.
doi:10.1371/journal.pone.0101675.g008
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AUC~
n’z0:5n’’

n
, ð12Þ

where n is the number of independent sampling, and n’ is the

number of the predicted score of target item which is higher than

that of the randomly selected item, and n’’ is the times of the target

which is the same with random items’. If all the scores are

generated from an independent and identical distribution, the then

AUC should be 0.5. Therefore, how much the value of the AUC

exceeds 0.5 indicates how much the algorithm performs better

than a random prediction.

5. Diversity (HD).— HD [22] considers the unique and different

user’s recommendation list. Given two users i and j, the difference

between their recommendations lists can be measured by the

Hamming distance.

HDij(L)~1{
Qij(L)

L
, ð13Þ

where Qij(L) is the number of recommended items in the top-L

places of both lists. Averaging over all pairs of users’ HDij(L), we

can obtain the diversity of the observed algorithm. Clearly, higher

result (HD) means higher personalization of users’ recommenda-

tion lists.

Results & Analysis

3.1 Experimental Results
Fig. 2–Fig. 4 show the algorithm results on Epinions and

Friendfeed data sets. It can be seen that, for a given length of

recommendation list L, the precision, recall, F-measure and AUC

achieve the optimal accuracy for the same parameters for both the

LIN-based and LOUT-based method (see also Table 2), which

indicates that the local information of both in-flow and out-flow

has the similar impact on information filtering. Comparatively, for

a moderately small length of recommendation list L = 10, the

precision, recall and F-measure values of RWR-based method

reach their maximum value 0.0526, 0.0717 and 0.0512 for (a,
b) = (2.8, 0.4), respectively. Moreover, the corresponding results

are 0.0503, 0.0683 and 0.0489 for (a, b) = (3, 0) on Epinions data

set whether LIN-based or LOUT-based. For Friendfeed, those

metrics under RWR-based method have reached 0.0425, 0.1006

and 0.0469 for parameter set (a, b) = (2, 0.8), (1.4, 0.8) and (2, 0.8),

Figure 9. Illustration of a typical example of an ego network for a node with the largest social similarity value (the biggest size).

doi:10.1371/journal.pone.0101675.g009
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respectively. For LIN-based or LOUT-based methods, when (a,
b) = (2.4, 0), such metrics obtain their maximum value 0.0403,

0.0963 and 0.0443. Similar results can also be found for L~20
and L~50 (see Table 2).

Fig. 5 shows the AUC results. In Fig. 5(a), the maximum AUC

values are respectively 0.7755, 0.7729 and 0.7729 for (a, b) = (2.4,

0.2), (a, b) = (2.2, 0) and (a, b) = (2.2, 0) on Epinions data set. In

Fig. 5(b), the corresponding maximum values are respectively

0.9053, 0.8204 and 0.8208 for (a, b) = (0, 2.2), (a, b) = (2.4, 0) and

(a, b) = (1.4, 0) on Friendfeed, respectively. A brief summary is

given in Table 2. Fig. 6 shows the HD results on Epinions and

Friendfeed data sets, respectively, and the length of the

recommendation list is 10. For all the diversity, their maximum

diversity lies in the same position (a, b) = (5, 5). In Fig. 6 (a), the

maximum HD values are respectively 0.9864, 0.9817 and 0.9815

for RWR-based, LIN-based and LOUT-based in Epinions data

set. In Fig. 6 (b), the maximum HD with RWR-based, LIN-based

and LOUT-based, is 0.9928, 0.9923 and 0.9918 for Friendfeed
data set, respectively. However, we can find that the diversity in

the best AUC value’s position is higher than that of only using the

personal preference. For example, when the recommendation list

L~10 on Epinions data set, the HD values are 0.6944, 0.5297 and

0.4923 in the best AUC value’s position, only using the personal

preference and using the social similarity, respectively.

It is noticed that, for all aforementioned results two crossing

lines can be obviously found for LIN- and LOUT-based methods

at a~0 or b~0, while only a horizontal line is observed for RWR-

based method at a~0: As we known, the cosine, LIN and LOUT

are methods for computing similarity simply based on local

information, while RWR-based method considers not only the

local information, but also takes into account the global social

structure. In addition, the behavior network and social network

are sparse. Therefore, the personal preference matrix and the

social similarity computed by LIN and LOUT might be sparse but

the matrix by RWR is full, i.e., there are many zero elements in

those matrices that are computed by the cosine, namely LIN,

LOUT and RWR. When a~0, only the social similarity works.

Since the personal preference is small, the final similarity will be

much sparser. When b~0, only personal preference works, and

the final similarity matrix will be much sparser when using LIN

and LOUT methods, i.e., the LIN and LOUT methods will filter

the recommendation but the RWR method will supplement it.

Thus, that is why it has horizontal lines in the figures and only LIN

and LOUT methods have vertical line. As shown in Table 1, the

information network is much sparser than that of the correspond-

ing social network, hence more items are possible to be discovered

via social connections. In addition, the size of hot areas

(corresponding to high performance) of RWR-based method is

much larger than that of the other two methods, as it considers not

only the nearest neighbors, but also integrates the effect of remote

nodes which are not directly connected. Comparatively, the local

based (LIN- and LOUT-based) methods can only take into

account the commonly direct neighbors, neglecting the global role

of each individual. Furthermore, the hybrid case will achieve the

best performance for both the observed data sets with optimal

Figure 10. Number of recommended items versus degree on Epinions for L~10: From left to right, the parameters (a,b) of Eq. (5) are set as
(1,0), (0,1), and (a�,b�) given in Table 2, respectively. The dash line indicates the degree of 5, and the corresponding number shows the percentage of
all the recommendation items.
doi:10.1371/journal.pone.0101675.g010
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parameters a�w b�, which also proves that social reinforcement is

more significant than individual behaviors in information filtering.

Fig. 7 shows that the AUC result with one baseline method [22]

(HHP for short) and its two variants, [31] (BHC for short) and [30]

(PD for short) on Epinions and Friendfeed data sets, respectively.

It can be seen that the AUC value of HHP method changes

monotonously with l [17], i.e., the HHP method degenerates to

pure Mass Diffuse (MD for short) method when l~1: We find

that the AUC of both HHP and PD methods increase with l,
while that of BHC decreases with l (When l~1, HHP

degenerates to the pure MD method, and BHC degenerates to

the pure Heat Conduction (HC) method. When l~0, PD

degenerates to pure MD method). Generally, the MD method

has higher accuracy but lower diversity, while the HC method has

higher diversity but lower accuracy. For a better recommendation

algorithm, it should ensure higher accuracy principally, thus users

might continue to use the system and enlarge their vision by its

diverse functions. Therefore, we additionally compare our method

with MD. In order to avoid the over-fitting problem [73], we use

the three-fold data division [74] to validate our method (see

Table 3 and Table 4), where we use 80% of the data as training

set, and obtain the optimal parameter value with 10% of the data.

We then use the remaining 10% to validate it. It can be seen that

the proposed method outperforms the MD algorithm on all the

five different metrics.

3.2 Empirical Analysis
To better understand how the different layers of coupled

networks interact with each other, in this section, we empirically

investigate the relationship between social similarity and personal

preference from micro and macro perspectives. Fig. 8 described

that the relationship between social similarity and personal

preference for each pair of users. The result shows that, generally,

social similarity are positively correlated [55] with personal

preference at both local and global measures, indicating that the

mutual reinforcement principle [66] also applies to online social

activities.

In Fig. 9, we also find that a typical example of an ego network

[75] for a node with the largest social similarity value (with the

biggest size). It can be seen that it connects to a node of relatively

large social similarity yet small similarity (yellow one), suggesting

the rich-club phenomenon [76] of social interests activities. That is

to say, users with high social impact tend to interact with users of

high social similarity, even if they lack common activities.

Furthermore, we also find that the degree distribution of

successfully recommended items in Fig. 10 and Fig. 11 for

Epinions and Friendfeed, respectively. In Fig. 10(a–c) and

Fig. 11(a–c), the parameters of Eq. 5 are set as a~0 and b~1,
of which only the social similarity takes effect in the recommen-

dation process. It shows that the local measures (LIN and LOUT)

are more likely to to find small-degree items (the degree is smaller

than 5) than the RWR metric (around 57%). Similarity, for

another extreme case of Eq. 5, (a,b) is set as (1,0), implying that

only the personal preference will work for information filtering,

hence all the results are identical in Fig. 10(d–f) and Fig. 11(d–f),

respectively. In addition, the number of recommended small-

degree items is fewer than that of social based method.

Comparatively, in Fig. 10(g–i) and Fig. 11(g–i), the parameter

(a,b) is set as the optimal case given in Table 2. Since both the

social similarity and personal preference are integrated, the hybrid

algorithm not only can find those cold items [34,26] (where the

social similarity primarily works), but also can push some popular

Figure 11. Number of recommended items versus degree on FriendFeed for L~10: From left to right, the parameters (a,b) of Eq. (5) are set
as (1,0), (0,1), and (a�,b�) given in Table 2, respectively. The dash line indicates the degree of 5, and the corresponding number shows the percentage
of all the recommendation items.
doi:10.1371/journal.pone.0101675.g011
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items (which is largely because of the personal preference).

Therefore, it finally can achieve a better performance for

information filtering. In addition, the novelty [10] of recommen-

der systems refers to how different the recommended objects are

from what the users have already seen before. The simplest way to

quantify the ability of an algorithm to generate novel and

unexpected results is to measure the average popularity of the

recommended objects. The lower the average objects’s degree in

the recommendation list, the better the novelty of the system.

From Fig. 10 and Fig. 11, we can see that the number of

recommended small-degree items is larger than that of only using

personal preference and fewer than that of the social based

method, i.e., our method has higher novelty than that of only using

personal preference.

Conclusions & Discussion

In this paper, we have proposed a hybrid information filtering

algorithm based on the coupled social networks, which considers

the effects of both social similarity and personalized preference.

We apply three metrics, LIN, LOUT and RWR, to evaluate the

asymmetrically social similarity, and use the cosine similarity to

measure the symmetrically personalized preference. In addition,

we integrate them with two tunable parameters in order to obtain

better recommendation results. Experimental results show that the

hybrid pattern can not only provide more accurate recommen-

dations, but also enlarge the recommendation coverage while

adopting global metric (RWR). Further empirical analyses

demonstrate that the mutual reinforcement can also be extended

to coupled networks where the same individuals occupy the core

position of the entire online society. However, this article only

provides a simple start for making use of both behavior and social

information, while a couple of issues remain open for future study.

Especially, the underlying mechanism driving the interaction of

social and information networks is of particular importance to

deeply understand how coupled social networks work, as well as its

potential applications.
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30. Lü L, Liu W (2011) Information filtering via preferential diffusion. Physical

Review E 83: 066119.

31. Liu JG, Zhou T, Guo Q (2011) Information filtering via biased heat conduction.
Physical Review E 84: 037101.

32. Liu JG, Shi K, Guo Q (2012) Solving the accuracy-diversity dilemma via

directed random walks. Physical Review E 85: 016118.

33. Sun D, Zhou T, Liu JG, Liu RR, Jia CX, et al. (2009) Information filtering
based on transferring similarity. Phys Rev E 80: 17101.

34. Qiu T, Chen G, Zhang Z, Zhou T (2011) An item-oriented recommendation

algorithm on cold-start problem. EPL 95: 58003.

35. Chen G, Qiu T, Zhang Z (2012) Promotional effect on cold start problem and

diversity in a data characteristic based recommendation method. ar-

Xiv:12052822.

36. Zhou T, Su RQ, Liu RR, Jiang LL, Wang BH, et al. (2009) Accurate and
diverse recommendations via eliminating redundant correlations. New Journal

of Physics 11: 123008.

37. Zhang ZK, Zhou T, Zhang YC (2010) Personalized recommendation via
integrated diffusion on user-item-tag tripartite graphs. Physica A 389: 179–186.

38. Freeman L (1979) Centrality in social networks conceptual clarification. Social

networks 1: 215–239.

39. Fu F, Liu L, Wang L (2008) Empirical analysis of online social networks in the

age of web 2.0. Physica A 387: 675–684.

40. Nowak MA (2006) Five rules for the evolution of cooperation. Science 314:
1560–1563.

Information Filtering on Coupled Social Networks

PLOS ONE | www.plosone.org 14 July 2014 | Volume 9 | Issue 7 | e101675
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