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Abstract

Research collaborations are encouraged because a synergistic effect yielding good results often appears. However, creating
and organizing a strong research group is a difficult task. One of the greatest concerns of an individual researcher is locating
potential collaborators whose expertise complement his best. In this paper, we propose a method that makes link
predictions in co-authorship networks, where topological features between authors such as Adamic/Adar, Common
Neighbors, Jaccard’s Coefficient, Preferential Attachment, Katzb, and PropFlow may be good indicators of their future
collaborations. Firstly, these topological features were systematically extracted from the network. Then, supervised models
were used to learn the best weights associated with different topological features in deciding co-author relationships.
Finally, we tested our models on the co-authorship networks in the research field of Coronary Artery Disease and obtained
encouraging accuracy (the precision, recall, F1 score and AUC were, respectively, 0.696, 0.677, 0.671 and 0.742 for Logistic
Regression, and respectively, 0.697, 0.678, 0.671 and 0.743 for SVM). This suggests that our models could be used to build
and manage strong research groups.
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Introduction

Research collaborations can be conceptualized as a research

effort done by research groups from either the same country or

disparate countries [1]. It is widely believed that these collabora-

tions have a synergistic effect, because the combined expertise of

group members always yields results that surpass the sum of the

individual’s capabilities [2]. However, building and organizing

such research groups is not an easy task. One of the greatest

concerns of an individual researcher is how to find a suitable

collaborator. Given the difficulty involved in predicting which

collaborations have the greatest potential for success, experts

within a specific domain are uncertain with whom they should

collaborate.

This problem could be alleviated if researchers had access to the

experts’ research interests and ongoing research activities. This

information could be used to determine these researchers’ level of

expertise within the field, and thus help establish whether they

would serve as an appropriate collaborator of both comparable

and compatible expertise. However, such information is often

unavailable and difficult to obtain since no centralized sources

exist.

Given a corpus of literatures, co-authorship networks can be

easily constructed, with nodes representing researchers and links

representing co-authorships. Topological features (such as Adam-

ic/Adar, Common Neighbors) in co-authorship networks offer a

good way of predicting future co-author relationships between

existing authors [3]. In other words, if we could predict the

appearance of new links between two existing authors in co-

authorship networks with a reasonable accuracy, these new links

then might be reasonable suggestions for potential research

collaborations.

In this paper, structural topological features were extracted from

the co-authorship networks, and supervised models were used to

learn the best weights associated with different topological features

in deciding the co-author relationships. We tested our methods on

the co-authorship networks within medical research domain and

the results confirmed that the appearance of co-author relation-

ships is dependent on the network’s topological structures and that

supervised learning methods can help to exploit this dependence

when making co-author relationship predictions.

Literature Review

Link prediction in complex networks aims to estimate the

likelihood that a link exists between two nodes, based on the

observations of existing links and the attributes of the nodes.

Link prediction problems were originally solved through

Markov chains. Sarukkai applied link prediction and path analysis,

based on Markov chains, to web server http request predictions,
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adaptive web navigation, tour generation and personalized hub/

authority [4]. Zhu et al. built a Markov model for link predictions

of web site based on past users’ visit behaviors as recorded in the

web log file. A few years later, another set of link prediction

algorithms, this time based on the similarity of two nodes (e.g.,

common neighbors), was proposed [5,6]. Liben-Nowell and

Kleinberg were the first that applied structure-based node

similarity indices towards predicting links in social networks. They

systematically compared several topological features, including

graph shortest distance, common neighbors, preferential attach-

ment, Adamic/Adar, Jaccard, SimRank, hitting time, rooted

PageRank, and Katzb, to examine the link prediction problem in

co-authorship networks [3]. Pavlov and Ichise test their link

prediction models on a co-authorship network within the domain

of Japanese electronics information and communication engineer,

and obtained link predictors with encouraging accuracy [2]. Lü et

al. studied nine well-known local topological features on six real

networks extracted from disparate fields, as well as proposed two

new local features [7]. They also applied local similarity indices to

the link prediction problem in weighted networks, and found that

the weak ties play a significant role in the co-authorship link

prediction [8]. Meng et al. proposed semi-local indexes in both un-

weighted and weighted networks by introducing the resource

allocation process into the Local Path index [9]. Sun et al. studied

the problem of co-author relationship prediction in the heteroge-

neous bibliographic network, in which there are multiple types of

objects (e.g., journals, topics and authors), and proposed a new

methodology called PathPredict to solve the problem [10]. More

recently, Lei and Ruan presented a new link prediction model

based on topological similarities measured by a novel random

walk-based procedure [11].

Link prediction problems have been explored in different

networks, such as web page networks [4,5], food webs [12],

protein networks [11,13,14], gene regulatory networks [15],

adverse drug reaction networks [16], social communities networks

[17,18], co-authorship networks [2,3,10,19,20], and paper citation

networks [21].

The aforementioned studies mainly based their link prediction

models on a single topological feature, such as common neighbors

or Admic/Adar. In this study, however, we seek to solve link

prediction problems in co-authorship networks by combining

several widely used topological features, and then compare these

results with those generated by individual topological features.

Furthermore, we applied the link prediction models to the co-

authorship networks in the biomedical research domain, while

previous studies mainly focused on co-author relationship predic-

tion in the computer science research domain.

Methodology and Data

Topological features
Let G~SV ,ET be a graph with nodes vi[V and edges

(vi,vj)[E, 1ƒi,jƒDV D. Various network topological features for

each pair of nodes in the graph can be computed. These features

may be correlated with the probability that a link between the

nodes will appear in the future. The set of topological features for a

pair of nodes forms a feature vector.

A multitude of topological features can be used for a pair of

nodes according to the studies by [2] and [3]. In this paper, 5

topological features documented in both [2] and [3] were chosen

for co-author relationship prediction (Table 1). We also included

PropFlow, another topological feature, in this paper (Table 1),

because it has been shown to outperform common neighbors,

Jaccard’s coefficient and Adamic/Adar [18].

Common neighbors. Common neighbors is defined as the

number of common neighbors shared by two nodes vi and vj.

Newman verified a correlation between the number of common

neighbors of vi and vj at the time t, and the probability that they

will collaborate in the future [22].

Jaccard’s coefficient. Jaccard’s coefficient is a normalized

measure of common neighbors. It computes the ratio of common

neighbors out of all neighbors, and can be used for comparing the

similarity and diversity of neighbor set.

Adamic/Adar. Adamic/Adar, a weighted version of com-

mon neighbors, assigns greater weight to common neighbors vk of

vi and vj which themselves have fewer neighbors. This means the

contribution of a common neighbor to the score is weighted in

proportion to the rarity of the neighbor.

Preferential attachment. Preferential attachment was in-

troduced by Barabási and Albert to explain the power-law degree

distribution in complex real-world networks [23]. It is defined as

the product of the neighbours of vi and vj. Preferential attachment

means that the more connected a node is, the more likely it is to

receive new links. Nodes with higher degree have stronger ability

to grab links added to the network.

Katzb. Katzb defines a measure that sums over all paths

between two nodes, exponentially damped by length to count

short paths more heavily.

PropFlow. PropFlow assigns the weights to each path using

the products of proportions of the flows on the edges [18]. It is it is

a more localized measure of propagation, and is insensitive to

topological noise far from the source node.

Lpmade, a complete cross-platform software, was used for

calculating topological features in the co-authorship networks [24].

b~0:05 and a~0:15 were used in the paper because they are

the commonly accepted values in the research community [17,25].

Prediction models
We then build the relationship prediction models that model the

probability of co-authorship between two authors as a function of

topological features between them. In this paper, we chose the

logistic regression (LR) and Support Vector Machines (SVM) as

our prediction models. LR is one of the most widely used

classification methods, while SVM has more recently become an

important alternative.

LR. For each training pair of authors (vk1,vk2), let xkbe the

(dz1)-dimensional vector including constant and d topological

features between them, and yk be the label of whether they will be

will be co-authors in the future (1{a if they will be co-authors,

and otherwise yk~0), which follows binomial distribution with

probability pk. The probability pk is modelled as follows:

pk~
exkb

exkbz1

Where b is the dz1 coefficient weights associated with the

constant and each topological feature. We then use the standard

MLE (Maximum Likelihood Estimation) to derive b, which

maximizes the likelihood of all the training pairs:

L~Pk p
yk
k (1{pk)

SVM. The basic idea of SVM is as follows: a vector containing

n features can be mapped to a point in n-dimensional space (where

each dimension corresponds to a feature). Thus, our author pairs

Co-Author Relationship Prediction
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can be represented by a set of points in the space. Each point then

has its own binary label. The goal is to separate the points into two

groups so that points with the same label are in the same group.

This can be realized by using a linear separator (i.e., an n-

dimensional hyperplane), which was adopted in this paper. To

minimize generalization error, the hyperplane is usually chosen in

such a way as to maximize the margins on both its sides. We use

the sequential minimal optimization (SMO) training algorithm,

since it is known to perform well with linear SVM.

Weka (Waikato Environment for Knowledge Analysis), version

3.6.9, was used to implement LR and SMO [26]. For the LR

model, the default values for parameter settings were used. For the

SMO model, we set buildLogisticModels as ‘‘True’’ in order to fit

logistic models to the output and used the default values for all

other parameters.

Stratified 10-fold cross-validation was used to predict the

accuracy rate of the learning models above.

Model evaluation
Let us consider classification problems using only two classes, in

which the outcomes are labelled either as positive (p) or negative

(n). There are four possible outcomes. If the outcome from a

prediction is p and the actual value is also p, then it is counted as a

true positive (TP); if the actual value is n then it is said to be a false

positive (FP). Conversely, a true negative (TN) has occurred when

both the prediction outcome and the actual value are n, and false

negative (FN) is when the prediction outcome is n while the actual

value is p. Then several metrics can be calculated. Here we

introduce four of them: precision, recall, F1 score and AUC.

Precision. Precision is defined as the proportion of true-

positive predictions out of all positive predictions. It is useful in

determining how well the model fits the whole data.

Precision~
TP

TPzFP

Recall. Recall (also called true positive rate, tp rate) is the

proportion of true-positive predictions out of all true labels. It

represents how well the model is able to predict future

collaborations.

Recall~
TP

TPzFN

F1 score. F1 score (also F-score or F-measure) can be

interpreted as a weighted average of the precision and recall,

where an F1 score reaches its best value at 1 and worst score at 0.

The traditional F1 score is the harmonic mean of precision and

recall:

F1~2:
Precision:Recall

PrecisionzRecall

AUC. AUC is the area under an ROC curve. An ROC curve

is a graphical plot that illustrates the performance of a binary

classifier system as its discrimination threshold is varied. One more

term, ‘‘false positive rate (fp)’’ should be introduced before we

discuss ROC graph. False positive rate (fp rate) is:

fp~
FP

FPzTN

An ROC curve is created by plotting tp rate vs. fp rate at

various threshold settings. As ROC curves decouple classifier

performance from class skew and error cost, they have advantages

over other evaluation metrics such as precision-recall curves and

lift curves [27]. So AUC is often used as a measure of quality of a

probabilistic classifier. In this paper, it can be used to quantify the

overall ability of the model to discriminate between those author

pairs who have new collaborations and those who do not.

Feature selection
Wrapper method was used to select the most effective features

from our feature vectors. Wrapper method uses a subset evaluator

to create all possible subsets from the feature vector. Then it uses a

classification algorithm (such as LR and SVM in this paper) to

induce a classifier from the features in each subset. It will consider

the subset of features with which the classification algorithm

performs the best. To find a subset, the evaluator will use a search

technique (such as random search, breadth first search, depth first

Table 1. Formula for the 6 topological features used in this paper.

Type Topological feature Description

Neighborhood-based Common Neighbors DC(vi)\C(vj )D

Jaccard’s coefficient DC(vi)\C(vj )D
DC(vi)|C(vj )D

Adamic/Adar P
vk[C(vi )\C(vj )

1

logDC(vk)D

Preferential attachment DC(vi)DDC(vj )D

Path-based Katzb P?

l~1

bl Dpathsl
ij D.pathsl

ij denotes the number of paths of length s connecting vi and vj.

PropFlow the probability that a restricted random walk starting at vi ends at vj in l steps or fewer using link
weights as transition probabilities.

vi denotes node i. C(vi) denotes the set of all neighbors of vi . DC(vi)D denotes the number of all neighbors of vi .
doi:10.1371/journal.pone.0101214.t001

Co-Author Relationship Prediction

PLOS ONE | www.plosone.org 3 July 2014 | Volume 9 | Issue 7 | e101214



search, and hybrid search). In this paper, breadth first search was

used.

Data source
We confined our data to the biomedical research domain, and

chose ‘‘coronary artery disease’’ as an empirical analysis.

Coronary artery disease (CAD) is the most common cause of

death in the world. An estimated 17.3 million people died from

cardiovascular diseases in 2008, representing 30% of all global

deaths. Of these deaths, an estimated 7.3 million were due to

CAD.

Co-author Qi Yu, supported by Shanxi Medical University,

joined Ying Ding’s research team as a visiting scholar at the

Department of Library and Information Science at Indiana

University (IU), USA. During his stay at IU, which lasted January

15th, 2013 through January 14th, 2014, he collected all the data

used in this paper. Web of Science (WoS) was used as a data

source to download CAD-related records. WoS consists of rich

information for publications, including authors, publications, titles,

references and so on. All of the documents containing the word

‘‘coronary’’ in their title, abstract or keywords were collected.

These include article, meeting abstract, proceedings paper, review,

editorial material, book review, letter, note, etc. The scope was

limited to the years 2008 through 2013. Under the these

constraints, 125,674 CAD-related documents were found.

Author name ambiguity exists in the raw data. Numerous

models for author name disambiguation have been proposed

within bibliographic databases and on the web. Many of these

models share the broad outlines of predictive machine learning

[28]. Since WoS provides full name and address for each author, a

simple 2-step procedure was used in this paper to generate the

disambiguated author set. First, each author’s affiliation was

extracted from the address. Then, the affiliation was combined

with the author’s full name to create a unique identifier. Of the

125,764 downloaded records, 112,324 contained address infor-

mation. After name disambiguation, 425,866 authors were

collected. All the results in this paper, unless otherwise specified,

were calculated based on the disambiguated author set. Although

the criteria we chose here are able to disambiguate the vast

majority of author names, it is not sufficient, as some authors may

change their affiliation or surname (due to marriage, for example)

during the period under study. Therefore, future studies should

strive to identify even better solutions to this problem.

Two time periods were considered for the networks:

T1 = [2008–2010], and T2 = [2011–2013]. T1 was used for

extracting topological features, while T2 was used for setting the

corresponding labels (i.e., whether or not there was indeed a new

co-author link in T2 between two authors). It is possible that some

authors were only active during T1 but stopped publishing soon

thereafter, or that other authors only started publishing during T2

and had been inactive during T1. To eliminate this bias, we

confined the authors to those active in both time periods. The

number of the resulting authors is 51,555, while 55813 authors

were found active in both time periods before author name

disambiguation.

We confined author pairs to those who did not co-author in the

first time period but had a new co-author relationship in the

second time period. We also only took into account those pairs

that were 2-hop co-authors, i.e., the two authors had no less than

one common co-author. Under these constraints, we first found all

author pairs that have a new link in second period, and used these

links as positive training pairs. 137,219 new links were found in the

second time period, 3.6% of all the possible links (Table 2). Then,

we sampled an equal-sized set of negative pairs so that the size of

positive and negative pairs sets were balanced (274,438 pairs in

total). All these author pairs, the topological features between

them, and their corresponding labels comprise the entire

Table 2. The summarization of the author sets with different productivity.

Author Type # Authors # New Relationship # All Possible Relationship

All authors 51,555 137,219 3,838,391

# Papers . = 5 7,606 100,335 2,608,004

# Papers . = 10 2,435 64,098 1,529,799

# Papers . = 25 394 19,839 467,493

# Papers . = 50 75 5,285 117,029

# Papers . = 100 9 593 15,821

All of the documents containing the word ‘‘coronary’’ in their titles, abstracts or keywords were collected from Web of Science. The scope was limited to the years 2008
through 2013. Two time periods were considered for the networks: T1 = [2008–2010], T2 = [2011–2013]. The authors were confined to those acitve in both T1 and T2
periods.
doi:10.1371/journal.pone.0101214.t002

Table 3. Test results of LR and SVM model for entire topological feature set vs. baseline topological feature set.

Evaluation Measure Entire topological feature set Baseline topological feature set

LR SVM LR SVM

Precision 0.696 0.697 0.504 0.495

Recall 0.677 0.678 0.509 0.509

F1 score 0.671 0.671 0.361 0.345

AUC 0.742 0.743 0.502 0.501

doi:10.1371/journal.pone.0101214.t003
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topological feature set, on which we built our co-author

relationship prediction models. We also needed another topolog-

ical feature set to serve as a baseline for comparison. Thus, we

randomly labelled half of the 274,438 author pairs above as

‘‘positive’’ and the remaining half as ‘‘negative.’’ All the author

pairs, the topological features between them and the randomly

sampled labels comprised a new topological feature set that we

called ‘‘baseline topological feature set.’’

We also want to know whether our model predicts collaboration

relationships differently for high productive authors and less

productive authors. To this end, we used five author sets: authors

with no less than 5 papers, authors with no less than 10 papers,

authors with no less than 25 papers, authors with no less than 50

papers, and authors with no less than 100 papers (Table 2).

Results

Overall accuracy
We first compared the test results from the LR model and SVM

model for the entire dataset. As shown in Table 3, both LR model

and SVM model scored well for all the four evaluation measures.

SVM model beat LR model in terms of 3 evaluation measures:

precision rate (0.697 vs. 0.696), recall rate (0.678 vs. 0.677) and

AUC (0.743 vs. 0.742). This demonstrates that both models fit our

data well. They were able to predict at least 67.7% of future

collaborations and both performed well in discriminating between

those author pairs who have new collaborations and those who do

not. The AUC results outperformed those found by [10] and [18],

in which co-author relationship was predicted by using a single

topological feature. This means that combining topological

features can yield good prediction results.

We also noted that the models built on the entire topological

feature set significantly outperformed those built on the baseline

topological feature set (Table 3), which means that our results were

significantly better than those corresponding to normal levels.

23,594 authors published no less than 5 papers between the

years 2008 and 2013. We made a prediction about the possible

future links for these authors with theweights learned by the LR

model. The results showed that 15,334 new co-author links will

appear in the future.

Accuracy rates for different author sets
We then compared the test results of both models for different

author sets (authors with high productivity and authors with less

productivity). As shown in Figure 1 and Figure 2, both learning

models generally scored high for high productive author sets in

terms of all the four evaluation measures, but scored low for less

productive author sets. This means that both models had good

ability to correctly separate the high productivity author pairs with

new collaborations from those without new collaborations, similar

to the results found by [10]. However, these results could be

influenced by author name ambiguity, since different results were

indeed found in this study before author name disambiguation: for

both learning models, the precision and recall rates for highly

productive authors were lower than those for less productive

authors, while the AUC values for highly productive authors were

higher than those for less productive authors.

Feature selection
By using the feature selection methods mentioned above,

Adamic/Adar, Preferential attachment, Katzb, and PropFlow

were selected as the most effective ones for the LR model, while

Adamic/Adar, Common Neighbors, Preferential attachment, and

PropFlow were selected for the SVM model. We trained the two

models with the selected features on the entire author set, and

found that the testing results were improved for both the LR

model and SVM model, especially for SVM model, whose AUC

increased by 1.1% (Table 4). We also found that SVM model

slightly outperformed LR model in terms of all the four evaluation

measures.

Figure 1. Test results of the LR model (Authors with high
productivity and less productivity).
doi:10.1371/journal.pone.0101214.g001

Figure 2. Test results of the SVM model (Authors with high
productivity and less productivity).
doi:10.1371/journal.pone.0101214.g002
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Individual topological feature
We also trained the LR model and SVM model on the entire

author set by using each topological feature separately (LR model

and SVM model actually produced the same test results, so we

only presented the results for LR model here). As shown in

Figure 3, the LR model generally produced relatively lower

accuracy rates when testing topological features separately than it

did when testing all the topological features as a whole. However,

some features (such as Adamic/Adar, precision 0.699, recall 0.66,

F1 score 0.644 and AUC 0.74) still received high evaluation scores.

Surprisingly, PropFlow got a lower AUC score than topological

features such as Adamic/Adar, Common Neighbor, and Jaccard’s

coefficient, since [18] found the opposite. Moreover, its precision,

recall and F1 score were also lower than the results generated from

Facebook social network data [29].

Discussion

Firstly and foremost, both the traditionally used algorithm LR

and increasingly promising algorithm SVM model performed well

in co-author relationship prediction. The prediction accuracy rates

as measured by the precision value, the recall value, the F1 score

and AUC value, were respectively 0.696, 0.677, 0.671 and 0.742

for the LR model, and respectively 0.697, 0.678, 0.671 and 0.743

respectively for the SVM model. This is encouraging, as our

predictions were solely built on topological information from the

co-authorship networks, without taking into account any node-

specific properties (such as geographical locations, affiliations,

research topic, etc.). The reason for high prediction accuracy rates

may be explained by the fact that collaboration always emerges

from social networks. For instance, the ‘‘small world’’ phenom-

enon has been observed to hold true with respect to research

collaboration: two scientists are more likely to collaborate or co-

author a paper if they have a co-author in common. Moreover,

social networks can be expanded through both informal commu-

nication such as chance encounters and formal communication

such as meetings. Two authors sharing more co-authors will

undoubtedly improve their chance of being acquainted with and

subsequently collaborating with each other. Also, the shorter the

path between two authors in a co-authorship network, the more

likely they will co-author a paper in the future. In other words, the

neighborhood-based and path-based topological features in co-

authorship networks actually represent one or more latent features

such as geographic, sub-topic and psycho-social distances. This

demonstrates that co-author relationships can be predicted with

high accuracy by using topological features.

Secondly, the collaborations for highly productive authors were

easier to predict than less productive authors in terms of all the four

evaluation measures, which means that the probability for collab-

orations between two authors may be affected by author produc-

tivity. This is because a highly productive author always has more

neighbors than a less productive one, which can improve his visibility

so that other authors are able to ‘‘find’’ and ultimately collaborate

with him more easily. On the other hand, less productive authors

always have fewer co-authors, so they are more limited in their

choice of collaborators due to multiple random factors.

Thirdly, the results of feature selection showed that although the

most effective features for LR model were different from those for

SVM model, the testing results for both models were improved. As

the SVM model beat the LR model after feature selection, the four

features selected for SVM model may be the best choice for co-

author relationships prediction within this dataset. Whether the

same results could be achieved in other co-authorship networks

remains to be seen.

Finally, when testing the topological features separately, the

accuracy rates of the LR model dropped. This result is not

surprising since the estimates of our LR model were affected by all

the topological features. For more reliable estimates, one must

include all these features. This is because omited variables in

logistic regression affect coefficients through other mechanisms

that operate regardless of whether omitted variables are correlated

Table 4. Test results of LR and SVM before vs. after using the selected topological features.

Evaluation Measure Before using the selected topological features After using the selected topological features

LR SVM LR SVM

Precision 0.696 0.697 0.697 0.702

Recall 0.677 0.678 0.678 0.679

F1 score 0.671 0.671 0.671 0.672

AUC 0.742 0.743 0.744 0.754

By using the feature selection methods, Adamic/Adar, Preferential attachment, Katzb, and PropFlow were selected as the most effective ones for boththe LR model,
while Adamic/Adar, Common Neighbors, Preferential attachment, and PropFlow were selected for the SVM model.
doi:10.1371/journal.pone.0101214.t004

Figure 3. Test results of the LR model for each topological
feature.
doi:10.1371/journal.pone.0101214.g003
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to the independent variables [30]. However, Adamic/Adar still

performed well (precision 0.699, recall 0.66, F1 score 0.644 and

AUC 0.74), which verifies its robustness. So Adamic/Adar can be

classified as a good indicator for predicting possible co-author

relationship. Furthermore, PropFlow did not perform well in our

study. One possible explanation is that PropFlow may be more

suitable for real networks such as the phone and Facebook

networks used in [18] [29] and less so for bibliometric networks

(co-authorship networks). This is supported by results generated

from co-authorship network data in [29] that also received a low

score for precision, recall and F1 score. We will further examine

PropFlow’s applicability to co-authorship networks in the future.

Overall, the methods used in our paper could be very effective

in building accurate link predictors in co-authorship networks.

Since the methods rely solely on topological features of the

underlying networks and on general supervised learning algo-

rithms, it can be easily applied to other networks in which link

prediction is desirable.

Conclusions

This paper presented supervised machine learning methods for

building link prediction models from topological features of node

pairs in co-authorship networks. The models could be useful in

identifying unrealized yet potentially successful collaborations,

which would in turn facilitate the development of strong research

groups. In addition, we gained valuable information about which

topological features are most informative for the link prediction

problem, and this knowledge can be used as a basis for developing a

vocabulary that supports standardized descriptions of this expertise.

However, we should also bear in mind that co-authorship is not

the same as collaboration. Not every research collaboration will

necessarily lead to a co-authored publication, nor all co-authored

papers are results of a collaborative research process. Moreover,

not all collaborators will appear as co-authors. Therefore, co-

authorship is only a partial indicator of research collaboration, and

we should not assume collaboration exists between two authors

even if there is a co-author link between them.

There are many directions that future research in this field

might take. An important next step would be testing link

prediction methods in heterogeneous bibliographic network, in

which there can be several types of nodes (e.g., authors and

papers), and several types of links (such as write/written and cite/

cited). Since a heterogeneous bibliographic network can provide

more topological features to be examined for author pairs, a

stronger link prediction model is likely to be obtained. Topological

features are affected by name ambiguity [31] and hyperauthorship

[32], two problems that pose new, open questions and directions

that would be worth exploring by our research team in the future.
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