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Abstract

The metabolic enzyme fatty acid synthase (FASN) is responsible for the endogenous synthesis of palmitate, a saturated
long-chain fatty acid. In contrast to most normal tissues, a variety of human cancers overexpress FASN. One such cancer is
cutaneous melanoma, in which the level of FASN expression is associated with tumor invasion and poor prognosis. We
previously reported that two FASN inhibitors, cerulenin and orlistat, induce apoptosis in B16-F10 mouse melanoma cells via
the intrinsic apoptosis pathway. Here, we investigated the effects of these inhibitors on non-tumorigenic melan-a cells.
Cerulenin and orlistat treatments were found to induce apoptosis and decrease cell proliferation, in addition to inducing the
release of mitochondrial cytochrome c and activating caspases-9 and -3. Transfection with FASN siRNA did not result in
apoptosis. Mass spectrometry analysis demonstrated that treatment with the FASN inhibitors did not alter either the
mitochondrial free fatty acid content or composition. This result suggests that cerulenin- and orlistat-induced apoptosis
events are independent of FASN inhibition. Analysis of the energy-linked functions of melan-a mitochondria demonstrated
the inhibition of respiration, followed by a significant decrease in mitochondrial membrane potential (DYm) and the
stimulation of superoxide anion generation. The inhibition of NADH-linked substrate oxidation was approximately 40% and
61% for cerulenin and orlistat treatments, respectively, and the inhibition of succinate oxidation was approximately 46%
and 52%, respectively. In contrast, no significant inhibition occurred when respiration was supported by the complex IV
substrate N,N,N9,N9-tetramethyl-p-phenylenediamine (TMPD). The protection conferred by the free radical scavenger N-
acetyl-cysteine indicates that the FASN inhibitors induced apoptosis through an oxidative stress-associated mechanism. In
combination, the present results demonstrate that cerulenin and orlistat induce apoptosis in non-tumorigenic cells via
mitochondrial dysfunction, independent of FASN inhibition.
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Introduction

The metabolic enzyme fatty acid synthase (FASN) is responsible

for the production of saturated fatty acids, such as palmitate,

through the condensation of acetyl-CoA and malonyl-CoA [1–7].

FASN products are used in the formation of cell membranes [8]

and are responsible for a significant number of functions in the

body, acting primarily as intracellular messengers and energy

stores [9]. In most normal tissues, the expression and activity of

FASN are low or absent; exceptions include instances where

lipogenesis is necessary, such as in the liver, adipose tissue, breast

tissue during lactation, endometrium during the proliferative

phase and the lungs of newborns [2,3,10,11]. In contrast, high

FASN activity is found in several neoplasias that occur in breast,

ovarian, prostate, thyroid, lung, stomach, pancreas, colon,

esophagus, mouth and bladder tissues, as well as soft tissue

sarcomas and melanoma [10,12–33]. Further, increased FASN

expression in malignant tumors is associated with a poor prognosis

[4,13,14,16,17,21,24,28,29,33–38].

FASN inhibition reduces cell proliferation and induces apop-

tosis in vitro and decreases the size of prostate, ovarian and breast

cancer xenografts [39–41]. The biological mechanisms responsible

for FASN inhibition-induced apoptosis remain unclear. The

extrinsic apoptosis pathway, which is triggered by death domains,

was described after siRNA silencing of FASN in breast cancer cells

caused the accumulation of malonyl-CoA and ceramide [42,43].

Mitochondrial involvement in apoptosis, as evidenced by in-

creased levels of the pro-apoptotic protein Bax and the release of

cytochrome c, has been found in several tumor cell lines, including

neuroblastoma, melanoma, colon carcinoma, breast cancer and

skin carcinoma, following pharmacological FASN inhibition

[37,44]. Despite the fact that the expression of a dominant-

negative mutant p53 increased the sensitivity of colon carcinoma

cells to FASN inhibitors [45], FASN inhibition-induced apoptosis
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was described as a p53-independent process [44]. We recently

showed that the inhibition of FASN activity with orlistat

significantly impaired lipid synthesis, reduced proliferation and

promoted apoptosis in the mouse metastatic melanoma cell line

B16-F10 [46,47]; additionally, similar treatment reduced experi-

mental metastases and angiogenesis in B16-F10 melanomas [48].

We showed that FASN inhibition activates the intrinsic apoptotic

pathway, as evidenced by the release of cytochrome c and the

activation of caspases-9 and -3; this activation is preceded by

increased production of reactive oxygen species and elevated

cytosolic calcium concentrations in these melanoma cells [47].

Orlistat treatment of B16-F10 cells also resulted in significant

changes in the mitochondrial free fatty acid (FFA) composition, as

demonstrated by electrospray ionization mass spectrometry (ESI-

MS) [49].

Although several studies suggest that normal cells are more

resistant to the cytotoxic action of FASN inhibitors [40,43,50–52],

cerulenin and orlistat significantly reduced the proliferation of

normal gingival fibroblasts and endothelial cells [26,53,54]. Here,

we show that similar to B16-F10 cells, non-tumorigenic melan-a

cells exhibit reduced proliferation and undergo apoptosis through

the release of cytochrome c and the activation of caspases-9 and -3

when treated with FASN inhibitors. The effect of these FASN

inhibitors on the non-tumorigenic cell line used here involves the

inhibition of mitochondrial respiration but does not alter the FFA

content of these cells.

Materials and Methods

Cell Culture and Reagents
Melan-a cells, the first known line of non-tumorigenic mouse

melanocytes and a normal counterpart to melanoma cells [55],

were obtained from Profa. Miriam Galvonas Jasiulionis (Uni-

versidade Federal de São Paulo, São Paulo, Brazil) and were

cultured in RPMI-1640 medium (Vitrocell, Brazil) supplemented

with 5% fetal bovine serum (Vitrocell), 200 nM 12-o-tetradecanoyl

phorbol-13-acetate (TPA, Sigma-Aldrich, St. Louis, MO, USA),

100 mg/ml gentamycin (Vitrocell), 100 IU/ml penicillin (Vitro-

cell) and 100 mg/ml streptomycin (Vitrocell) at 37uC in a

humidified atmosphere with 5% CO2. To block FASN activity,

either cerulenin (Sigma-Aldrich, USA) or orlistat (Roche, Swit-

zerland) was added to the culture medium at the concentration

specified in the figure legends. The IC50 for b-keto-acyl-ACP

synthase inhibition by cerulenin is 1.5 mM, and the Ki for FASN

inhibition by orlistat is 0.3060.09 mM [56]. Orlistat was extracted

from Xenical capsules as previously described [57]. The equivalent

concentrations of cerulenin and orlistat solvents, 0.025% DMSO

and 0.012% ethanol (EtOH), respectively, were present under

control conditions. Cells treated with cerulenin showed faster

degeneration than cells treated with orlistat; for this reason

different treatment durations were used for cerulenin (6–24 h) and

orlistat (24–48 h).

The non-tumorigenic HaCaT cell line, which was derived from

human keratinocytes, was purchased from Cell Line Service (CLS,

Heidelberg, Germany). HaCaT cells were grown in a high-glucose

DMEM culture medium (Vitrocell) supplemented with 10% fetal

bovine serum and antibiotics, in the same manner as that

described for the melan-a cells.

Determination of Cell Viability and Proliferation
To determine the antiproliferative and cytotoxic effects of

cerulenin and orlistat, the cells were stained with 0.1% trypan blue

and then counted in a Neubauer chamber, as previously described

[47]. Cell viability was determined by excluding the stained cells,

as well as by using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenylte-

trazolium bromide assay (MTT, Sigma). Briefly, melan-a cells

were plated in 6-well culture plates (2.5–6.56104 cells per well),

and after 24 h, the medium was replaced with fresh medium that

contained the FASN inhibitors. After an additional 24 or 48 h, the

cells were incubated with 2.5 mg/ml MTT for 4 h at 37uC in a

5% CO2 incubator. Then, the medium was removed, and 1 ml of

absolute ethanol was added to each well for complete solubiliza-

tion of the generated formazan. The contents were subsequently

transferred to 96-well plates, and the absorbance was determined

at 540 nm with the aid of a microplate reader (Bio-Rad, USA). In

this work, cell viability is expressed as the percentage of viable cells

relative to the controls.

Analysis of Cell Death and Cell Cycle
The samples were analyzed in a FACSCalibur flow cytometer

(BD Biosciences, Franklin Lakes, NJ, USA) equipped with an

argon laser and Cell-Quest software (version 4.1). Between seven

and ten thousand events were acquired per sample. Melan-a

populations were identified based on their light-scattering charac-

teristics by enclosing the samples in electronic gates and analyzing

for the intensity of the fluorescent probe signal.

For the cell death analysis, melan-a cells (106) were washed with

PBS and resuspended in binding buffer (10 mM HEPES pH 7.4,

150 mM NaCl, 5 mM KCl, 1 mM MgCl2 and 1.8 mM CaCl2)

containing annexin V-FITC (1:500, Invitrogen, USA) and 7-AAD

(20 mg/ml, 7-amino-actinomycin D, Molecular Probes, USA), as

previously described [47]. Cell apoptosis was quantified by flow

cytometry as the number of annexin V-FITC-positive and 7-AAD-

negative cells, and necrosis was quantified as the number of 7-

AAD-positive and annexin V-FITC-negative cells, both divided by

the total number of cells.

Cell cycle analyses were performed as previously described

[46,47]. Melan-a cells were seeded in 6-well culture plates (2.5–

6.56104 cells). After 24 h, the medium was replaced with serum-

free medium, and the cells were incubated for an additional 24 h.

The medium was replaced with fresh medium containing serum

and the respective FASN inhibitor, and the cells were incubated

for an additional 24 or 48 h, then harvested and fixed in cold 70%

ethanol. The cells were then washed in PBS, treated with 10 mg/

ml RNAse for 1 h at 37uC and stained with 50 mg/ml propidium

iodide (Sigma) for 2 h at 41uC. The distribution of cells in the cell

cycle was analyzed by flow cytometry. The cell cycle phases were

analyzed using ModFit LTTM (Verity Software House, USA).

Measurement of ROS
Following treatment with cerulenin or orlistat for 24 or 48 h 106

viable cells were incubated with 5 mM MitoSOX (Molecular

Probes) at 37uC for 10 min to detect mitochondrial superoxide

production [58]. The ROS levels were analyzed using a

spectrofluorometer (Hitachi, model F-4500, Tokyo, Japan) oper-

ating at excitation and emission wavelengths of 510 and 580 nm,

respectively, with slits widths of 5 and 10 nm, as previously

described [47,59].

Detection of Caspase-3 Activation
Caspase-3 activation was assessed by incubating 106 cells with

FITC-DEVD-FMK (1:300, Calbiochem, USA) in serum-free

medium for 40 min at 37uC in a humidified atmosphere with

5% CO2. After a wash step was performed according to the

manufacturer’s instructions, the cells were resuspended in the

same medium and analyzed by flow cytometry, as previously

described [46].
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Figure 1. Cerulenin and orlistat reduce cell viability and induce apoptosis in the melan-a cell line. Melan-a cells were treated with
increasing concentrations of cerulenin or orlistat for 24 or 48 h, respectively; cell viability was determined using trypan blue (A and B) or MTT assays
(C and D), and apoptosis was determined by flow cytometry after Annexin V staining (E and F). The values represent the mean 6 s.e.m of at least
three independent experiments. *Significantly different from the respective control at p,0.05.
doi:10.1371/journal.pone.0101060.g001
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Detection of Caspases-9 and -8 Activities
Cells (36106 cells) were resuspended in 0.2 ml of chilled lysis

buffer (20 mM HEPES pH 7.5, 10 mM KCl, 250 mM sucrose,

2 mM MgCl and 1 mM EDTA) containing 0.5 mM DTT. The

cell suspensions were sonicated (Mosonix Sonicator S-3000, New

Highway Farmingdale, USA) and frozen at 280uC. The cell

lysates were thawed and centrifuged at 15,000 g for 30 min, and

the supernatants were added to 0.2 ml of reaction buffer (25 mM

HEPES pH 7.5, 10% sucrose and 0.1% CHAPS) containing

10 mM DTT. The reactions were initiated by the addition of the

caspase-8 or 29 substrates, 0.1 mM Ac-LETD-AFC (Sigma) or

0.2 mM LEHD-pnitroanilide (Calbiochem), respectively, and

were incubated for 1.5 h at 37uC, as previously described [47].

Caspase-8 activity was determined by measuring the fluorescence

of free AFC using a Hitachi F4500 spectrofluorometer (Hitachi

High-Tech, Japan), with excitation and emission wavelengths of

400 and 505 nm, respectively, and slit widths of 5.0 nm. Melan-a

cells treated for 20 h with 1.25 mg/ml cycloheximide (Sigma) and

10 nM tumor necrosis factor alpha (TNFa, Peprotech, USA) were

used as positive controls. Caspase-9 activity was determined by

measuring the absorbance of free p-nitroanilide using a Varian

Cary 50 spectrophotometer (Biocompare, USA) at 405 nm.

Detection of Cytochrome c Release
After the cells were treated with cerulenin or orlistat for 12 or

24 h, the release of mitochondrial cytochrome c was detected by

flow cytometry [60]. Briefly, 106 cells were washed with PBS,

resuspended in 1 ml of mitochondrial medium (125 mM sucrose,

65 mM KCl, 10 mM HEPES buffer pH 7.2, 0.5 mM EGTA,

1 mM MgCl2 and 2 mM KH2PO4) supplemented with 1% mix of

protease inhibitors and 1 mM phenylmethylsulfonyl fluoride and

then permeabilized with 0.0001% digitonin. Pellets were resus-

pended in 0.5 ml of 4% paraformaldehyde in PBS and incubated

for 20 min at room temperature. After two washes with PBS, the

cells were incubated in 0.5 ml of labeling medium (2% fetal bovine

serum, 0.2% sodium azide and 0.5% Triton X-100 in PBS) for

15 min, centrifuged at 3,000 g for 5 min and then incubated with

an anti-cytochrome c antibody (1:500, 6 H2.B4, Promega, USA)

at 4uC for 1 h. The cells were then washed twice in the same

medium and incubated with an anti-mouse-FITC antibody (1:200,

Vector Laboratories, USA) at 4uC for 1 h. The cells were washed

once more as described above, resuspended in PBS and analyzed

by flow cytometry as described elsewhere [60].

Assessment of Mitochondrial Membrane Potential
(DYm)

The DYm in the digitonin-permeabilized melan-a cells was

estimated by changes in Safranin O fluorescence [61], as recorded

using a spectrofluorometer (Hitachi, model F-4500, Tokyo, Japan)

operated at excitation and emission wavelengths of 495 and

586 nm, respectively, with slits widths of 5 nm. Melan-a cells were

treated with 22 mM cerulenin for 6 h or with 30 mM orlistat for

24 h. Approximately 26106 viable cells were permeabilized with

15 mM digitonin in 2 ml of reaction medium containing 125 mM

sucrose, 65 mM KCl, 10 mM HEPES, 1 mM MgCl2, 65 mM

Tris-HCl (pH 7.2), 2.5 mM Na2HPO4, 50 mM EGTA, 5 mM

succinate, 0.01% BSA and 5 mM Safranin O; then, the reactions

were incubated at 37uC while stirring [59,62–64].

Cellular Respiration
Following either 24 h of treatment with 22 mM cerulenin or

48 h of treatment with 30 mM orlistat, the consumption of oxygen

by the melan-a cells was measured using a closed-chamber high-

resolution respirometry Oroboros (Innsbruck, Austria) equipped

with a magnetic stirrer and temperature control set at 37uC [65–

67]. Approximately 26106 viable cells were added to 2 ml of

reaction medium containing 125 mM sucrose, 65 mM KCl,

10 mM HEPES, 2.0 mM K2HPO4, 1.0 mM MgCl2 (pH 7.2);

50 mM EGTA, 0.01% BSA and NADH-linked substrates (2.0 mM

malate, 1.0 mM a-ketoglutarate, 1.0 mM pyruvate and 1.0 mM

glutamate). Then, the melan-a cells were permeabilized by the

addition of 15 mM digitonin, and the oxidative phosphorylation

and mitochondrial respiratory activity were analyzed by the

sequential addition of 300 mM ADP, 2 mg/ml oligomycin,

100 nM carbonylcyanide p-trifluoromethoxyphenylhydrazone

(FCCP), 5 mM succinate, 0.5 mM antimycin and 200 mM

N,N,N9,N9-tetramethyl-p-phenylenediamine (TMPD) with 2 mM

ascorbate. The data were determined using the device software.

Citrate Synthase Activity
Citrate synthase activity in the cell suspension was analyzed by

spectrophotometry based on the conversion of oxaloacetate and

acetyl-CoA to citrate and SH-CoA. This reaction is catalyzed by

citrate synthase and was monitored by measuring the colorimetric

product thionitrobenzoic acid [47]. Cytosolic fractions were

incubated at 37uC in a buffer containing 50 mM Tris–HCl

Figure 2. FASN inhibitors blocked cell cycle progression in
non-tumorigenic cells. Melan-a cells were treated with 22 mM
cerulenin or 30 mM orlistat for 24 or 36 h, respectively. Then, the
percentage of cells in each phase of the cell cycle was determined by
flow cytometry after PI staining (A). Western blot analysis of protein
extracts prepared from cerulenin- and orlistat-treated melan-a cells
revealed the accumulation of the p21WAF1/Cip1 tumor suppressor
protein (B). The data were normalized using beta-actin as a loading
control. The values represent the mean 6 s.e.m of at least five
independent experiments. *Significantly different from the respective
control at p,0.05.
doi:10.1371/journal.pone.0101060.g002
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(pH 8.0), 0.1% Triton X-100, 250 mM oxaloacetate, 50 mM

acetyl-CoA and 100 mM 5,50-dithiobis-(2-nitrobenzoic acid).

The increase in absorbance at 412 nm was recorded over 8 min.

RNA Interference (RNAi)-Mediated Silencing of FASN
Expression

Twenty-five-mer RNA molecules were chemically synthesized,

annealed and purified by the manufacturer (Stealth RNAi,

Invitrogen). Three sequences targeting Mus musculus FASN

(NM_00798) were used, corresponding to nucleotides 940–964

(50-CAATGATGGCCAACCGGCTCTCTTT-30), 3408–3432

(50-TGGGAAGACCCGAACTCCAAGTTAT-30) and 5841–

5865 (50-CCTCTGGGCATGGCTATCTTCTTGA-30), as pre-

viously described [46]. Melan-a cells grown to 50% confluence

were transfected with 200 nM of a mixture containing equal parts

of the FASN siRNAs using a liposome method according to the

manufacturer’s instructions (Lipofectamine 2000, 2 mg/ml, Invi-

trogen). Negative control cells were transfected with equimolar

concentrations of a nonspecific control oligo (Stealth RNAi

Negative Control Duplexes, Medium GC Duplex, Invitrogen).

Transfections were performed in 35-mm2 dishes, and after 48 h,

the cells were collected to assess FASN knockdown and to detect

cell death. FASN knockdown was confirmed by Western blot

analysis using approximately 40 mg of the protein lysates and

antibodies against FASN (BD Biosciences, 1:3000) or beta-actin

(AC-15, Sigma, 1:40 000) as a loading control. The reactions were

developed with an enhanced chemiluminescence detection system

(ECL detection kit, Amersham Pharmacia Biotech, USA) accord-

ing to the manufacturer’s instructions.

Electrospray Ionization Mass Spectrometry (ESI-MS)
ESI-MS was used to analyze the melan-a mitochondria, as

previously described [49], with few modifications. After the

mitochondria were extracted, the total protein content was

quantified using the Bradford method. Lipid extraction was

performed as described by Bligh and Dyer (1959) [68]. The

mitochondria-containing pellets were resuspended in 0.1 ml of

ultrapure H2O, and 0.5 ml of a solution of methanol/toluene (7:3

v/v) and 0.05 ml of a methanol solution of ammonia (0.1% v/v)

were added to each sample. This diluted solution was then directly

infused according to the following protocol. A total of 16 samples

was analyzed, 4 from the control and 4 from the treated cells for

each FASN inhibitor.

Lipid analyses were performed in negative mode using an ESI

Q-TOF Premier (Waters) coupled with a nanoelectrospray source

introduced via direct injection, performed at a flow rate of 10 mL/

min and using a Harvard Apparatus pump. The nanoelectrospray

voltage was set to 2.5 kV; the cone voltage, to 40 V; the source

temperature, to 120uC; the desolvatation temperature, to 200uC;

and the collision energy, to 10 V. The instrument was operated in

MS continuum mode, and data were acquired from m/z 50–1.000

with a scan rate of 1 s and an interscan delay of 0.1 s. The data

were analyzed using the Masslynx 4.1 software package. The

spectra were accumulated over 6 s in the region with flow rate

stability. The spectra were smoothed (263 channels, Savitzky

Golay smooth), and the mass centroid values were obtained using

80% of the peak top and the minimum peak width at half-height of

4 channels. Principal component analysis was performed using the

MetaboAnalyst software. Data were autoscaled for principal

component analysis (PCA) and partial least square discriminant

analysis (PLS-DA). The analyses were performed using the

MetaboAnalyst online platform [69,70], supported by the use of

the Piroeutte (v. 4.0, Infometrix, Inc.) software.

Statistical Analysis
The results from at least three independent experiments, each

performed in duplicate or triplicate, are displayed as the mean 6

s.e.m. Comparisons between the groups were performed using

One-Way Analysis of Variance with Tukey’s post-hoc analysis.

The level of significance was set at p,0.05. All data were analyzed

using SigmaStat software, version 3.5 (Systat Software, USA).

Results

FASN inhibitors decrease melan-a cell viability and
proliferation and induce cell death in a dose-dependent
manner

The viability of melan-a cells was significantly reduced after

treatment with cerulenin or orlistat (Figure 1). The decrease in

cell viability estimated by the trypan blue or MTT (Panels A–D)

assays was higher than the apoptotic rate (Panels E–F), possibly

due to the higher sensitivity of the test used to estimate cell viability

[71]. Death in the melan-a cell line occurred mainly by apoptosis,

as we previously demonstrated for the B16-F10 melanoma cells

[47], while the necrosis rates remained unchanged by these

treatments (DMSO: 2.460.5%, 22 mM cerulenin: 2.460.5%;

EtOH: 1.560.8%; 30 mM orlistat: 2.460.4%). No significant

effect of the vehicles (EtOH and DMSO) on cell viability and

apoptosis rate was observed (results not shown).

Cell cycle analysis was performed to verify the effects of both

FASN inhibitors on cell proliferation. After 24 h of serum

starvation, approximately 80% of the melan-a cells were in the

G0/G1 phase (data not shown). The cerulenin- and orlistat-treated

melan-a cells demonstrated reductions of 25% and 42% in S

phase, respectively, when compared to the controls (Figure 2 A).

Cell cycle arrest was confirmed by increased levels of the p21WAF1/

Cip1 tumor suppressor protein, as shown by Western blot analysis

(Figure 2 B). The treatment of melan-a cells with cerulenin and

orlistat increased p21WAF1/Cip1 levels by 1.4- and 3.4-fold,

respectively, compared to the control cells.

The FASN inhibitors were also tested in another non-

tumorigenic cell line, HaCaT, which is derived from normal

keratinocytes. Similar to the melan-a cells, cerulenin and orlistat

reduced the viability and proliferation of HaCaT and induced

apoptosis (Figure S1). The HaCaT cells were more resistant to

apoptosis than the melan-a cells, especially when treated with

cerulenin while the necrosis rates remained unchanged by these

treatments (DMSO: 0.2060.08%, 45 mM cerulenin: 1.9760.27%;

EtOH: 0.2060.06%; 300 mM orlistat: 1.6760.20%). The HaCaT

cells also showed lower levels of FASN protein when compared to

the melan-a cells, as verified by Western blot analysis (Figure S2).

Cell cycle analysis of the HaCaT cells after treatment with the

FASN inhibitors revealed a significant degree of cell cycle arrest.

Cerulenin and orlistat treatment increased the number of cells in

G0/G1 phase by 3- and 6-fold, respectively (Figure S3 A).

Treatment with the FASN inhibitors also increased the p21WAF/

Cip protein content by 1.3- or 35-fold when compared to the

respective controls (Figure S3 B).

Mitochondrial dysfunction participates in melan-a cell
death induced by FASN inhibitors

Recently, we demonstrated the release of mitochondrial

cytochrome c in the FASN inhibition-induced apoptosis of B16-

F10 melanoma tumor cells [47]. Because FASN inhibitors also

induced apoptosis in the melan-a cells (Figures 1 E and F), the

non-tumorigenic melanoma cell counterpart [55], the percentage

of cytochrome c released was also determined in these cells.

FASN Inhibitors-Induced Apoptosis in Non-Tumorigenic Melan-a Cells
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Cerulenin and orlistat treatment for 12 and 24 h culminated in the

release of cytochrome c in the melan-a cells (16% and 12%,

respectively) (Figure 3 A), and this finding was accompanied by

the activation of caspase-3 (52% and 24%, respectively) (Figure 3
B) and caspase-9 (28% and 24%, respectively) (Figure 3 C). No

significant differences were found in caspase-8 activity (Figure 3
D). Pre-treatment with cyclosporin A, which is a classic inhibitor of

mitochondrial permeability transition, did not protect the melan-a

cells from cerulenin- or orlistat-induced apoptosis (Figure S4 A).

Apoptosis in the melan-a cells was also shown to be independent of

p53 activation, as pre-treatment with pifithrin-alpha (PFT), which is

a known synthetic inhibitor of p53 [72], did not prevent FASN

inhibitor-induced cell death (Figure S4 B).

In situ analysis of the energy-linked functions of melan-a

mitochondria indicated that treatment with the FASN inhibitors

decreased the DYm and inhibited respiration (Figures 4 and 5).

Digitonin-permeabilized melan-a cells showed the ability to

phosphorylate ADP, as illustrated by the carboxyatractyloside

(CAT) sensitive decrease in DYm (Figure 4, panels A and B,
black lines), while both the cerulenin and orlistat treatments

(Figure 4, panels A and B, green lines) resulted in significant

decreases in DYm and the inability of the mitochondria to

respond to the addition of ADP and CAT.

To gain a better understanding of the possible mechanism

involved in mitochondrial dysfunction, we analyzed the mito-

chondrial generation of superoxide in the melan-a cells. Figure 4C

shows a significant increase in mitochondrial superoxide produc-

tion when melan-a cells were incubated with either FASN

inhibitor. Incubation of the cells with the antioxidant N-

acetylcysteine (NAC) prevents the increased superoxide generation

promoted by these FASN inhibitors. Because mitochondria can be

both an important source and target of ROS [73], we then

analyzed the possible mitochondrial dysfunctions caused by ROS

attack. Therefore, the nature of the DYm decrease by FASN

inhibitors was assessed by measuring mitochondrial respiration

under both uncoupled or phosphorylating conditions using

NADH-linked substrates, succinate or the complex IV substrate

TMPD (Figure 5). The results presented in panels A and B show

that both cerulenin and orlistat resulted in a significant inhibition

of NADH-linked substrate-supported respiration. As expected, the

extent of the respiration inhibition was more significant at the

maximum rates (FCCP present). Panels C and D show the rates

of uncoupled succinate or TMPD-supported respiration, which

indicate a significant inhibition of succinate but not of TMPD

oxidation. Panel E provides evidence that the FASN inhibitors

did not alter the number or mass of mitochondria, as indicated by

the lack of an observable effect on citrate synthase activity.

Therefore, our results show that the FASN inhibitors activate

apoptosis in melan-a cells through a mechanism that involves the

inhibition of mitochondrial respiration.

To determine whether FASN inhibitor-induced cell death can

be prevented by ROS scavenging agents, further experiments were

conducted in the presence of N-acetyl cysteine (NAC). NAC

produces important metabolic products that control the cellular

Figure 3. Treatment of melan-a cells with FASN inhibitors leads to the release of mitochondrial cytochrome c and the activation of
caspases-3 and -9 but not -8. Melan-a cells were treated with 22 mM cerulenin or 30 mM orlistat for 12 or 24 h, respectively; then, the release of
cytochrome c was determined by flow cytometry (A). The cells were also treated with cerulenin or orlistat under the same conditions, and the
activation of caspase-3 was estimated using FITC-DEVD-FMK (B). The activities of caspase-9 and -8 (C and D) were determined as described in
Material and Methods. The values represent the mean 6 s.e.m of at least three independent experiments. *Significantly different from the respective
control at p,0.05.
doi:10.1371/journal.pone.0101060.g003
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redox state, protect cells against mitochondrial dysfunctions

associated with oxidative stress, and act as ROS scavengers [74–

77]. Melan-a cells were then incubated with 5 mM NAC for 1 h

prior to cerulenin or orlistat treatment. The results show that the

melan-a cell death induced by cerulenin and orlistat were inhibited

by 87% and 47%, respectively, in the presence of NAC (Figure 6,
A and B).

Cerulenin- and orlistat-induced apoptosis events in
melan-a type cells occur independently of FASN
inhibition

To determine whether the effects of cerulenin and orlistat on

cell viability, proliferation and mitochondrial function were related

to the actions of the respective agents on FASN, the enzymatic

activity of FASN was evaluated. Despite the detection of FASN

protein by Western blot analysis (Figure S2), the enzymatic

activity of FASN in melan-a cells was too low for quantification

using radioactive markers with higher sensitivity, such as [3H]-

water and [14C]-acetate (data not shown), as was previously

performed for B16-F10 melanoma cells [46]. These results were

supported by siRNA experiments that successfully down-regulated

FASN expression in melan-a cells by significantly reducing protein

levels (Figure 7 A) without a corresponding increase in apoptotic

rates (Figure 7 B).

ESI-MS was performed in melan-a cells to analyze the

mitochondrial FFA composition after treatment with the FASN

inhibitors. In contrast to what we observed in the melanoma B16-

F10 cells [49], the incubation of the non-tumorigenic cells with

Figure 4. FASN inhibitors result in decreased DYm and increased superoxide production in melan-a cells. Melan-a cells were treated
with 22 mM cerulenin or 30 mM orlistat for 6 or 24 h, respectively; then, approximately 26106 viable cells/ml were permeabilized with 15 mM
digitonin. DYm was estimated by Safranin fluorescence. The arrows indicate the addition of 15 mM digitonin, 100 mM ADP, 5 mM carboxyatractylo-
side (CAT) and 1 mM CCCP (A and B, representative of at least three independent experiments). Melan-a cells were also treated with 22 mM cerulenin
or 30 mM orlistat for 24 or 48 h, respectively and also incubated in the presence or absent of NAC; the cells were then washed and probed with 5 mM
MitoSOX (C). The values represent the mean 6 s.e.m of four independent experiments. *Significantly different from the respective control at p,0.05.
#Significantly different from the respective condition in the absence of NAC at p,0.05.
doi:10.1371/journal.pone.0101060.g004
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cerulenin or orlistat did not significantly alter the FFA content

when principal component analysis (PCA) was applied to the ESI-

MS data. The relative concentration (%) of palmitic acid was not

significantly modified after treatment with the FASN inhibitors

(DMSO and cerulenin: 38.6 and 43.4%, respectively; EtOH and

orlistat: 41.6 and 39.0%, respectively). Additionally, non-signifi-

cant alterations were observed for the most abundant FFAs

detected, which include myristic acid (DMSO and cerulenin: 15.0

and 10.2%, ethanol and orlistat: 20.1 and 24.4%, respectively) and

stearic acid (DMSO and cerulenin: 26.6 and 31.8%, EtOH and

orlistat: 22.1 and 14.5%, respectively). Together, the ESI-MS and

RNAi results suggest that the effects of cerulenin and orlistat on

melan-a proliferation and viability are independent of their effects

on FASN levels and activity.

Figure 5. Treatment with FASN inhibitors promotes the inhibition of respiration in melan-a cells. Oxygen consumption by the melan-a
cells was measured after treatment for 24 h with 22 mM cerulenin (A) or for 48 h with 30 mM orlistat (B) using high-resolution respirometry
(Oroboros) in a closed chamber equipped with a magnetic stirrer and temperature control set to 37uC. Approximately 26106 viable cells/ml were
permeabilized with 15 mM of digitonin and then were added to 2 ml of reaction medium (described in Materials and Methods). Analyses of oxidative
phosphorylation and respiratory activity of the mitochondria were made by sequential additions of 300 mM ADP, 2 mg/ml oligomycin, 100 nM
carbonylcyanide p-trifluoromethoxyphenylhydrazone (FCCP), 5 mM succinate, 0.5 mM antimycin and 200 mM N,N,N9,N9-tetramethyl-p-phenylene-
diamine (TMPD) with 2 mM ascorbate (A–D). The activity of citrate synthase was measured in melan-a cells after 24 or 48 h of treatment with 22 mM
cerulenin or 30 mM orlistat (E). The values represent the mean 6 s.e.m of at least four independent experiments. *Significantly different from the
respective control at p,0.05.
doi:10.1371/journal.pone.0101060.g005
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Discussion

FASN has been described as a possible target for chemotherapy

because its expression is low or absent in most normal tissues and,

in contrast, is high in a significant variety of human malignant

tumors, where FASN plays important roles in proliferation

[10,12,13,16,18–20,22–25,27,28,30–32]. As a result, FASN inhib-

itors are potential antitumor agents due to their ability to reduce

cell proliferation and induce apoptosis [44,47,57,78] without

apparent toxicity to normal tissues [50,51]. Although the role of

FASN in nonmalignant cells remains uncertain, it is known that

the FASN inhibitor cerulenin promotes a reduction in the

proliferation of normal fibroblasts in primary cultures [52,53],

and orlistat has been shown to have antiproliferative effects in

human umbilical vein endothelial cells (HUVEC) [26,48,54].

Here, we analyzed the mechanisms of toxicity of the FASN

inhibitors cerulenin and orlistat in cells derived from non-

tumorigenic mouse melanoblasts. When these melan-a cells were

incubated with FASN inhibitors, the cells underwent apoptosis and

exhibited a reduced proliferative rate (Figure 1), an increased

percentage of cells in G0/G1 phase (Figure 2 A) and an increased

level of p21WAF1/Cip1 tumor suppressor protein (Figure 2 B). We

also evaluated the effects of the FASN inhibitors on non-

tumorigenic HaCaT cells. Although these cells were more resistant

to apoptosis (Figure S1) than the melan-a cells (Figure 1), the

HaCaT cells underwent a significant cell cycle arrest (Figures

S3). These results are in agreement with data showing that FASN

inhibitors promote cell death and cell cycle arrest, along with the

increased expression of both p21WAF1/Cip1 and p53 in colon,

breast, gastrointestinal and human melanoma tumor cells [45,78–

80].

The increased number of annexin V-positive melan-a cells

(Figure 1 E and F), the release of cytochrome c (Figure 3 A) and

the activation of caspases-9 and -3 (Figure 3 B and C) are

compatible with the activation of the intrinsic apoptosis pathway

[81–83]. Similar results have been obtained with neuroblastoma,

breast cancer and melanoma cell lines [37,44,47]. This interpre-

tation is also supported by the lack of caspase-8 activation by the

FASN inhibitors, a result that excludes the extrinsic apoptosis

pathway in melan-a cell death [84]. In agreement with our results,

the exclusion of the extrinsic apoptosis pathway was previously

reported for breast tumor cells after FASN inhibition [42].

Additionally, the increased expression of p21WAF1/Cip1 (Figure 2
B and Figure S3 B) suggests that p53 was activated when melan-

a and HaCaT cells were treated with cerulenin or orlistat.

However, the present data suggest that the FASN inhibitor-

induced apoptosis was independent of the activation of p53 in the

melan-a cells because pre-treatment with pifithrin-alpha (PFT)

[72] did not prevent cell death (Figure S4 B). These data are

supported by other results, indicating that p53 did not participate

in cerulenin-induced cell death in neuroblastoma, melanoma,

colon carcinoma, breast cancer, skin carcinoma and glioma tumor

cells [44,47,57,80]. Accordingly, cerulenin toxicity was higher in

p53 knockout cells than in control RKO colon carcinoma cells

[45].

To further investigate the role of FASN activity in nonmalig-

nant cells, we successfully down-regulated FASN expression in

melan-a cells using siRNA (Figure 7 A) and showed that the

Figure 6. NAC pre-incubation protects melan-a cells from
cerulenin or orlistat-induced apoptosis. Melan-a cells were pre-
incubated with 5 mM NAC for 1 h, followed by treatment with 22 mM
cerulenin for an additional 24 h (A) or 30 mM orlistat for 48 h (B). NAC
was also present during the incubations with cerulenin or orlistat.
Apoptosis was then determined by flow cytometry after Annexin V
staining. The values represent the mean 6 s.e.m of six independent
experiments. *Significantly different from the respective control at p,
0.05. #Significantly different from the respective condition in the
absence of NAC at p,0.05.
doi:10.1371/journal.pone.0101060.g006

Figure 7. FASN silencing does not induce apoptosis in melan-a
cells. Melan-a cells were either transfected with specific siRNAs (siRNA),
treated with the transfection reagent alone (mock) or maintained in
culture with equimolar concentrations of a nonspecific control oligo
(control). Cells were incubated for 48 h. FASN protein content was
determined by Western blot analysis (A), and apoptosis was estimated
by flow cytometry after Annexin V staining (B). The values represent the
mean 6 s.e.m of three independent experiments.
doi:10.1371/journal.pone.0101060.g007
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apoptosis rate remained unchanged (Figure 7 B). Additionally,

using the ESI-MS technique, we also demonstrated that the

mitochondrial FFA content and composition did not change.

Taken together, the siRNA and ESI-MS results suggest that the

FASN inhibitors act on melan-a cell mitochondria independently

of the changes in FASN activity.

To uncover the link between mitochondrial dysfunction and

apoptosis in melan-a cells treated with the FASN inhibitors, we

analyzed the mitochondrial energy-linked functions in these cells.

Both cerulenin and orlistat were able to independently inhibit the

rates of NADH-linked and succinate-supported respiration. This

result was followed by both a decrease in DYm (Figure 4 A and

B) and a significant increase in superoxide production (Figure 4
C). In agreement with these results, it was previously reported that

silencing the ACC-a (acetyl-CoA carboxylase a) and FASN genes

resulted in increased ROS production and mitochondrial

dysfunction [85].

The lack of change in both the rate of respiration supported by

the complex IV substrate TMPD (Figure 5 E) and the activity of

citrate synthase provides evidence that treatment with the FASN

inhibitors did not alter either the number of mitochondria or the

mitochondrial mass (Figure 5 F). Therefore, we hypothesize that

the decreased respiration rates are the consequence of damage to

respiratory complexes I and II. It is well known that the inhibition

of these respiratory complexes by various metabolic inhibitors,

including statins [66,86], is mediated by superoxide anion attack

on the 4Fe-4S clusters [87]. The results indicating that NAC pre-

incubation prior to treatment with FASN inhibitors significantly

protected the melan-a cells from apoptosis (Figure 6 A and B)

support the interpretation that the mitochondrial dysfunction

observed here is the consequence of superoxide attack to

respiratory complexes I and II. Additionally, it has been reported

that cell death via the activation of the intrinsic apoptosis pathway

can further stimulate ROS production and disrupt respiratory

chain complexes I and II through caspase 3, as discussed below.

During apoptosis, the mitochondrial outer membrane becomes

permeable to pro-apoptotic proteins, such as cytochrome c, which

lead to the formation of apoptosome complexes through the

interaction of caspase-9 and APAF-1 [88]. The activation of

downstream caspase-3 results in the cleavage of specific substrates

that induce DNA fragmentation, nuclear condensation, phospha-

tidylserine externalization and membrane blebbing [89–93].

Further, caspase-3 activation inhibits respiration at the levels of

complexes I and II [94]. NADH dehydrogenase Fe-S protein 1

(NDUFS1 or p 75), which is the largest subunit of complex I,

serves as a substrate for the activity of caspase-3 during apoptosis.

Cleavage by p75 directly inhibits the function of complex I,

leading to DYm collapse, ROS generation and mitochondria

damage [95].

In conclusion, the present results indicate that the FASN

inhibitors cerulenin and orlistat induced apoptotic death in the

non-tumorigenic cell line melan-a through a mechanism associ-

ated with the activation of the intrinsic apoptotic pathway,

mitochondrial oxidative stress and respiratory chain impairment,

independent of FASN inhibition.

Supporting Information

Figure S1 Cerulenin and orlistat reduce cell viability
and induce apoptosis in the HaCaT cell line. HaCaT cells

were treated with increasing concentrations of cerulenin or orlistat

for 24 or 48 h, respectively; cell viability was determined using

trypan blue (A and B) or MTT assays (C and D), and apoptosis

was determined by flow cytometry (E and F). The values represent

the mean 6 s.e.m of at least three independent experiments.

*Significantly different from the respective control at p,0.05.

(TIF)

Figure S2 The fraction of FASN protein is higher in
melan-a than HaCaT cells. Equal amounts of total protein

(40 mg) were electrophoretically separated, and the membranes

were incubated with antibodies against FASN or beta-actin.

Western blot analysis showed that the FASN content was 2.3-fold

higher in the melan-a cells than in the HaCaT cells (0.678 versus

0.294 a.u., melan-a versus HaCaT; data normalized using beta-

actin).

(TIF)

Figure S3 FASN inhibitors blocked cell cycle progres-
sion in non-tumorigenic cells. HaCaT cells (A) were treated

with 45 mM cerulenin or 300 mM orlistat for 24 or 48 h,

respectively. Then, the percentage of cells in each phase of the

cell cycle was determined by flow cytometry after PI staining.

Western blot analysis of the protein extracts prepared from

cerulenin- and orlistat-treated HaCaT cells revealed the accumu-

lation of p21WAF1/Cip1 tumor suppressor protein; the data were

normalized using beta-actin as a loading control (B). The values

represent the mean 6 s.e.m of at least five independent

experiments. *Significantly different from the respective control

at p,0.05.

(TIF)

Figure S4 FASN inhibitor-induced apoptosis is indepen-
dent of mitochondrial permeability transition or p53 in
melan-a cells. Melan-a cells were treated with 22 mM cerulenin

or 30 mM orlistat for 24 or 48 h, respectively, in the presence of

cyclosporin A (CsA, 1 mM) (A) or (B) pifithrin-alpha (PFT, 10 mM);

then, apoptosis was determined by flow cytometry after Annexin V

staining. The values represent the mean 6 s.e.m of five

independent experiments. *Significantly different from the respec-

tive control at p,0.05.

(TIF)
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