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Abstract

As a special class of short non-coding RNAs, microRNAs (a.k.a. miRNAs or miRs) have been reported to perform important
roles in various biological processes by regulating respective target genes. However, significant barriers exist during
biologists’ conventional miR knowledge discovery. Emerging semantic technologies, which are based upon domain
ontologies, can render critical assistance to this problem. Our previous research has investigated the construction of a miR
ontology, named Ontology for MIcroRNA Target Prediction (OMIT), the very first of its kind that formally encodes miR
domain knowledge. Although it is unavoidable to have a manual component contributed by domain experts when building
ontologies, many challenges have been identified for a completely manual development process. The most significant issue
is that a manual development process is very labor-intensive and thus extremely expensive. Therefore, we propose in this
paper an innovative ontology development methodology. Our contributions can be summarized as: (i) We have continued
the development and critical improvement of OMIT, solidly based on our previous research outcomes. (ii) We have explored
effective and efficient algorithms with which the ontology development can be seamlessly combined with machine
intelligence and be accomplished in a semi-automated manner, thus significantly reducing large amounts of human efforts.
A set of experiments have been conducted to thoroughly evaluate our proposed methodology.
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Introduction

Prior research, [1] [2] for example, has demonstrated that

microRNAs (a.k.a. miRNAs or miRs), a special class of short non-

coding RNAs, perform important roles in various biological

processes by regulating their respective target genes. To

completely understand and fully delineate miR functions, an

effective bio-curation is indispensable, and the curation in turn

relies on effective knowledge discovery and unification from

various data sources. Conventionally, biologists need to query

PubMed [3] and TarBase [4] for biologically validated miR targets

and various prediction databases/websites (TargetScan [5],

miRDB [6], and miRGator [7] for example) for computationally

putative targets. More often than not, biologists also need to

extract additional information for each and every miR target,

either validated or putative, with regard to its protein functions,

affiliated signaling pathways, and so forth. Therefore, biologists

are required to explore large amounts of data sources and identify

possible links among these data sources.

Significant Barriers in Conventional miR Knowledge
Discovery

The aforementioned data sources were developed by different

research groups around the world. Thus, involved data are

inherently heterogeneous in their semantics (intended meaning). If

there are no common standards to represent disparate sources it

will be extremely challenging to connect heterogeneous data

sources with each other. Unfortunately, naming conventions for

miRs are in their infancy and not uniformly adopted. Therefore,

miR nomenclature has not yet been effectively standardized and

the entity naming remains largely attached to their authors’

favorite choices. The complex terminologies, along with their

heterogeneous semantics, have led to significant barriers during

conventional miR knowledge discovery and unification, which is

time-consuming, labor-intensive, error-prone, and subject to

biologists’ limited prior knowledge.

The Need to Have a miR Domain Ontology
Emerging semantic technologies have been widely applied in

biomedical and biological area. Inspired by previously successful

examples, including Gene Ontology (GO) [8,9], Sequence

Ontology (SO) [10,11], and PRotein Ontology (PRO) [12] among
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others, it is reasonable to assume that semantic technologies can

render critical assistance in miR knowledge discovery as well. Since

semantic technologies are based upon domain ontologies, in our

previous research [13,14] we investigated the construction of a miR

ontology, named Ontology for MIcroRNA Target Prediction

(OMIT), the very first of its kind that formally encodes miR domain

knowledge. OMIT was meant to fill the gap of lacking specific miR

domain ontologies. Consequently, a standardized miR metadata

model and common data elements were provided to enable data

connections among heterogeneous sources, leading to more effective

miR data integration and knowledge discovery [15,16].

The Need to Develop the Ontology in a
(Semi)Automated Manner

Despite the fact that it is essential to have a manual component

contributed by domain experts when building ontologies, prior

research [17–19] has demonstrated that a ‘‘purely’’ manual

ontology development has many drawbacks, including but not

limited to, being significantly labor-intensive and extremely

expensive in all aspects. Therefore, we propose in this paper a

semi-automated methodology to construct domain ontologies. Our

method makes use of machine intelligence, considers miR domain-

dependent and domain-independent properties/relationships, is

scalable, and will significantly reduce human efforts.

The rest of this paper is organized as follows. Section ‘‘Related

Work’’ provides a summarization of state-of-the-art research in

computational identification of miR target genes, biomedical and

biological ontologies, and automated ontology development,

respectively; Section ‘‘Materials and Methods’’ describes in detail

the proposed methodology, including the development of a

backbone ontology, the ontology/schema alignment algorithm,

and the augmentation of the backbone ontology; Section

‘‘Experimental Results and Analysis’’ reports experimental results

along with in-depth discussions; Section ‘‘Materials in Greater

Details’’ contains greater details of related work and our methods

for readers’ reference; and finally, Section ‘‘Conclusions’’

concludes with future research directions.

Related Work

In this section, we briefly discuss the current status of three areas

that are related to this paper: (i) computational identification of

miR target genes, (ii) biomedical and biological ontologies, and (iii)

automated ontology development.

Computational Identification of miR Target Genes
The principal goal of various miR target prediction approaches

[20–33] is to reduce the prohibitively large numbers of predicted

targets. (a) The degree of target site conservation and (b) a target’s

involvement in a pathway where other targets are also predicted

are just two examples of legitimate considerations for refining miR

target predictions. Additionally, binding of miR:mRNA pairs is

affected by spatial and temporal co-expression of the miR:mRNA

pair, as well as the target site availability. The formation of a stable

duplex at the target site also plays a role in target site

determination. As the determination of the co-expression of

miR:mRNA pairs is becoming a reality through next generation

sequencing of mRNA-enriched libraries and small RNA libraries

from the same cells, prediction tools can now be cross-referenced

with expression data. To the best of our knowledge, there are more

than 20 distinct miR target prediction tools. A list of currently

available tools is provided in Table 1, including detailed

information for each tool such as the prediction strategy and

available access method.

Existing Biomedical and Biological Ontologies
Ontologies have been used for a long time to describe entities

for some domain in a formal manner, as well as relationships

among these entities. In general, an ontology consists of a

collection of well-defined concepts (a.k.a. terms or classes),

properties of these concepts, relationships among concepts, and

some constraints on concepts, properties, and relationships. The

ontology structure (a.k.a. schema) usually well reflects a represen-

tation or encoding of intended domain knowledge meant by

respective ontology developers, thus serving as a guide for better

organizing data and turning data into knowledge. Ontologies and

semantic technologies have been widely utilized in biomedical and

biological research. Biomedical and biological ontologies are often

referred to as bio-ontologies, and they have become increasingly

popular nowadays. Existing bio-ontologies [8–12,34–36] not only

have demonstrated the necessity and importance to apply

semantic technologies in biomedical and biological area, but also

have provided us with critical resources during the miR ontology

development (detailed in Section ‘‘Materials and Methods’’).

(Semi)Automated Ontology Development
During the ontology development, on one hand, a manual

component from domain experts is considered unavoidable to

effectively encode precise semantics; on the other hand, many

drawbacks have been identified if we adopt a completely manual

ontology construction process [17,18]. The most significant

challenge is that a manual development process is extremely

labor-intensive and highly expensive, referred to as the knowledge

discovery bottleneck [19]. As a result, (semi)automated ontology

development has attracted a large amount of research. Existing

algorithms can be divided into three categories: translation-based

[37–40], mining-based [41–47], and external knowledge-based

[48–52]. Despite its importance, much more progress is still

needed in (semi)automated ontology development. In particular,

while is_a is the most common and critical ontological relation-

ship, the importance of other relationships, especially those

domain-dependent relationships, has been historically underesti-

mated in many state-of-the-art algorithms. Additionally, existing

algorithms, if based on machine-learning technologies, tend to

focus on ontological instances. Unfortunately, many real-world

ontologies have few or no instances at all. For example, GO, the

most successful bio-ontology, does not have any instances [53].

Materials and Methods

Three-Step Semi-Automated Ontology Development
Process

As demonstrated in Figure 1, the semi-automated ontology

development consists of three steps.

N Step 1. Construct an initial ‘‘backbone’’ miR ontology using a

knowledge-driven approach, which is iterative and combines

both top-down and bottom-up processes. Domain expertise,

popular upper ontologies, existing bio-ontologies, and current

miR target prediction databases will be made use of, and

widely-accepted development principles and procedures will

be adopted.

N Step 2. Design an algorithm to align the backbone ontology

with existing bio-ontologies and numerous miR target

prediction databases. The algorithm is based on artificial

neural networks (ANNs) and agglomerative clustering, and will

learn from the schema level (either ontology structures or

database schemas) instead of from the instance level.

Additionally, many properties and relationships, those miR
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domain-dependent ones in particular, will be taken into

account besides the is_a relationship. The alignment results

are equivalent concept pairs among different ontologies/

schemas.

N Step 3. According to the obtained equivalent concept pairs, it

is straightforward to append additional entities (i.e., concepts

along with their properties, relationships, possible instances,

and direct/indirect descendant concepts) from one ontology/

schema into another one. The initial backbone ontology will

thus be augmented by ontological entities from other

ontologies/schemas.

Backbone Ontology Development
Following the literature in ontology development [54–57], we

have adopted an iterative procedure, combining both top-down

and bottom-up processes, to construct the initial backbone

ontology. The top-down process starts with the definition of most

general concepts followed by specialization of these concepts.

Popular upper ontologies and existing bio-ontologies have been

utilized. The bottom-up process starts with the definition of most

specific concepts followed by grouping of these concepts into more

general concepts. Schemas and instances from current miR target

prediction databases have been consulted. Both top-down and

bottom-up processes have relied on miR domain expertise offered

by two experimental biologists (both are co-authors of this paper).

N Popular upper ontologies. In particular, we have used Basic

Formal Ontology (BFO) [58–60] to describe general concepts

that are the same across all knowledge domains. BFO is the

only upper ontology that is currently adopted in Open

Table 1. A List of Current miR Target Prediction Tools.

Prediction Tool Name Prediction Strategy Access Official Website

deepBase A database for annotating and discovering small and
long ncRNAs (microRNAs, siRNAs, piRNAs…) from
high-throughput deep sequencing data.

Both http://deepbase.sysu.edu.cn/

DIANA-microT-CDS Thermodynamic modeling. Both http://diana.cslab.ece.ntua.gr/

DIANA-mirGen 2.0 A database of microRNA genomic information and
regulation.

Both http://diana.cslab.ece.ntua.gr/mirgen/

GenMiR++ Paired expression profiles of microRNAs and mRNAs;
as well as Baynesian inference.

Both http://www.psi.toronto.edu/genmir

mimiRNA Expression correlation. Both http://mimirna.centenary.org.au

mirBridge Complementary and target site conservation. Download http://mirbridge.org/

miRanda Complementary and target site conservation. Both http://www.microrna.org

miRBase A searchable database of published miRNA sequences
and annotation.

Both http://www.mirbase.org/

miRDB Microarray corrleation training; as well as Support
Vector Machine.

Both http://mirdb.org

miRecords Validated targets and algorithm integration. Both http://mirecords.biolead.org/doc.php

miRGator Expression correlation and algorithm integration. Online Search http://mirgator.kobic.re.kr/

miRGen Positional relationships target prediction integration. Both http://www.diana.pcbi.upenn.edu/miRGen.html

miRNA-Target Gene
Prediction at EMBL

Complementary and target site conservation. Online Search http://www.russell.embl.de/miRNAs

miRNAMap Genomic maps of microRNA genes and their target
genes in mammalian genomes.

Both http://mirnamap.mbc.nctu.edu.tw/

MicroInspector Algorithm integration. Online Search http://bioinfo1.uni-plovdiv.bg/cgi-bin/microinspector/

MiTarget Positional relationships thermodynamic modeling; as
well as Support Vector Machine.

Online Search http://cbit.snu.ac.kr/miTarget

PicTar Target site conservation and thermodynamic modeling. Both http://pictar.mdc-berlin.de/

PITA Incorporating the role of target site accessibility, as
determined by base-pairing interactions within the
mRNA, in microRNA target recognition.

Both http://genie.weizmann.ac.il/

PMRD PMRD: Plant microRNA database. Both http://bioinformatics.cau.edu.cn/PMRD/

RepTar Searching for repeating 39 UTR target sites. both http://reptar.ekmd.huji.ac.il/

RNA22 Identifying patterns in cDNAs and matching to miRs. Online search http://cbcsrv.watson.ibm.com/rna22.html

RNAhybrid Thermodynamics & statistical model. Both http://bibiserv.techfak.uni-bielefeld.de/rnahybrid

starBase Argonaute CLIP-Seq and degradome sequencing data. Both http://starbase.sysu.edu.cn/

TarBase Experimentally validated targets. Both http://diana.cslab.ece.ntua.gr/tarbase/

TargetScan Seed complementary and target site conservation. Both http://www.targetscan.org

ViTa Complementary of host microRNAs to viruses. Both http://vita.mbc.nctu.edu.tw/

doi:10.1371/journal.pone.0100855.t001
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Biomedical Ontologies (OBO) Foundry/Library bio-ontolo-

gies. Adopting BFO concepts will help agree on structures and

relationships that can be reused across multiple ontologies, and

thus avoid the necessity to repeatedly consider general

concepts in ontology construction efforts. Note that there is a

tradeoff in using BFO concepts since BFO is mainly meant for

use by ontology engineers. Fortunately, BFO concepts can be

easily stored into a separate file using OWL’s axiom-level

modularity [61] and thus hidden to non-expert users. Based on

this analysis, we have decided to include the BFO structure in

OMIT.

N Existing bio-ontologies, such as GO, SO, PRO, OBO Relation

Ontology (RO) [36], Foundational Model of Anatomy (FMA)

[62], Human Disease Ontology (HDO) [63], System Biology

Ontology (SBO) [64], and Gene Regulation Ontology (GRO)

[65]. The purpose is not only to reduce possible redundant

efforts in the ontology development, but also to achieve a

better orthogonality with existing bio-ontologies. In particular,

we have placed special emphasis on well-established bio-

ontologies under the OBO Foundry/Library, a resource for

ontologies shared across different biological and biomedical

domains.

N Current miR target prediction databases. Out of more than 20

distinct miR target prediction tools, we have prioritized and

selected six databases, i.e., DIANA-microT [66,67], miRanda

[20–24], miRDB [68,69], miRGen [70], TarBase [4], and

TargetScan [26–28], based on numerous considerations: the

quality of database instances; previous research collaboration;

a convenient, up-to-date data download mechanism; and the

popularity of the database.

researchers. The ontology development procedure consists of three

main steps as follows.

1. Computer scientists (i.e., ontology engineers) work together

with domain experts (i.e., experimental molecular biologists) to

specify the range of concepts to be included in the ontology.

2. Definitions of these identified concepts are formalized using

Description Logic and documented.

3. Concepts along with their properties and relationships are

implemented in computer languages.

A flowchart is exhibited in Figure 2. The development

procedure is in fact an iterative one in that we have solicited

feedback, verification, and evaluation from domain experts and

then incorporated their opinions and suggestions on a regular basis

and in a structured manner.

are different formats and languages for describing

ontologies, all of which are popular and based on different logics:

Web Ontology Language (OWL), OBO, Knowledge Interchange

Format (KIF), and Open Knowledge Base Connectivity (OKBC).

We have chosen both the OWL and OBO formats, and our choice

was based upon the following observations. OWL was recom-

mended by the World Wide Web Consortium (W3C) and was

designed for use by applications that need to process the content of

information instead of just presenting information to humans. As a

result, OWL facilitates greater machine interpretability of Web

contents. OBO is widely used in the bio-ontology community, and

many well-developed bio-ontologies, especially those in OBO

Foundry/Library, have adopted the OBO format. As for the

development tool, we have chosen Protégé [72,73] and OBO-Edit

[74,75] over other available tools such as CmapTools [76] and

OntoEdit [77]. In addition, we have followed a set of well-

established naming conventions for various ontological entities.

Whenever possible, we have supplied human-readable definitions

for concepts, properties, and relationships. These definitions

concisely and clearly state respective semantics. Greater details

Figure 1. Three steps in the proposed semi-automated ontology development: (i) develop a backbone ontology; (ii) align the
backbone ontology with other ontologies/schemas; and (iii) augment the backbone ontology.
doi:10.1371/journal.pone.0100855.g001
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of ontological naming conventions and human-readable defini-

tions can be found in Section ‘‘Materials in Greater Details.’’

Ontology/Schema Alignment Algorithm
The proposed alignment algorithm is based on machine-

learning technologies. We aim to tackle two challenges in state-

of-the-art algorithms: (i) lacking sufficient instance data to learn

from and (ii) underestimated importance of properties and

relationships other than the is_a relationship. Given a pair of

ontologies/schemas, it is reasonable to assume that contributions

from different semantic aspects (i.e., concept names, concept

properties, and various relationships) would hold across and

therefore be independent of specific concepts. In fact, these

contributions are characteristics of specific ontologies/schemas

(viewed as a whole) and thus become the foundation for

corresponding semantic weights. In other words, during the

ontology/schema alignment, semantic weights are determined by

respective ontologies/schemas rather than by individual concepts.

It is thus possible to learn these weights for all concepts by training

examples from a subset of concepts. This assumption will be verified

later in Section ‘‘Experimental Results and Analysis.’’

C1 and C2

been designed.

N s1 represents the similarity on the concept name. First,

hyphens and underscores are removed and nouns are

transformed from their plural forms to single forms. Upon

completion of such pre-processing, if two names have an exact

string matching or are synonyms of each other in WordNet

[78] then s1 has a value of 1. Otherwise, s1 is calculated as

1{
d

l
, where d stands for the edit distance between two strings,

and l stands for the length of the longer string.

N s2 represents the similarity on the concept property list,

calculated by the percentage of matched properties between

C1 and C2. The principle of ‘‘stable marriage’’ is adopted

Figure 2. The development of a backbone ontology.
doi:10.1371/journal.pone.0100855.g002
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during the calculation: once a property from the first concept is

matched with another property from the second concept,

neither property will be considered anymore. Additionally,

many domain-dependent properties specifically designed for

the miR field are considered, such as cellLines, chromosome-
Location, miRNATargetSequence, miRNATargetGeneSymbol,
and miRNATargetCompleteName.

N s3 represents the similarity on the is_a relationship. First, two

ancestor lists, ancestor concepts of C1 and ancestor concepts of

C2, are calculated. Pairwise matching will then be performed

among concepts from these two lists, and likewise, using the

principle of stable marriage (once a concept from the first list is

matched with another concept from the second list, neither

concept will be considered anymore). After pairwise similarities

between two ancestor lists are obtained, the average value of

these similarities is calculated as s3 between C1 and C2.

N s4 represents the similarity on hasBinding, a domain-

dependent relationship specifically designed for the miR field,

calculated by the percentage of matched concepts between

hasBinding concepts of C1 and hasBinding concepts of C2.

Similarly, the principle of stable marriage is adopted.

similarity values are obtained, an overall similarity,

soverall , between two concepts is calculated as the weighted sum of

si
0s, i.e., soverall~w!: s!~

P4
i~1 (wi

:si). Next, a matrix of the

overall similarity (short for ‘‘similarity matrix’’ in the rest of this

paper) between pairwise concepts is created. Initially, w1 through

w4 are randomly set to some values. We then utilize an ANN to

learn optimal weights, that is, to find the weight vector ( w!) that

best fits training examples. A formal defintion of the learning

problem, the search strategy within the hypothesis space, and the

pseudocode for the weight-learning algorithm are provided in

Section ‘‘Materials in Greater Details.’’

Once the optimal w! is obtained from the ANN learning, the

similarity matrix is recalculated with updated weights. An

agglomerative clustering algorithm is then utilized to generate

equivalent concept pairs. Initially, each concept is regarded as a

singleton cluster, and clusters of two equivalent concepts can be

merged with each other and form a new cluster. New clusters

continue to be generated until the maximum similarity between

any two clusters is below a predefined threshold. Finally, newly

generated clusters are output as the set of equivalent concept pairs.

The pseudocode is provided in Section ‘‘Materials in Greater

Details.’’

Due to the low time complexity of both weight-learning and

clustering algorithms (detailed analysis can be found in Section

‘‘Materials in Greater Details’’), the proposed semi-automated

ontology development has better efficiency and scalability than a

completely manual development. Additionally, this conclusion will

be further verified by our experimental results in Section

‘‘Experimental Results and Analysis.’’

A Cycle of Iterative, Dynamic Improvement of OMIT
The proposed semi-automated ontology development is essen-

tially an iterative and dynamically improved process. After the

backbone ontology was constructed and aligned with other

ontologies/schemas, the first version of OMIT was generated by

augmenting ontological information from other data sources. We

then solicited verification and evaluation from domain experts;

their opinions and suggestions were in turn incorporated into the

next version of OMIT. Such a feedback and enhancement
mechanism has been performed on a regular basis and in a

structured manner. Consequently, the ontology has been itera-

tively and dynamically improved over time. We have adopted

revision-control procedures to document the process for future

reference. Microsoft Visual SourceSafe (MVSS) [79] has been

selected over other available tools such as Concurrent Versions

System (CVS) [80] and Revision Control System (RCS) [81].

Experimental Results and Analysis

Experimental Environment
All experiments were conducted on personal computers with the

following configuration: Intel(R) Core(TM) i7-3632 QM CPU @

2.20 GHz 2.20 GHz; 8.00 GB memory; and Windows 7 64-bit

Operating System.

Backbone Ontology
The backbone ontology contains a total of 53 concepts, 12

properties, and 17 relationships (besides is_a).

N Example concepts include miRNA, gene_expression, Tumor,

Organ, object, material_entity, independent_continuant, con-
tinuant, and entity. Greater details of these concepts are

exhibited in Table 2.

N Example properties include cellLines, chromosomeLocation,

directSupport, experimentSummary, miRNACompleteName,

miRNASequenceLocation, targetGeneSymbol, targetPrimary-
PeptideSequence, and targetTermAssociations. These proper-

ties were all specifically designed for the miR field.

N Example relationships include is_a, has_part, part_of, affect-
sTumor, hasBinding, hasPrediction, hasTarget, hasValidation,

involvedInEvent, and regulateEvent. Greater details are

exhibited in Table 3. Most relationships listed here, except

for the first three, were specifically designed for the miR field.

Ontology/Schema Alignment Results
We chose three ontologies/schemas to thoroughly evaluate the

alignment algorithm: System Biology Ontology (SBO) [64], Gene

Regulation Ontology (GRO) [65], and TarBase [4], all of which

are either real-world bio-ontologies or frequently utilized biomed-

ical/biological databases that contain miR data. The character-

istics of these test ontologies/schemas are summarized in Table 4.

The alignment algorithm was performed between pairwise

ontologies/schemas among SBO, GRO, TarBase, and the

backbone ontology, resulting in a total of six sets of experiments.

Experimental results are reported in Figure 3 and Table 5.

N Each of the four semantic weights, w1, w2, w3, and w4, was

initialized to 0.25 in all six sets.

N All weights converged to certain values in each set. This

verified our hypothesis discussed earlier: different semantic

weights are characteristics of specific ontologies/schemas

viewed as a whole and can be learned from a subset of

concepts.

N Different pairs of ontologies/schemas had different learned

weights because weights reflected intended meanings encoded

by original ontology/schema developers. For example, the

learned w2 (the semantic weight of concept property similarity)

for any ontology pairs involving either SBO or GRO or both

was much smaller than that of other pairs; in particular, w2

was learned as 0.00 when aligning SBO with any other

ontologies/schemas. The reason is that, SBO has not defined

any properties at all, and GRO has only defined nine

OMIT: A Dynamic microRNA Domain Ontology
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properties (while it contains a total of 507 concepts). Another

example is that, w4 is the semantic weight of similarity on

hasBinding; since neither SBO nor GRO defines this miR

domain-dependent relationship, their corresponding w4 was

learned as 0.00. These observations further reinforced our

claim that different ontologies/schemas have different seman-

tic weights.

N The speed of weight convergence was proportional to the

learning rate g, which is described in Section ‘‘Materials in

Greater Details.’’ Figure 3 plots the weight-learning process

along with the change of training error when aligning TarBase

with the backbone ontology. When g was set to 0.1

(Figure 3(a)), it took around 600 iterations during Gradient

descent (the for loop in Line 2 in Pseudocode 1 — ANN

Weight Learning) before all weights converged. As a

comparison, when g was increased to 0.3 (Figure 3(b)), the

number of necessary iterations decreased to around 300.

N Four commonly adopted measures were utilized to evaluate

the quality of equivalent concept pairs output from the

proposed alignment algorithm:

1. Precision (p): the percentage of correct output equivalent

concept pairs (those agreed by domain experts) over all

output pairs, representing the correctness aspect of the

alignment algorithm, calculated as p~
n2

n1
(ni
0s are defined

in Table 5).

Table 2. Sample Concepts in the Backbone Ontology.

Concept Name Created by ourselves? Imported from Properties Extended? Relationships Extended?

miRNA No SO Yes Yes

chromoplast_gene No SO No No

gene_expression No GO No Yes

biological_process No GO No Yes

protein No PRO Yes Yes

amino_acid_chain No PRO No Yes

Tumor No HDO Yes Yes

Organ No FMA Yes Yes

object No BFO No Yes

material_entity No BFO No Yes

independent_continuant No BFO No Yes

continuant No BFO No Yes

entity No BFO No Yes

MiRNABinding Yes N/A N/A N/A

ExperimentalValidation Yes N/A N/A N/A

PharmaceuticalTreatment Yes N/A N/A N/A

AdvantageousRegulation Yes N/A N/A N/A

OncoGeneratingMiRNA Yes N/A N/A N/A

TumorSuppressingMiRNA Yes N/A N/A N/A

OtherMiRNA Yes N/A N/A N/A

doi:10.1371/journal.pone.0100855.t002

Table 3. Sample Relationships in the Backbone Ontology.

Relationship Name Simple Definition or Usage miR Specific?

is_a imported from OBO Relation Ontology (RO) No

has_part imported from OBO Relation Ontology (RO) No

part_of imported from OBO Relation Ontology (RO) No

affectsTumor miRs affect numerous tumors, including cancers Yes

hasBinding each miR has some mRNA binding sites Yes

hasPrediction each miR has one or more computationally predicted target genes Yes

hasTarget each miR has one or more target genes Yes

hasValidation each miR has one or more biological validations for each of its target genes Yes

involvedInEvent miRs are involved in some pathological events Yes

regulateEvent miRs can down-regulate or up-regulate some pathological events Yes

doi:10.1371/journal.pone.0100855.t003
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2. Recall (r): the percentage of correct output equivalent

concept pairs over actually equivalent pairs, estimating the

completeness aspect of the alignment algorithm, calculat-

ed as r~
n2

n2zn3
(ni
0s are defined in Table 5).

3. F-Measure (f): also referred to as Harmonic Mean and

calculated as f ~
2rp

rzp
, aiming to consider both Precision

and Recall measures. It avoids the bias from adopting

either Precision or Recall measure alone.

4. Overall (o): a measure calculated as o~r(2{
1

p
), focusing

on the post-alignment effort, i.e., how much human effort

is needed to remove falsely aligned pairs and to add

missed ones.

N Human efforts have been significantly reduced.

1. As shown in Table 5, we obtained satisfactory values in the

Overall measure. Note that our goal was to augment the

backbone ontology; therefore, the values on the last three

columns should be paid closer attention to (ranging from

57.69% to 72.41%).

2. The percentage of training examples provided by domain

experts over actually equivalent concept pairs (i.e.,

number of training examples

n2zn3

, where ni
0s are defined in

Table 5) was 9%, 28%, 25%, 12%, 15%, and 5% in each

of six sets, respectively. In other words, human labor only

played a small portion during the semi-automated ontology

development. Likewise, the last three percentages should be

paid closer attention to.

3. The number of newly added concepts was much larger

than that of equivalent concept pairs (greater details are

contained in the next subsection).

Resultant OMIT Ontology
The resultant OMIT contains a total of 2,338 concepts, 39

properties, and 87 relationships (besides is_a). All concepts are

connected into each other and form what is computationally

described as a directed acyclic graph (DAG). Most concepts

(around 95%) have been supplied with detailed, formal definitions

and supporting documentation that can be well understood and

used by non-expert users (i.e., experimental molecular biologists).

Cross-referencing to related ontologies, databases, and knowledge

bases is also included in OMIT, when appropriate. Compared

with the backbone ontology, 2,285 concepts, 27 properties, and 70

relationships were added, all of which were augmented from real-

world bio-ontologies, frequently utilized biomedical/biological

databases, and miR data discussed earlier in this paper: GO,

SO, PRO, OBO RO, FMA, HDO, SBO, GRO, DIANA-microT,

miRanda, miRDB, miRGen, TarBase, and TargetScan. The

augmentation was through the proposed methodology and verified

by domain experts. Note that the number of newly added concepts

was much larger than that of equivalent concept pairs output from

the alignment algorithm. As discussed in Subsection ‘‘Ontology/

Schema Alignment Algorithm,’’ direct and indirect descendant

concepts were added along with identified equivalent concepts.

Table 4. Characteristics of Test Ontologies/Schemas.

Features SBO GRO TarBase

Number of Instances 0 4 0

Number of Concepts 604 507 76

Number of Properties 0 9 19

Number of Relationships 1 24 23

(excluding is_a)

doi:10.1371/journal.pone.0100855.t004

Figure 3. Weight convergence experimental results when aligning TarBase with the backbone ontology, where g was set to 0.1 in
(a) and 0.3 in (b), respectively.
doi:10.1371/journal.pone.0100855.g003
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This way, human efforts in developing domain ontologies have

been significantly reduced.

Figure 4 exhibits a screenshot from Protégé, demonstrating the

concept miRNA along with its parents, ancestors, descendants,

and siblings in is_a hierarchy. Figure 5 exhibits a screenshot from

OBO-Edit, demonstrating more details of parents, ancestors, and

direct descendants of the concept miRNA. Figure 6 exhibits

another OBO-Edit screenshot, demonstrating a subset of relation-

ships designed for the concept miRNA, and many of these

relationships are miR domain-dependent ones, for example:

N affectsTumor: each miR affects numerous tumors, including

cancers

N hasBinding: each miR has some mRNA binding sites

N hasPrediction: each miR has one or more computationally

predicted target genes

N hasValidation: each miR has various biological validations for

each of its target genes

OMIT is currently included in OBO Library (http://www.

obofoundry.org/cgi-bin/detail.cgi?id = omit) and NCBO BioPor-

tal (http://bioportal.bioontology.org/ontologies/OMIT), ren-

dered in both OWL and OBO formats. Additionally, greater

technical details on our ongoing efforts, including but not limited

to database files, can be found in the project website (http://omit.

cis.usouthal.edu/). OMIT can be consulted any time on the Web

using the aforementioned URLs. In fact, the availability of OMIT

to humans and machine alike is essential in maintaining the

ontology’s flexibility and allowing future ontology evolution along

with the increased understanding of the underlying biology.

Materials in Greater Details

Related Work in Computational Identification of miR
Target Genes

While numerous miR target prediction algorithms have now

been developed, most of these algorithms initially utilized similar

sequence-based approaches to identify short complementarities

between a miR and mRNA 39 untranslated region (39 UTR). As

these complementarities are characteristically imperfect and

contain mismatches, gaps, and G:U pairs, thousands of mRNAs

bare alignments to any given miR identified by sequence-based

approaches alone; moreover, additional steps are necessary to

refine target predictions. MiRanda [20–24], the first publicly

available miR target prediction program, refined putative target

lists through calculating the thermodynamic stabilities of putative

miR:target interactions by weighting C:G, A:U, and G:U pairs

differently and specifically rewarding complementarities involving

miR 59 ends. Additional target predict algorithms that incorporate

thermodynamic stability have now also been developed. For

example, the PITA algorithm [25] similarly calculated the

thermodynamic stability of miR:mRNA interactions but addition-

ally incorporated target site accessibility within mRNA 39 UTRs

(e.g., putative targets are severely penalized if a target site occurs

within a portion of a mRNA predicted to be involved in a stable

secondary structure). The next principle means of target prediction

refinement was through requiring target site conservation between

multiple species. To achieve this, most algorithms required that

predicted target sites are located in homologous 39 UTR regions.

As an example, TargetScan [26–28] searched for conserved target

sites in the alignments 28 vertebrate species 39 UTRs. Next, due to

several analyses suggesting that mRNAs are frequently targeted by

individual miRs at multiple 39 UTR positions, the PicTar

algorithm [29–31] was designed to highly reward multiple binding

sites within a 39 UTR. In light of the vastly different strategies

employed by these algorithms it is understandable why no

individual method of target prediction has been widely accepted

to date. Apparently each method carries both distinct advantages

and limitations. For example, thermodynamic stability algorithms

clearly rely on the accuracy of RNA structural modeling; as a

result, conservation of target sites cannot identify species-specific

target sites or binding sites for species-specific miRs. In addition,

requiring multiple binding sites within individual 39 UTRs

discards a considerable number of false negatives.

Recently, strategies incorporating information beyond specific

miR:target site interactions have begun to emerge. Because miRs

likely regulate genes contributing to common biochemical

pathways or biological processes, requiring functional relationships

between putative targets has also been suggested as a means of

target refinement. MirBridge [32] utilized this strategy by

Table 5. Pairwise Alignment Results among Four Ontologies/Schemas.

GRO + SBO GRO + TarBase SBO + TarBase GRO + Backbone SBO + Backbone TarBase + Backbone

Initial weights 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25

Training examples 5 2 2 5 4 3

Learned weights 0.65 0.00 0.35 0.00 0.67 0.05 0.28 0.00 0.58 0.00 0.42 0.00 0.51 0.03 0.46 0.00 0.61 0.00 0.39 0.00 0.38 0.15 0.13 0.34

Output equivalent 51 6 7 39 27 56

concept pairs (n1)

Correct equivalent 41 5 5 33 21 49

concept pairs (n2)

Missed equivalent 11 2 3 8 5 9

concept pairs (n3)

Precision (p) 80.39% 83.33% 71.43% 84.62% 77.78% 87.50%

Recall (r) 78.85% 71.43% 62.50% 80.49% 80.77% 84.48%

F-Measure (f) 79.61% 76.92% 66.67% 82.50% 79.25% 85.96%

Overall (o) 59.62% 57.14% 37.50% 65.85% 57.69% 72.41%

Note that all concept pairs, except for those in Row 3 (‘‘Training examples’’) in the above table, have been used as actual test data.
doi:10.1371/journal.pone.0100855.t005
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searching for disproportionately represented miR complementar-

ities in functionally related genes and was primarily useful for

identifying miRs regulating specific biological functions or

pathways. Additionally, correlating miR and mRNA expression

data makes a logical addition to target refinement as a pair of miR

and mRNA have to be expressed in the same tissue in order to

interact with each other. To achieve this, mimiRNA [33]

correlated predicted human targets from TargetScan, miRanda,

and PicTar with miR expression data.

Related Work in Existing Bio-Ontologies
Bio-ontologies in Open Biomedical Ontologies (OBO) Found-

ry/Library: OBO Foundry/Library [34] encompasses numerous

ontologies shared across various biological and biomedical

domains. As of December 2013, there are ten formal bio-

ontologies in the OBO Foundry and over 100 candidate bio-

ontologies in the OBO Library, spanning topics from anatomy to

ethology, and information about genes, their products and their

corresponding phenotypes.

Bio-ontologies in National Center for Biomedical Ontology

(NCBO) BioPortal: The goal of the NCBO is to support

biomedical researchers through providing online tools and a

Web portal (NCBO BioPortal [35]) to allow them to access,

evaluate, and integrate distinct ontological resources across all

areas of biomedical research and clinical practice. A major focus of

the NCBO is to incorporate the use of bio-ontologies to facilitate

the analysis of data generated from complex experiments.

Gene Ontology (GO): One of the most successful examples of

applying ontological and semantic technologies into biomedical

and biological research is GO Consortium [8,9]. GO provides

defined vocabularies for annotating the biological function,

cellular role, and location of gene expression products in a highly

structured way and in order to unify gene function nomenclature

across species. Contributing members of GO Consortium each

independently associate GO terms with biological molecules in the

organism(s) they annotate. GO consists of three sub-ontologies

(biological process, cellular component, and molecular function),

and has significantly facilitated knowledge acquisition in protein

structure and function studies.

Sequence Ontology (SO): SO [10,11] is a defined vocabulary

for the parts of a genomic annotation. SO provides a uniform,

common set of terms and definitions for the parts of genome, as

well as relationships obtained between those parts. This facilitates

the exchange, analysis, and management of genomic data. Since

SO strictly defines part-whole relationships, data interpreted by

SO has become a standard substrate for automated reasoning, and

SO sequence feature descriptions are compatible with extensional

mereology operators.

PRotein Ontology (PRO): PRO [12] facilitates protein anno-

tation helping guide new experiments. PRO components have

been defined from evolutionary relationship-based protein classi-

fications and deal with multiple proteins arising from a common

gene (e.g., alternative splicing variants, proteins undergoing

alternative from of cleavage, as well as other posttranslational

modifications). PRO is a standard protein OBO Foundry

ontology, with a core set of well-defined relationships facilitating

semantic integration and machine reasoning compatibility.

OBO Relation Ontology (RO): OBO RO [36] is a set of

relationships for standardization across multiple OBO Foundry

ontologies and wider OBO Library ontologies. OBO RO

incorporates central, upper-level, and domain-independent rela-

tionships such as part_of as well as relationships specific to

biological systems such as develops_from.

Note that there is an ontology named ‘‘miRNAO’’ in NCBO

BioPortal and OBO Library. Unfortunately, we have not found

formal publications produced by the miRNAO group, and there

Figure 4. A screenshot from Protégé, demonstrating the concept miRNA and its parents, ancestors, descendants, and siblings in is_a
hierarchy.
doi:10.1371/journal.pone.0100855.g004
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are no documentations provided in the project website (https://

code.google.com/p/mirna-ontology/). Therefore, we do not

include a discussion of miRNAO in this paper.

Related Work in (Semi)Automated Ontology
Development

Translation-based algorithms translate or convert knowledge in

certain formats, extensible markup language (XML) or unified

modeling language (UML) for example, into ontologies. Gasevic et

al. [37] introduced an approach based on extensible stylesheet

language transformation (XSLT) to automatically generate an

OWL model from an UML model. The architecture consisted of

an ontology definition metamodel defined using meta object

facility and the related ontology UML profile. An ontology can

then be transformed from its XML metadata interchange format

into an OWL description. The authors in [38] presented a

methodology for generating ontologies out of existing XML data

with relational origins. This methodology was implemented within

an extensible XSLT framework, which can be used with arbitrary

XSLT processors. OntoWiki [39] was designed as a tool providing

support for agile, distributed knowledge engineering scenarios, an

alternative user interface for the schema editor integrated in Powl.

OntoWiki was implemented in the scripting language PHP,

allowing to be easily deployed on most Web hosting environments.

The ultimate goal of OntoWiki was to decrease the entrance

barrier for projects and domain experts during their collaboration

using semantic technologies. Pivk [40] proposed a framework,

based on Hurst’s table model, for automatic transformation of

arbitrary table-like structures into ontological models.

Figure 5. A screenshot from OBO-Edit, demonstrating more details of parents, ancestors, and direct descendants of the concept
miRNA. All relationships exhibited in this figure are is_a relationships.
doi:10.1371/journal.pone.0100855.g005
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Mining-based algorithms use natural language processing to

mine text to obtain ontological entities and relationships.

TERMINAE [41] aimed to assist in building an ontology, both

from scratch and from text, without control by specific tasks. It

integrated a terminological approach and an ontology manage-

ment, defined concept types that reflected modeling choices, and

contained traceability facilities. Nobécourt presented in [42] a

method for acquiring knowledge from text. By using the Mdws

modeling language, links between words and conceptual primitives

in the knowledge model can be kept, thus making it easier to

maintain the knowledge model and its formalization Khan et al.

[43] introduced an index structure to handle the challenge in

keyword-based search (many documents convey desired semantic

information without containing related keywords). Their method-

ology was based on the existing self-organizing tree algorithm

(SOTA) that constructed a hierarchy from top to bottom. An

ontology-learning approach was presented in [44], where

WordNet lexicon resources were used to build standard OWL

ontology models. The work by Lonsdale et al. [45] explored the

common ground between the standardization of lexical/termino-

logical resources and the use of conceptual ontologies for

information extraction and data integration. Specifically, it aimed

to improve the generation of extraction ontologies through the use

of a comprehensive terminology database that has been repre-

sented in a standardized format. Balakrishna et al. presented a

generalized procedure [46] to automatically extract semantic

information from text resources. Semantically-rich domain ontol-

ogies can be created while keeping the manual intervention to a

minimum. The Dresden Ontology Generator for Directed Acyclic

Graphs (DOG4DAG) was introduced in [47], a system that

supported the creation and extension of OBO ontologies by semi-

automatically generating terms, definitions, and parent-child

relations from text in PubMed, the Web, and PDF repositories.

DOG4DAG was later integrated into OBO-Edit.

External knowledge-based algorithms build or enrich ontologies

by using external resources (WordNet [78] for example). In the

work by Moldovan et al. [48], different seed concepts selected

from the financial domain were chosen, the relationship between

concepts was then found using WordNet. Additionally, new

concepts were integrated with an existing ontology. Finally the

user can accept or decline concepts, patterns, and relationships.

Agirre et al. [49] explored the possibility to exploit text on the Web

to enrich concepts from existing ontologies. Documents related to

certain concepts were retrieved from the Web, topic signatures for

each concept in WordNet were then constructed, followed by

building hierarchical clusters of these concepts. A generic method

was presented in [50] for discovering a domain-tailored ontology

from given intranet resources. The method was based on a given

core ontology that was later extended with domain-specific

concepts. The resultant ontology was pruned and restricted to

certain applications using a corpus-based mechanism. Kong et al.

[51] designed an automatic ontology-building system based on

WordNet. The authors aimed to facilitate the ontology construc-

tion in a more consistent and easier manner. A method was

introduced in [52] for ontology merging using WordNet. Two

different approaches were presented. The horizontal approach

was to analyze ontology mappings through similar concepts at the

same level, and the vertical approach created rules from similar

concepts at different levels.

OMIT Naming Conventions
First, for imported concepts, properties, and relationships, we

have kept their IDs (together with namespace prefixes, if any) and

names unchanged even if we extended or customized them later

on. For example, ‘‘bfo:Entity (entity),’’ ‘‘GO:0008150 (biological_-
process),’’ ‘‘SO:00000001 (region),’’ ‘‘PR:000000001 (protein),’’

‘‘OBO_REL:part_of (part_of),’’ and so forth. The purpose was to

further increase the interoperability across different ontologies,

especially when it is necessary to cross-reference original sources.

To handle the situation where original entities get updated in their

home ontologies, we have followed the ‘‘minimum information to

reference an external ontology term’’ (MIREOT) principle [82,83]

and utilized OntoFox [84,85], a Web-based tool that fetches

ontology terms and axioms, to facilite the ontology reuse.

For those concepts, properties, and relationships created by

ourselves, the following naming conventions have been adopted.

N The prefix ‘‘OMIT:’’ was used for all concepts, properties, and

relationships.

N Whenever possible, terms commonly adopted in cell biology

(miR in particular) community were used for constructing

meaningful names.

N For the purpose of being more computer-friendly, no spaces,

points, periods, slashes, and brackets were allowed in names.

N Synonyms were utilized to keep track of variant biological

terms that have the same semantics (intended biological

meanings). There was no limit regarding how many synonyms

one term can have, and synonyms did not have to follow the

Figure 6. Another OBO-Edit screenshot, demonstrating a subset of relationships designed for the concept miRNA. Many of these
relationships are miR domain-dependent ones.
doi:10.1371/journal.pone.0100855.g006
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abovementioned naming conventions. Incorporating syno-

nyms will facilitate the term search in the ontology.

Human-Readable Definitions in OMIT
We have supplied human-readable definitions in OMIT for

concepts, properties, and relationships. These definitions concisely

and clearly state respective semantics. For example:

N The concept ‘‘OMIT:0000121 (TumorMetastasis)’’ — ‘‘Met-

astatic disease, which is the spread of a cancer from one organ

or part to another non-adjacent organ or part.’’

N The concept ‘‘OMIT:0000126 (GeneticDisease)’’ — ‘‘A

general term for any disorder caused by a genetic mechanism,

comprising chromosome aberrations (or anomalies), mende-

lian (or monogenic or single-gene) disorders, and multifactorial

disorders.’’

N The relationship ‘‘OMIT:hasValidation (hasValidation)’’ —

‘‘A target gene (either computationally predicted or biologi-

cally validated) may have one or more wet-lab experimental

validations.’’

Definitions were drawn from standard authoritative sources like

Lewin’s Genes XI [86] and The Molecular Biology of the Cell

[87]. Human-readable definitions will further assist future

communication across different research groups and therefore

minimize potential confusion and disagreements regarding what a

term is actually describing.

Learning Problem and Weight-Learning Algorithm
Formal description of the learning problem. The learn-

ing problem described in Subsection ‘‘Ontology/Schema Align-

ment Algorithm’’ is formally defined as follows.

N Task T: Discover equivalent concept pairs between two

ontologies/schemas.

N Performance measure P: Precision, Recall, F-Measure, and

Overall measures regarding a manual alignment.

N Training experience E: A set of equivalent concept pairs

provided by biologists.

N Target function V: A pair of concepts ?<.

N Target function representation: V̂V (b)~
P4

i~1 (wi
:si).

ANN design and weight-learning algorithm. A two-layer,

4|1 ANN (Figure 7) is designed for this learning problem. The

hypothesis space is a four-dimensional space consisting of various

weights (i.e., a collection of weight vectors). Gradient descent (delta

rule) [88] is adopted as the training rule to find the weight vector

( w!) that best fits training examples, and the search strategy within

the hypothesis space is to find w! that is able to minimize the

training error, E, regarding all training examples. According to

current literature ([88] for example), a standard definition of E in a

hypothesis is calculated as E( w!)~
1

2

X
d[D

(td{od )2, where D is

the set of training examples, td is the target output for a specific

training example, d , and od is the network output for this training

example. A standard definition of the weight update rule is

Dwi~g
P

d[D½(td{od )sid �, where g is the learning rate and sid is

the si value for d. In this paper, the standard definition of E

is customized as E( w!)~
1

2

X
d[D
½(tr{od )z(tc{od )�2, with tr

and tc being maximum values for row i and column j for a given

cell ½i,j� in the similarity matrix, respectively. The intuition here is

that, a given pair of manually aligned concepts corresponds to a

cell ½i,j� in the matrix; therefore, the value of cell ½i,j� should be the

maximum one in both row i and column j. Accordingly, the

weight update rule is re-designed as Dwi~g
P

d[D½(tr{od )z

(tc{od )�sid . The pseudocode for the proposed ANN learning is

shown in Figure 8.

Complexity analysis. The time complexity of the ANN

weight learning algorithm is analyzed as follows.

N First, the number of total iterations for both outer and inner

loops is the multiplication of the iteration number (Line 2 in

Figure 8) and the number of training examples (Line 5 in

Figure 8), both of which are independent of the ontology/

schema size.

N Second, the most time-consuming operations are Lines 10 and

11 in Figure 8, and both of which have a complexity of O(n),
where n is the total number of concepts in the ontologies/

schemas to be aligned. The time complexity of all other lines is

O(1). Therefore, the weight learning is scalable.

Agglomerative Clustering Algorithm
The clustering algorithm. Once the updated w! is obtained

from the ANN, the similarity matrix is recalculated with learned,

optimal weights. An agglomerative clustering algorithm is utilized

to generate equivalent concept pairs. Initially, each concept is

regarded as a singleton cluster, and clusters of two equivalent

concepts can be merged with each other and form a new cluster.

New clusters continue to be generated until the maximum

similarity between any two clusters is below a predefined

threshold. Finally, newly generated clusters are output as the set

of equivalent concept pairs. The corresponding pseudocode is

shown in Figure 9.

Complexity analysis. The time complexity of the agglom-

erative clustering algorithm is analyzed as follows.

N First, the most time-consuming operation is Line 3 in Figure 9,

which has a complexity of O(n2), where n is the total number

of concepts in the ontologies/schemas to be aligned. The

complexity of all other operations is O(1).

Figure 7. A two-layer, 4|1 ANN designed for the learning
problem.
doi:10.1371/journal.pone.0100855.g007
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N Second, the number of total iterations for the while loop (Line

1 in Figure 9) is determined by the number of equivalent

concept pairs between two input ontologies/schemas. Even if

two ontologies/schemas have a very large fraction of

overlapping concepts, the worst-case scenario is that, the

number of total iterations will be O(n), so the total time

complexity is still a polynomial of the total number of concepts.

Conclusions

Significant barriers exist during biologists’ conventional miR

knowledge discovery because large amounts of data sources need

to be explored and these data sources are semantically heteroge-

neous among each other. The situation has been further worsened

by the fact that naming conventions for miR data are still in their

infancy and not yet uniformly adopted. Emerging semantic

technologies, which are based upon domain ontologies, are proved

to be able to render critical assistance to this problem. Our

previous research has investigated the construction of OMIT, the

very first of its kind that formally encodes miR domain knowledge.

Although it is essential to have a manual component contributed

by domain experts when building ontologies, relying on a purely

manual development has many challenges. According to these

insights, we proposed in this paper a semi-automated ontology

development methodology, which makes use of machine intelli-

gence, considers miR domain-dependent and domain-indepen-

dent properties/relationships, is scalable, and has significantly

reduced human efforts. Experiments have been conducted to

thoroughly evaluate our methodology. Our contributions can be

summarized as: (i) We have continued the development and

critical improvement of OMIT, solidly based on our previous

research outcomes. (ii) We have explored effective and efficient

algorithms with which the ontology development can be seam-

lessly combined with machine intelligence and be accomplished in

a semi-automated manner, thus significantly reducing large

amounts of human efforts. Note that to semantically annotate

miR-related data is by itself an important research issue but is

beyond the scope of this paper.

We plan to continue the development and refinement of OMIT.

An example future work is to consider more miR domain-

dependent relationships to further improve the effectiveness of the

alignment algorithm. Another example is to include other related

bio-ontologies during the alignment process to further enrich the

resultant ontology. Currently, GO, SO, and PRO teams are

collaborating on the OMIT project. We will involve an even wider

range of experimental biologists and bioinformaticians in the

Figure 8. Pseudocode 1 — ANN Weight Learning.
doi:10.1371/journal.pone.0100855.g008
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future. As a result, relevant research communities can make

respective, collaborative contributions to OMIT.
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