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Abstract

The physical climate defines a significant portion of the habitats in which biological communities and species reside. It is
important to quantify these environmental conditions, and how they have changed, as this will inform future efforts to
study many natural systems. In this article, we present the results of a statistical summary of the variability in sea surface
temperature (SST) time-series data for the waters surrounding Australia, from 1993 to 2013. We partition variation in the SST
series into annual trends, inter-annual trends, and a number of components of random variation. We utilise satellite data
and validate the statistical summary from these data to summaries of data from long-term monitoring stations and from the
global drifter program. The spatially dense results, available as maps from the Australian Oceanographic Data Network’s
data portal (http://www.cmar.csiro.au/geonetwork/srv/en/metadata.show?id = 51805), show clear trends that associate with
oceanographic features. Noteworthy oceanographic features include: average warming was greatest off southern West
Australia and off eastern Tasmania, where the warming was around 0.60C per decade for a twenty year study period, and
insubstantial warming in areas dominated by the East Australian Current, but this area did exhibit high levels of inter-annual
variability (long-term trend increases and decreases but does not increase on average). The results of the analyses can be
directly incorporated into (biogeographic) models that explain variation in biological data where both biological and
environmental data are on a fine scale.
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Introduction

A ubiquitous driver of ecosystem function is temperature. The

way temperature varies through days, seasons and longer time

scales is often a delineating feature of ecological habitats. There

has been much recent research in the past two or three decades

focussing on just one aspect of temperature, namely long-term

temperature rise through long-term climate change [1–4]. While

long-term climate change is undoubtedly important, it is not the

only temperature-related ecosystem driver. Other sources of

temperature variability are likely to affect communities and

species (e.g. the size of annual temperature cycle).

Variation in temperature is likely to cause wide-spread

perturbations to all levels of ecosystems [2,4]. In the marine

realm, a warmer climate will affect the ecosystem by increased

water temperatures, changed circulation patterns, a changed

oxygen content and acidification [3,4]. The water’s temperature is

largely controlled by the boundary between the oceans and the

atmosphere (the sea surface) as this is where the radiation balance

is controlled. There are, of course, other drivers like advection,

river run-off and ice melt but these are of secondary importance

and will be local pressures. This argument implies that the sea

surface is an obvious quantity to investigate for variation in

temperature, including long-term climate change induced re-

sponses.

The magnitude of variation in temperature will not be uniform

throughout the ocean, including long-term climate change [3,5].

An understanding of the patterns of temperature variation will aid

identification of areas that experience unique environmental

conditions. It will also aid identification of those areas that have

experienced substantial long-term change. The ability to quantify

these variances and changes in the physical properties of the ocean

would also be useful to understand the stresses that communities,

ecosystems and species endure, and it will give some idea of the

change in stresses in the coming decades. The potential change is

of direct importance to environmental agencies when they

consider various management strategies. Quantification of the

sources of variation in temperature could also be a key component

in describing species distributions into the future [2,6].
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Using statistical approaches to produce summaries of change for

historical data has substantial appeal [5,7–13]. A statistical

summary provides a quantification of historical change in climate,

with relevant measures of uncertainty. This approach allows

identification of areas that have already experienced some change

and it defines a delineator for the current patterns of biodiversity

or its historical change [13]. It is only available in situations where

there is a substantial monitoring effort, through time and

preferably through space. In contrast, predictions of physical

ocean properties have been made from physical models, at various

temporal and spatial scales [14], but are typically limited to large

spatial scales which restricts their utility for relating to finer-scale

biological data. Physical model predictions, which obey physical

properties, can be used for short and long-term prediction.

Currently however, quantifying the uncertainty around these

prediction is a relatively new field [15], which makes interpretation

of predictions from physical models more ambiguous.

We analyse sea surface temperature (SST) for the oceans

surrounding Australia. SST is likely to be a very important

physical property that has been remotely sensed from satellites for

the last two decades. We analyse these data using a flexible non-

linear statistical model to investigate the patterns in SST through

time. We partition the SST time series into a number of different

components that could play important roles in the dynamics of

communities and ecosystems. This study differs from previous

approaches in its finer spatial scale, the statistical approaches

applied and the statistical summaries of trend and variance in

climate, all of which are utilised to quantify ecologically relevant

aspects of SST variation.

Materials and Methods

Data
Sea Surface Temperature Data. We use a 20-year long

archive of Sea Surface Temperature (SST) imagery produced by

the CSIRO Remote Sensing Group using the Advanced Very

High Resolution Radiometer (AVHRR) High Resolution Picture

Transmission (HRPT) data broadcast by the National Oceanic

and Atmospheric Administration (NOAA) Environmental satellites

(NOAA9 to NOAA19). The temporal extent of the data used in

this study was from the 1st of October 1993 to the 19th of February

2013. These data are downlinked directly by a number of

Australian ground stations and joined together to form long swaths

(approx. 550S to 50N, 800E to 1900E) that produce a unique data

set for the Australasian region that is both high resolution (approx.

1 km pixels at nadir) and covers a large geographical area. Details

on the processing of the downlinked data are given in [16]. For this

study we use the 1-day composite images that consist of a grid of

cells with 0.0420|0.0360 resolution, which is about 4 km|4 km

at mid-latitude. With the HRPT data, there are up to 8 views of a

point on the surface per day, so the number of raw SST data

contributing to each grid-cell is up to 8|16~128:
Cloud-clearing [17] was performed but some clouds will remain

undetected, especially at night when the visible channel provides

no information for discrimination. Any remaining observations

contaminated by clouds will result in erroneously low raw-SST

data. Conversely, the raw SST data from satellite over-passes

between *1100 h to *1700 h local time, are sometimes

upwardly biased when the winds are particularly weak. This is

due to the formation of a thin hot surface layer which can be

several degrees warmer than the underlying water. Historically,

these sources of excess variation have been mitigated when

compiling the 1-day composite images by using the 75th percentile

of the raw SST data for each 4 km|4 km pixel. This is the

percentile with the least error against drifting buoy values (D.

Griffin pers. comm). We use this percentile approach for the SST

data in our study but note that refinements could be made. Any

method to identify and remove clouds, including the percentile

approach, is unlikely to be 100% successful. In particular, they are

unlikely to be successful when the number of data per grid-cell is

small or when the mechanism for bias (e.g. cloud cover) persists for

an entire day. In short, the satellite-derived SST data may contain

excess variation and possibly bias. Consequently, analyses based

on SST data need to be checked against other sources of data.

However, we do not aspire to ‘correct’ the SST data or the signal

that it contains to match the other sources of data. For the

methods used in this article, correction would have to be

performed at the level of each grid cell unless we assume that

the bias is similar throughout the entire study area, which seems

not to be the case. For most grid cells there is simply not enough

alternative data to perform this correction with confidence, so we

leave the satellite estimates uncorrected.

Long-term Hydrographic Station Data. The data from

four long-term hydographic stations are used for this study. The

stations are Maria Island (off the east coast of Tasmania, 42.60S

148.20E; Figure 1), Rottnest Island (off the coast of Western

Australia, 32.00S 115.40E; Figure 1) and two near Port Hacking

(off the coast at Sydney, 34.10S 151.20E; Figure 1). The Port

Hacking stations are located at depths of 50 m and 100 m. All this

data is available on the IMOS Ocean Portal (http://www.cmar.

csiro.au/geonetwork/srv/en/metadata.show?id = 51805).

The Maria Island station has been measured regularly from

1944 until present (October 2012 was the last measurement used

here) [8,18]. The sampling frequency varied: the mean sampling

interval is approximately one month and the maximum is just

under a year. The Rottnest Island data [19] commences in 1951

and has larger gaps in the record. The largest of these gaps is from

1956 to 1969, but there are also sizeable gaps from 2003 to 2009

and 1997–1999. The sampling interval varied and the mean was

approximately 3 weeks (ignoring the large gaps for non-monitoring

periods). The Port Hacking 100 m data [18] commences in 1953

and has only one sizeable gap (July 2007 to February 2009). The

Port Hacking 50 m data started prior to 1944. The sampling

frequency for the Port Hacking data was weekly for the first part of

the series (1953–1987) and then approximately monthly (with

substantial variation). The Port Hacking data that we obtained

had no data later than April 2010.

These data provide a rare opportunity to tie recent trends to

those in earlier history. They are not without fault though:

measuring instruments have changed through time, as have

sampling protocols and personnel. Hence, there may be some

small scope for confounding between sampling bias and trend in

the time-series. Nevertheless, they do provide an excellent

opportunity to validate recent analyses and to extend inferences,

qualitatively, through history.

A further complication for comparing satellite derived SST and

the temperatures obtained from in situ measurements, such as these

series, is that the measurements are of slightly different quantities.

The satellites measure only the topmost layer of the ocean, less

than a millimetre deep, whilst the in situ measurements integrate

over a metre (at least) of depth. While general agreement is

expected, exact agreement is not. In spite of this disparity, we also

use observations from deeper time-series from the in situ

measurements to verify the shallow readings. There should be

relatively little change in the series between the depths considered,

except for a cooling with depth.

Drifter Data. The data from the Global Drifter Program

(GDP) (http://www.aoml.noaa.gov/phod/dac/dacdata.php) are

Variation in Australian Sea Surface Temperature: 1993 to 2013
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also used in this study in a similar manner to the hydrographic

stations’ data, to check the robustness of our analyses of the SST

data. The drifter data, like the hydrographic stations’ data, do not

measure the same quantity as the satellites and so some

discrepancy between the drifter and the SST data is inevitable.

The key difference between the drifter data and the other two data

sources is that the drifters are mobile and therefore cannot provide

a time-series of temperature for a single location. To aid

comparison, we define three regions with substantial area and

use the data within each region to form a composite (regional) time

series. Note that the variation in location, within a region, is not

yet accounted for. The regions are: East (bounded by 380S, 250S,

1500E and 1600E), South (bounded by 500S, 400S, 1050E and

1600E) and West (bounded by 400S, 200S, 1050E and 1200E). We

did not specify a northern region due to a lack of drifter data.

These data can not be compared to the SST data using the same

methods as the long-term hydrographic stations due to the

mobility of the sensors.

Data Handling and Statistical Models
The primary goal of the analysis is to produce a map of

summaries of the observed SST change in the Australasian region.

The SST data set is spatial and temporal and can be thought of a

large set of time series, one for each spatial grid cell. Each time

series spans a period of approximately 20 years. The SST spatial

resolution is high, so there is no need to do spatial interpolation;

analyses on individual spatial locations is sufficient. There are

almost 2 million non-empty grid cells with more than 750

observation days throughout the entire period which are analysed

separately. Each of these 2 million grid cells has a model fitted to

it, which is a substantial computational challenge. Any grid cell

with less than 750 observation days is not analysed as the amount

of information may not be sufficient to support the model. This is a

conservative approach but it excludes only a tiny proportion of

grid cells. Summaries of the individual analyses can be represented

spatially to give an idea about spatial variation but neighbouring

locations are not incorporated into each grid cell’s analysis.

Statistical Models and Methods. It is clear from time-series

plots of the data for each location (see Figure 2 for an example

location) that there is a large amount of temporal variance in the

data. Some of this variance is signal, attributable to estimable

proceeses, and some of it is noise. The noise appears to be

manifested in two components: randomness common to all data,

giving random scatter, and; ‘outlying’ data that is due to artefacts,

either physical or instrumental. In principle, a statistical model

may be able to investigate signal and both types of noise. However,

pragmatically it may be better to remove any outliers prior to

analysis – a statistical model that allows for them would have to

make some, possibly severe, assumptions about the nature of the

outliers.

Figure 1. Location of long-term hydrographic stations and example locations. Red dots are hydrographic stations, green dots are example
locations and the large boxes identify areas used to compare with drifter data.
doi:10.1371/journal.pone.0100762.g001
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We start by describing the statistical model used to describe the

signal in the temporal data. It follows the model described in [20]

(Section 6.7) and is similar to [10,21,22]. We will assume that

outliers have been removed as this simplifies notation. The basic

principle is that the temperature time-series, for any spatial

location, can be decomposed into:

Inter-annual variability. This includes the long-term trend

and any variability with multi-year time-scale. This is modelled as

a smooth function of time f (t), say. Here t reflects the day since

the start of the observation and 0ƒtƒ7091 days, where 7091 is

the number of observation days included in the study.

Annual cycle. This is a periodic function with the same

timing and amplitude every year. It is assumed to be a smooth

function of day-within-year but not necessarily trigonometric or a

function of trigonometric functions. Denote this function as g(d)
say, where 0ƒdƒ365 days (or 366 days in a leap year).

Residual. All random (and some non-random) deviations

from the model’s expectation. It includes: a) patterns that occur on

a time scale that is shorter than the 1-day data (diurnal effects – a

cell is not measured at the same time each day), and 2) non-

smooth trends and other model misfit issues. The latter can occur

when one of the modelling assumptions fails. An example is when

the annual cycle changes abruptly between years, as can happen in

an El Niño year, for example.

The components of variation in the time-series data can be

formally included into a statistical model, viz

y(t,d)~f (t)zg(d)zet

where y(t,d) is the SST observation on the tth day after the time-

series starts (0ƒtƒ7091 days) that is observed on the dth day of

the year (0ƒdƒ365). The functional form of the longer-term

trend, f (t), and the seasonal cycle, g(d), could take many forms.

Here, a penalised cubic regression spline is used for f (t) and a

penalised cyclic regression spline is used for g(d) [20]. In both

spline terms we use nine knot points. More knots could be used but

this increases the computational burden and if increased too far

could start detrimentally partitioning variance that belongs at

Figure 2. Temporal data for a location near Maria Island, off the east coast of Tasmania (42.57S, 148.36E). Panel A: All data including
possible outliers (red triangles). Green line is the robust fit for data validation. Shaded region is the interval that contains data that is likely to be valid.
Panel B: Fitted model and model summaries for cleaned data. The lines are: green – fitted values; blue – fitted values excluding seasonal component,
and; red – linear summary of long-term trend. Panel C: Cleaned temperature data with seasonal cycle subtracted. The lines are as in panel B.
doi:10.1371/journal.pone.0100762.g002
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shorter time scales. Other choices of function forms are available

for f (t) and g(d), such as linear f (t) and a low order Fourier

approximation for g(d) ([21,23], for example). In a situation like

this, where there is no a priori assumption of a functional

relationship between time and SST, spline formulations offer

compelling advantages as they are flexible, smooth but yet allow

the incorporation of important aspects of the data (such as

periodicity for g(d)). The text books [20,24] present a detailed

argument of when spline methods, and other statistically similar

methods, should be preferred.

The model is completed by specifying a probabilistic distribu-

tion for the residual effects, et: For these data a normal distribution

appears to be adequate and was checked at a small number of

locations using standard residual diagnostic measures (results not

shown). We allow for the possibility of temporal auto-correlation

using an AR(1) process, sensu [25]. This model is based on the idea

that et~ret{1, but is parameterised to give var eð Þ~s2R where

s2 is the variance of the AR(1) process and R~R(r) is the usual

(scaled) covariance matrix from an AR(1) process. The matrix R is

large and dense, and computation for the model requires that it is

repeatedly inverted. To ease this burden, R is approximated by

assuming that the residuals e are correlated within a year and

independent between years. This gives an approximation of R as

block diagonal, that is R&Iy6R1 where Iy is the identity matrix

of size equal to the number of years, R1 is an AR(1) covariance

matrix for the data within the year and 6 is the usual Kronecker

product. The resulting variance matrix is less computationally

demanding due to its structured nature and its sparseness. This

approximation is taken from [20] (Section 6.7).

The functions f (t) and g(d), along with the distribution of the

residuals et will be governed by parameters that will be estimated

from the data. This is performed using restricted maximum

likelihood, REML [26], which gives unbiased estimates of the

variance parameters.

Removing Outliers. The presence of outliers could adversely

affect the model’s fit and subsequently affect all components of the

model’s summaries. Their presence will bias the residual variation

and possibly (and subsequently) bias all of the model’s summaries.

We feel that it is better to be slightly aggressive about removal of

outliers rather than inflating the risk of inclusion of outliers.

Identification of outliers is done in a pre-analysis step. A model

with a slightly simplified structure is fitted using robust estimation

methods and outliers are defined as those data that are far away

from the model’s fit [27]. The M-estimation method for statistical

models [28] attempts to provide a good estimate of the model’s

expectation, even in the presence of a moderately large number of

outliers [29] (Section 6.5).

The model is similar to that described previously but with a

number of simplifications needed to allow robust fitting. First, both

the spline functions are regression splines ([29], for example) rather

than penalised splines [20]. The number of degrees of freedom for

these splines is assumed to be nine, which should provide a smooth

model for the amount of data at each location. Second, the

residuals are assumed to be independent rather than auto-

correlated. Both these assumptions are made to enable standard

software to be used [29].

We define an outlier to be any datum that is more than 4

standard deviations away from the robust model’s fit. If the data

are truly normally distributed (and independent) then it is expected

that over 99.9% of the data will lie within this interval. Hence, any

observation outside this interval has small chance of being a

legitimate observation and a high chance of being an outlier.

This process is demonstrated in Figure 2a. The solid-green line

is the robustly fitted model and the grey area is the interval

dividing legitimate data (black dots) and outliers (red triangles). In

this example, all obviously erroneous data are labelled as outliers.

Comparison with in situ data. We compare the SST results

against the data from the hydrographic stations by comparing the

fit of models constructed on each data source. We do not have an

SST time-series at the exact location of the station, so we find the

nearest four SST grid cells and use the analysis from those for

comparison. The exception is the Port Hacking 50 m station that

was too close to land to get all four comparative cells. For Port

Hacking 50 m we only use the seaward grid cell. We do not expect

the stations’ data to exhibit large amounts of auto-correlation as

the data are less dense through time (almost all are separated by at

least two weeks). Hence, for analysis of the historical data, we omit

the auto-correlation term. Also, since the series is longer than the

SST series we increase the number of knot points for the long-term

spline. This was done so that there are (roughly) the same number

of knots per year in both data sets. This increase in knots is

potentially tempered by the splines penalty, which is the major

driver of the spline’s flexibility.

The SST data is compared against the drifter data using similar

philosophy and methods. However, the analysis needs to be

slightly altered to accommodate the fact that the drifters are

mobile. First, a comparable SST data is found by finding the

nearest SST datum to each drifter datum in time and space. The

difference in the two data sets is plotted against time. Also, a

generalised additive model, identical to f (t) above, is fitted to the

difference and is plotted on the difference graph to aid visual

interpretation. If there is no difference in the signal from the two

sources then this model will be identically zero for all times. The

size of departures from zero will suggest some level of bias.

Model Summaries
The model is interpreted by exploiting the relationship between

penalised spline models and mixed models [20,30]. The inter-

annual spline term can be expressed as f (t)~mzatzx(t)T b

where m is an intercept, at is a linear trend and x(t)T b is a spline

function whose basis, x(t), is orthogonal to the linear term. The

penalised spline treats b as random and assumes that they are

(multivariate-)normally distributed with variance. With this

representation a number of useful summaries can be extracted

from each location’s model. They are:

ALTT The average long-term trend. This is the slope of the

dotted-red straight line in the Figure 2b. It is measured by a in the

mixed model representation.

ALTT SE The standard error of the average long-term trend.

This gives a measure of uncertainty in the long-term trend

estimate and indicates how much it can vary depending on the

observed data. It is estimated via the relevant element of the

inverse of the Fisher information matrix. It measures only the

amount of information in the historical data and does not provide

a measure of predictive performance for future events.

AvSST The average SST over the time period. This is

calculated as the SST on the 6th of June 2003, the data’s mid-

date, using the long-term average trend only. It does not contain

any annual component and hence will reflect the average long-

term SST. The date of calculation is arbitrary and any day could

be used. However, a date at the centre of the data has the

advantage of having the smallest level of uncertainty.

AvSST SE The standard error of the average SST estimated

from the inverse of the Fisher Information matrix.

Trend RMSE The amount of non-linearity in the long-term

trend. This is measured as the root mean-square error (RMSE)

between the fitted long-term spline and the average long-term

Variation in Australian Sea Surface Temperature: 1993 to 2013
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trend. Formally, it is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

t~1
f (t){(mzat)½ �2

r
, where

t~1 . . . N indexes the days in the study. Informally, the RMSE

can be thought of as a standard deviation. This summary measures

the amount of departure of the blue line from the red line in

Figure 2b.

Annual RMSE The amount of annual variability. This is

measured as the RMSE for the fitted cyclic spline. It measures the

amount of departure from the green line to the blue line in

Figure 2b.

Residual SD The level of unexplained variability in the data.

This is measured as the residual standard deviation (SD), s2 and is

obtained directly from the fitted model. It measures the departure

from the data to the solid-green fitted line in Figure 2b.

e-fold time The short term (temporal) autocorrelation of one

datum to its neighbouring days data. In the model this is

parameterised as AR(1) parameter, r: However, we choose to

display it as the e-fold time – the lag in days before the temporal

correlation is equal to 1=e, where e is Euler’s number (approx-

imately 2.718). We note that 1=e is arbitrary and any choice could

be used. However, all choices are (monotonically) related and will

produce similar maps that differ only in scale.

These summaries are calculated for each of the grid points with

sufficient data. This produces a set of summaries for each of

approx. 2 million grid locations. We display each of these

summaries graphically as a map. In addition to the maps of

estimated ALTT and its standard error, we also present a map of

t-statistics. These statistics are defined as the estimated ALTT/

ALTT SE for each spatial location and gives an indication of how

far the average long-term trend is from zero.

Results

The SST data set is 20-years long, which is substantial for a

geophysical data set, especially over this geographical range.

However, it does not span climatological scales. The long-term

trend over the 20-year period is a combination of the trend that

can be expected to persist into the future (the secular trend) and

other (possibly cyclic) trends that could change or reverse over the

coming decades. It is the secular trend that is of long-term interest

but over the time scales examined here, the decadal variation in

SST change is likely to be larger. The SST data set does not have a

sufficient time span to completely remove the decadal signals from

the secular rate of change. Thus, the trend given by a will be the

combination of secular and decadal signals.

The fitted models appear to capture the important aspects of the

variation in the time series. For example, the long-term trend

reflects the inter-annual fluctuations and the annual trend captures

the seasonal cycle in the data. The decomposition, illustrated in

Figures 2a and 2b, is obviously useful but it is not perfect. The

imperfections are attributable to slight variation from modelling

assumptions to reality. As an example, consider Figure 2c, which

shows the SST data adjusted by subtracting the fitted annual cycle,

and the components of the long-term trend. If the fitted annual

trend component is adequate then there should be no annual

pattern in the adjusted SST data. This is not the case and the slight

misfit appears to arise from the progression of the annual pattern

to differ between year to year in both timing and in magnitude.

We do not believe that this is problematic for the inferences we

draw from the data, especially when the entire continent is

considered rather than a particular grid cell and could be resolved

with more data in the future. The major components of the

systematic variation are captured.

SST average long-term trend (ALTT)
We estimate the ALTT of SST in Australian waters to range

from about 20.20 per decade to +10 per decade (Figure 3a), in the

interval from 1993 to 2013. The estimates near the extremes of

this range could be due to data errors or artefacts or the

interaction between secular trend and decadal variability. Possible

artefacts include the inclusion of pixels nearer to land in the latter

part of the time-series, which can artificially inflate a grid-cell’s

ALTT if it is very close to the coast.

The most extreme result (t-statistic of 7 or more) is that the

ALTT for the 1993–2013 period was between 0.40 and 0.60 per

decade for much of the area south-west of a line passing through

Port Hedland on the north-west coast and Cape Howe at the

south-east corner of the Australian mainland (Figure 3a, but see

Figure 1 for location names). These values are well in excess of the

global averages [7], and are considerably higher than estimates for

this region (over longer intervals, see [19]). The two regions within

this area of greatest ALTT, relative to their standard error, are

near Cape Leeuwin at the southwest corner of the mainland, and

east of southern Tasmania, near 430S 1510E. Both of these regions

are affected by warm, southward-flowing boundary currents, the

Leeuwin Current on the west and the East Australian Current on

the east. Both locations lie within the Subtropical Convergence

Zone.

An interesting detail of Figure 3 is that the edge of the

continental shelf is clearly recognisable. In the time-period of the

data, ALTT was greater seaward of the 200 m isobath than

landward of it. This suggests that at least some of the change can

be attributed to increased advection of warm tropical waters,

which flow south to Cape Leeuwin and then east, almost

exclusively seaward of the 200 m isobath [31]. These areas also

show up in the other model summaries, to lesser and larger

extents.

The time-series of SST at 4 key locations, specified in Figure 1,

are given in Figure 4. These illustrate important features of

temporal summaries in Figure 3. Two of the example locations are

within the south-west region of high ALTT: one ,150 km west of

Perth and one *150 km south of Albany (Figures 4a and 4b but

see Figure 1 for locations). At both locations the inter-annual

variability is certainly not monotonic, but features a downward

trend after the minor peak in 2000, followed by a fairly steady rise

from about 2004 off Perth and 2006 off Albany. SST reached

unprecedented heights in early 2011 off Perth [32] and this is

evident in our results, but modelled trend has remained high

through to the end of the series. This is in spite of the reduction off

Perth of the summer values in 2012 and 2013 compared to 2011

(Figure 4).

The east coast of Australia shows similar patterns. The area east

of Cape Howe shows a large spike in SST in 2011, but on average

only a very small increase in SST over the 20 years sampled

(Figure 4c). In contrast, the high ALTT in the water east of

Tasmania does reflect a fairly monotonic increase of the inter-

annual trend (Figure 4d). Both these inter-annual trends rise most

quickly from 1997 to 2002 and feature a slight cooling trend at the

beginning of the series. The difference between the two example

locations can be seen in the ALTT (Figure 3a); much of the East

coast of Australia shows a marginal warming trend (with low

values for the t-statistic), whereas the area to the east of Tasmania

shows pronounced warming over the same time period.

The least smallest ALTT, with respect to variability (t-statistics

less than 3), are along the northern and eastern seas between

Joseph Bonaparte Gulf (130S 1270E) and Cape Howe. The

Tasman Sea off the south east coast of Australia (latitudes 280S to

370S) is the largest region of low t-statistics. In both these areas we
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have the least certainty as to whether SST rose and fell. An

example time series for this area is given in Figure 4c, which

features an extended cold period in 1995–1996, a subsequent

rapid rise followed by relatively little change until 2012 and 2013

which are cooler than immediately earlier years.

We estimate that the surface waters of the Great Barrier Reef

warmed at an ALTT of between 0.1 (southern and central regions)

and 0.30 per decade (northern and far northern regions). This is

somewhat more than the 0.080 per decade area-average previously

reported [33] for the 1985–2009 period. Notably, the waters just

offshore from the continental shelf had a greater ALTT than the

waters inside the 200 m isobath, for most of the length of the

isobath.

Average SST (AvSST)
There is a clear, and unsurprising, north-south decline in

AvSST throughout the region (Figure 5a). There are some

departures from this general pattern however. The area affected
by the Leeuwin Current, which brings warmer water from the

north of the western boundary, is warmer than the surrounding

water. The narrow band, which is bounded by the east coast of

Australia near Sydney and the oceanic area affected by the East

Australian Current (EAC), is cooler than the seaward waters. This

is due to the EAC not affecting the inshore waters as regularly as

the seaward waters. The lagoon of the southern Great Barrier

Reef off the coast of Queensland is cooler, on average, than the

oceanic waters seaward.

Figure 3. Maps of estimated model summaries for SST change. The map in panel A is for estimated SST average long-term linear change
(denoted by a in the text and given acronym ALTT, units are 0C per decade). The map in panel B is the t-statistic of estimated linear change (âa=SE(âa))
for each point.
doi:10.1371/journal.pone.0100762.g003
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Inter-annual variability of SST (Trend RMSE)
Many of the patterns shown in the ALTT (Figure 3a) can be

explained by examining the patterns of trend RMSE (see Figure 5),

which describes the amount of non-linearity in the inter-annual

trend. Trend RMSE is high for substantial sections of the south

west and south east coasts (approx. 0.40C and 0.50C respectively).



These are the regions also associated with substantial warming

(Figure 3) and are under the influence of the Leeuwin Current and

the East Australian Current respectively. In both these areas

warm-core eddies are prevalent. Trend RMSE is just 0.10C to

0.20C for northern Australia and the Great Australia Bight –

regions not influenced by the continent’s largest seasonal currents

(Leeuwin Current and the East Australian Current). In addition

the following observations are noteworthy (see Figure 1 for

geographical locations):

N Trend RMSE along the path of the EAC from Fraser Island

(250S) to Byron Bay (290S) has a much lower value than south

of Byron Bay. This indicates that the extra variability south of

Byron Bay does not result from a purely advective process (as

might be reasonably hypothesised to be the case over short

distances).

N SST along the south eastern coastal margin, inshore of the

EAC, has fairly low trend RMSE as far south as 340S. At this

point it suddenly increases to 0.50C. Indeed, the coastal stretch

with the greatest trend RMSE in Australia is between Sydney

and Woolongong (340S to 34.50S). Here the EAC frequently

comes very close to the coast (as it did on the 12th of October

2013: http://oceancurrent.imos.org.au/SNSW/2013101206.

html).

N Trend RMSE has a local minimum near Lord Howe Island,

presumably because the Lord Howe Ridge inhibits the passage

of warm-core and cold-core eddies.

N The Tasmanian continental shelf has much lower (0.20C) trend

RMSE than the adjacent continental slope (0.40C). There is a

sharp boundary along the 200 m isobath, indicating that the

Tasman leakage [34] is strongly constrained to follow the

continental slope.

N There is relatively little (approx. 0.20C) trend RMSE between

north-west Tasmania and the western Great Australian Bight

(1250E), even though the Leeuwin Current extension, the

South Coast Current, Bonnie Coast upwelling zone and the

Zeehan Current are phenomena that respond to inter-annual

forcing. However, these phenomena are visible in the other

summary statistics.

N Across the tropics, the area with the greatest trend RMSE is

the Joseph Bonaparte Gulf and the adjacent shelf. This is also

the region of minimum average long-term trend, as mentioned

previously.

Annual variability of SST (Annual RMSE)
The amount of annual variation (measured by the annual

RMSE for the fitted cyclic spline) varies substantially over the

region (Figure 5d). Some areas exhibit relatively low amounts of

Figure 4. Examples of time-series data and model fit at four isolated locations. Black dots are SST observations, green line is the fitted
model, blue line is the fitted long-term trend, red line is the average long-term trend and grey line is the overall mean of the data.
doi:10.1371/journal.pone.0100762.g004
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annual RMSE (approx. 0.750C). The oceanic environment in the

extreme south-west of the study region (south of 420S) shows very

little seasonal variation. The Bonney coast (380S, 138E) is of

particular interest. It is an area associated with high productivity

for marine fauna. It has very low values of seasonal variation

because is it strongly influenced by the Leeuwin Current (a warm

http://oceancurrent.imos.org.au/SNSW/2013101206.html
http://oceancurrent.imos.org.au/SNSW/2013101206.html


winter current) and the Bonney upwelling (a summer upwelling).

These two phenomena reduce the difference between winter and

summer SST in this region. There are no other areas on the coast

of Australia with such low seasonal variability.

Some areas exhibit much larger annual RMSE (approx. 2.250C

and more), in particular sheltered areas along the coastline, such as

bays and gulfs throughout the north and in South Australia, and

the Great Barrier Reef Lagoon. These areas have high annual

RMSE due to the combined effect of solar radiation, shallow water
and low circulation. The Tasman sea shows about twice the level

of seasonal RMSE of the other open-ocean regions (Tasman sea

annual RMSE ranges from 1.750C to 2.250C).

Unexplained variation in SST (residual SD)
Variation in the amount of residual standard deviation (SD) is

influenced by two underlying processes: the true day-to-day

variability in the SST at any location, and measurement error (due

to atmospheric conditions and data processing). The map of

residual SD is given in Figure 5e. The map shows an area of very

high residual SD (§20C) near Papua New Guinea and extending

towards Vanuatu. This is an area that is far from the receiving

stations and is an area of high cloud prevalence, especially during

the summer monsoon season. Both these facts imply that the

measurement error is likely to be high in this area. The large areas

Figure 5. Maps of summaries from estimated models. The maps are for: panel A – average SST (AvSTST) for the study period; panel B –
standard error for the average SST (AvSST SE); panel C – variability in long-term trend (trend RMSE); panel D – variability in annual trend (annual
RMSE); panel E – residual standard deviation, and; panel F – temporal (day-to-day) autocorrelation (e-fold time).
doi:10.1371/journal.pone.0100762.g005
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of water off the east coast (around 350S, 1520E), the south-west

coast (around 370S, 1150E) and off southern Tasmania (430S,

1480E) with a substantial residual SD, around 20C. These are all

areas under the influence of strong seasonal currents and part of

the high residual SD may be attributable to the model not picking

up variation in the timing of the seasonal currents and their

strength. The striations in residual SD, most prominent in the



southern ocean, are due to the methods for pre-processing of the

raw data to remove cloud.

e-fold time (temporal autocorrelation)
The temporal autocorrelation (day-to-day) in Figure 5f, quan-

tified as e-fold time, is greatest on the continental shelf off the

north west coast (around 190S 1170E) and near the coast in the

Gulf of Carpentaria. In both cases the e-fold time is around 2.2

days. The areas off south eastern Australia and eastern Tasmania

have elevated, but not extreme, autocorrelation (e-fold time of

around 1.25 days).

Comparison with hydrographic stations
The historical data and the associated SST analysis show similar

patterns (Figure 6). The Maria Island series shows a noticeable

increase in temperatures throughout the period but are accentu-

ated by two periods of more rapid change. These are (approxi-

mately) from 1944 to 1950, and from 1995 to 2002 (Figure 6a).

The latter period is matched by the satellite data, as is the

flattening off after the increase. At other times there is little to no

temperature increase.

The Rottnest Island long-term trends show periods of warming

and cooling, for which there good agreement for trends from both

SST data and historical data. The historical data suggest that the

recent changes in temperature are larger than anything that has

happened through measured history. However, we feel that this is

not definitive due to the gaps in the time-series.

The Port Hacking long-term trends (Figures 6c and 6d) indicate

that there have been a number of periods of warmer temperatures

and periods of cooler temperatures. The SST data near the Port

Hacking stations also has peaks and troughs of SST, however they

occur on a much shorter time scale. Both data sources indicate

that the series show an increase in SST from about 1995 but the

length of increase differs and the SST model has additional peaks

and troughs not shared by the stations’ data.

Comparison with drifter data
The difference between the drifter data and the matching SST

data is given in Figure 7. Also given is the mean prediction from

the fitted model. The time-varying mean difference is always

above zero, which indicates that the satellite consistently measures

cooler temperatures than the drifters. The amount of bias changes

over time with the more recent measurements generally being less

different than the earlier measurements. The bias appears to

change over time and the amount of change depends on the

region. Both the east and west regions showed a decrease in bias of

around 0.20C per decade, while the south region’s decrease was

much more modest (around 0.050C per decade).

All three regions showed some reduction in long-term bias,

indicating that the estimates of average long-term trend from the

SST data are likely to be over-estimated when compared to those

estimated from drifter data. However, the amount of over-

estimation depends on the location of the grid cell. There is no

single adjustment that can be made to all grid cells.

Discussion

There are some marked patterns in the maps of the model

summaries (Figures 3 and 5). Our analysis of average long-term

trends (ALTT) show many similarities to previous studies using

longer term records [8,19,35–37], but there are some important

differences. The most notable ones are the areas of higher ALTT

in south-west Australia and also off eastern Tasmania. Previous

studies have identified these areas as regions where the climate has

changed [8,19], although both studies reported changes less than

found in our analysis. Some previous work has identified similar

regions [36,37] on the west coast of Australia but identified the

east coast of the Australian mainland rather than the east coast of

Tasmania as a region of rapid change. There are a number of

possible reasons for the discrepancies: 1) the time period analysed

(the Rottnest SST series has increased substantially in the time

period matching the SST data, see Figure 6b); 2) a different SST

product was used, which is processed differently; 3) the east

Tasmanian study [8] analysed data from a mooring on the

continental shelf, an area that did not exhibit the severe warming

and so could not detect the higher change (see Figure 3a).

The area to the east of mainland Australia is well studied. It is

known to be dominated by the East Australian Current (EAC, see

[38] and references therein), which is a strong southward current.

It exhibits very low ALTT, meaning very modest long-term

changes in average SST (Figure 3a) and the change is not

substantial at any location, with respect to the variability in the

estimate of change. In addition there is high inter-annual variation

(measured by trend RMSE, see Figure 5c). This is an area that has

been identified as having rapid change due to long-term climate

change, but appears to be more associated with high variability

rather than rapid change [39]. This implies that the SST in the

EAC governed area might oscillate smoothly, at least within the

period investigated, and could be caused by smooth oscillations in

the strength of the EAC – when the EAC is strong the SST is

warmer and when it is weak then the SST is cooler.

Our analysis shows more than just average long-term trends,

and this has implications for future studies using historical data (on

any oceanographic system). There is substantial variability in the

temporal temperature data and some of this is systematic (e.g.

seasonal cycles and inter-annual trends). There is also substantial

spatial heterogeneity (both small and large scale) in all the

statistical summaries. All these sources of variability are important

for the biogeography of the region and having these summaries, at

high resolution, should aid future cross-disciplinary research. In

this work, the spatial patterns in temperature series are highlighted

for the oceans around Australia. We expect that other regions

would exhibit similar levels of spatial and temporal variability. We

recommend against spatial and temporal aggregation prior to

analysis. Such aggregation can confuse fine-scale variation with

uncertainty.

A key difference between this study and previous work

has been our utilisation of advanced statistical tools that

allow for both a linear trend and an understanding of the variance

around that trend, both inter annually and annually. The climate

impact on ecosystems from rapid, non-secular, trend is likely to be

substantially different to gradual long term change and it is

important to understand where the different patterns are
occurring.

We compared the results from the analysis of the spatially and

temporally dense SST data to two alternative sources of data, four

hydrographic stations and drifter data in three regions around the

continent. The station data and the drifter data are both in situ

measurements and hence, some minor disagreement between the

results between these sources and the SST data should be
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expected. Broadly speaking, there was good agreement in nearly

all the series, with similar patterns exhibited. The notable

exceptions were the Port Hacking hydrographic sites. Also,

temperatures from the satellite SST data tended to be lower than
that from the drifter temperature data, which is slightly

accentuated near the start of the time series. This will produce a



higher estimated ALTT from the satellite data than from the

drifter data. There are several potential reasons for this

discrepancy between the two data sources. They include time-

varying bias in the instrumentation, time-varying bias in the

processing methods, time-varying sampling bias and how these

interact with the analysis methods. Biases may occur in both the

satellite (AVHRR HRPT) data and the drifter data.

In our statistical approach we attempt to detect and remove

individual datum that have an elevated chance of being outliers,

considering a single location at a time. This seemed successful in

all test locations that we investigated. However, it will only detect

problem data within a location – it will not detect problems between

locations. If problem locations exist, they may cause spatially non-

smooth patterns in the summary statistics. This could be evident in

the SST results presented here, particularly in striations in the

residual variance and the e-fold time summary statistics in the

Southern Ocean. We suspect that these arose from the manner in

which the raw data were processed to produce the 1-day

composite product. Investigation of this artefact is outside the

scope of this article. However, we note that a statistical approach,

like that based on a robust estimation method, could be expanded

to include multiple locations. It is our firm belief though that this

should only be used after an investigation of other possible reasons

have been exhausted.

The stat ist ical model uti l i sed in this work is a  s imple  

description of the complex patterns of SST through time,

one that could be fitted to a large number of time series (*2

million locations). The model has the strength that many facets of

the SST time-series can be modelled flexibly, without making too

many unnecessary assumptions and accounts for the inherent

auto-correlation in the data. The two situations where this is

particularly important are if the long-term trend is non-linear, or if

the seasonal cycle cannot be described effectively by a first or

second order Fourier approximation. These types of model mis-

specification have the effect of inflating the residual variance and

the model’s standard error, giving an overly conservative

representation of the uncertainty in the data. Failing to account

for temporal autocorrelation will have the opposite effect, it will

make measures of uncertainty overly optimistic.

Representing a non-linear trend using a straight line, which is

regularly performed [9,19,36], may give adequate estimates of the

average slope in many cases. However, if the non-linear trend is

such that the earliest or latest observations are the most deviant

Figure 6. Modelled long-term trends from the four long-term stations. The dashed blue lines are the trends for different depths. The solid
red lines are the trends from the four nearest grid cells from satellite SST. The tick-marks on the x-axis show when each observation was taken.
doi:10.1371/journal.pone.0100762.g006
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from the linear approximation, then these points will have an

unwarranted amount of influence on the model’s fit ([40] for

example). An alternative to linear or non-linear models is to simply

difference the averages for a period late in the series and a period



early in the series. At first glance this approach circumvents the

modelling choice. However, it does assume that there is no trend

within those periods. It is also highly dependent on the way in

which the period boundaries are chosen.

Conclusion

We have analysed 20 years of high-resolution Sea Surface

Temperature data in order to produce a set of data summaries

with unprecedented spatial resolution and statistical rigour for the

Australasian region. The summaries include the output from

statistical analyses and are available digitally at http://www.cmar.

csiro.au/geonetwork/srv/en/metadata.show?id = 51805. We

have also compared our analyses with available in-situ data and

found that there was good broad agreement between the two

sources. The statistical summary that is possibly of widest interest

is our estimate of the average long-term trend in SST over the past

20 years. Our estimates of the average long-term trend in SST do

differ from other published estimates. Reconciling those differ-

ences, however, is beyond the scope of the present study. We note

that simply changing the number of years analysed is enough to

change the average long-term trend in most analyses (due to the
inter-annual variation). We expect our analysis to be more robust,

as this randomness is incorporated in the model, but we doubt that

it is infallible as we assume that this randomness is smooth through

time. All the statistical summaries presented in this paper have

been estimated before but never at this spatial resolution, or so

carefully. The summaries are provided to the community for

further analysis.
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