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1 Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo, Brazil, 2 Laboratório de Genômica e Expressão,
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Abstract

Background: High-throughput screening of physical, genetic and chemical-genetic interactions brings important
perspectives in the Systems Biology field, as the analysis of these interactions provides new insights into protein/gene
function, cellular metabolic variations and the validation of therapeutic targets and drug design. However, such analysis
depends on a pipeline connecting different tools that can automatically integrate data from diverse sources and result in a
more comprehensive dataset that can be properly interpreted.

Results: We describe here the Integrated Interactome System (IIS), an integrative platform with a web-based interface for
the annotation, analysis and visualization of the interaction profiles of proteins/genes, metabolites and drugs of interest. IIS
works in four connected modules: (i) Submission module, which receives raw data derived from Sanger sequencing (e.g.
two-hybrid system); (ii) Search module, which enables the user to search for the processed reads to be assembled into
contigs/singlets, or for lists of proteins/genes, metabolites and drugs of interest, and add them to the project; (iii)
Annotation module, which assigns annotations from several databases for the contigs/singlets or lists of proteins/genes,
generating tables with automatic annotation that can be manually curated; and (iv) Interactome module, which maps the
contigs/singlets or the uploaded lists to entries in our integrated database, building networks that gather novel identified
interactions, protein and metabolite expression/concentration levels, subcellular localization and computed topological
metrics, GO biological processes and KEGG pathways enrichment. This module generates a XGMML file that can be
imported into Cytoscape or be visualized directly on the web.

Conclusions: We have developed IIS by the integration of diverse databases following the need of appropriate tools for a
systematic analysis of physical, genetic and chemical-genetic interactions. IIS was validated with yeast two-hybrid,
proteomics and metabolomics datasets, but it is also extendable to other datasets. IIS is freely available online at: http://
www.lge.ibi.unicamp.br/lnbio/IIS/.
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Introduction

High-throughput screening of physical, genetic and chemical-

genetic interactions brings new important perspectives in the

Systems Biology field, as the analysis of these interactions provides

new insights into protein/gene function, help to unravel how

cellular networks are organized and facilitates the validation of

therapeutic targets and drug design.

Recently, many experimental procedures have been developed

to help elucidate the intricate networks of proteins, genes and

drugs interactions, ranging from high-throughput experiments

based on genomic scale analyses [1–6] to molecular biology

approaches on a specific key pathway [7,8]. Molecular interactions

data related to human and model organisms are currently being

integrated in diverse databases, such as BioGRID [9], Intact [10],

DIP [11], STRING [12], MINT [13], HPRD [14], DrugBank

[15], ChemBL [16], HMDB [17], YMDB [18], ECMDB [19], as

well as KEGG [20] and Reactome [21]. However, the integration

of different datasets is not a trivial task, since they vary widely in

coverage, data quality and annotation. Moreover, the information
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available can be derived from diverse experimental methods, such

as yeast two-hybrid (Y2H), mass spectrometry (MS), immunopre-

cipitation (IP), or fluorescence resonance energy transfer (FRET)

assays to demonstrate protein interactions and, in some cases,

interaction networks are determined solely by bioinformatics tools

[22,23], which rarely consider the subcellular localization of the

interactors.

A major fraction of protein-protein interactions (PPIs) deposited

in these public databases is generated by the yeast two-hybrid

technology. Indeed, Y2H allows high-throughput screening of

direct physical PPIs at a proteome scale, but requires the

sequencing of hundreds to thousands of cellular preys per

experiment. Moreover, the analyses of sequences derived from

such interaction assays are difficult to proceed without an

appropriate pipeline connecting different tools that can automat-

ically integrate data derived from diverse sources and result in a

more comprehensive and organized dataset that can be properly

visualized and interpreted.

In response, several software projects became available to offer

computer-assisted data and software integration. Notable among

these are G2N [24], GeneMANIA [25], STRING [12], Ingenuity

[26], and pISTiL [27] softwares. Though, most of them show

some limitations. pISTil works well on chromatograms processing

and partial annotation, but lacks the connection to visualization

and analysis of interaction networks. The other software work well

on the integration of a variety of bioinformatic tools with focus on

the interaction networks, but lack the chromatograms processing

feature or are restricted to a small number of model organisms and

types of molecules.

Here we present the Integrated Interactome System (IIS), a new

platform integrating a variety of tools and data sources used in

systems biology analyses. It comprises a pipeline that receives raw

sequence data from screening methods based on Sanger sequenc-

ing, like yeast two-hybrid system, or lists of proteins/genes,

metabolites and drugs of interest, which are automatically

processed, annotated and linked to interaction networks that can

be filtered by the scoring system proposed by mathematical

approaches, and evaluated according to expression/concentration

fold change values and to the enriched biological processes and

pathways in the network.

As major advantages over other systems, IIS supports the entire

data analysis of experiments such as two-hybrid assays, besides

other omics approaches, from the sequencing all the way to

generating publication-ready interaction networks and annotation

tables. In the process, all the challenges related to this type of

experiment are addressed: processing/assembling reads, mapping

them to the correct gene, automatically retrieving annotations

from multiple resources and interactors from nine public

databases, assigning annotations and interactions via orthologs if

required, and building networks that gather novel identified

interactions, protein and metabolite expression/concentration

levels, subcellular localization, topological metrics and enriched

biological processes and pathways. Each one of those tasks being

very time-consuming and hard to manually integrate using

separate different tools.

We also describe the construction of the Global Protein-

Metabolite-Gene-Drug Interaction Database (GPMGDID) and

discuss the workflow of IIS website. We then validate IIS’s ability

to perform the proposed tasks with three case studies: (i) human

Nek6 yeast two-hybrid screening [28], (ii) Saccharomyces cerevisae

encapsulated cells proteome [29] and (iii) primary and metastatic

human ovarian cancer metabolome [30], on which we evaluate

the benefits of using IIS to interpret the interaction profiles of a

variety of conditions (e.g. interactions of specific genes or based on

the omics data from different cell types or treatments).

Methods

The Integrated Interactome System (IIS) is an integrative

platform with a web-based interface, which integrates four

different modules for processing, annotation, analysis and visual-

ization of the interaction profiles of proteins/genes, metabolites

and/or drugs of interest. IIS organizes the analysis in a project

context and the user can create several projects protected by

password. The project is a structure inside the system where

researchers can develop and organize their thematic studies,

choosing between two types: (i) chromatogram project or (ii)

genes/metabolites/drugs project.

Submission Module
The submission module is divided in nomenclature edition and

chromatogram submission. The nomenclature edition allows the

user to manage the description of the experiment, considering the

laboratory, organism, cDNA library, strategy, project, sequencing

plate and sequencing orientation. The chromatogram submission

was developed to input the chromatograms (originated from

Sanger sequencing derived from Y2H experiments, transcriptome,

etc.) into the system. The chromatograms need to be organized in

ZIP files and named according to the position in the 96 well plates

used in the sequencing process (e.g. A01 to H12). The system

receives the uploaded chromatograms file in a ZIP format (each

file containing up to 96 chromatograms), checks the ZIP file and

the individual chromatograms integrity after uncompressing,

organizes the uncompressed chromatograms in a directory

structure and runs PHRED base calling and quality scoring

[31], generating reads sequences (FASTA and QUAL files)

(Figure 1.1). The reads are then submitted to quality analysis

and identification of vector and adaptor sequences, using the

BDTrimmer program [32], and a report is sent by email to the

user summarizing the information about the chromatograms

processing (see also Methods S1 for more details). At the end of

this module, the resulting processed reads are then aligned against

a protein sequence database (GenBank/NR) by using the BLASTx

alignment tool [33] with e-value threshold of 1e-10 to partially

annotate them.

Search Module
In the second module, the partially annotated reads from the

SUBMISSION MODULE are available to be checked, added to

the user’s project (chromatogram project type) and assembled into

clusters (contigs and singlets) using CAP3 program [34], in order

to eliminate redundant reads typically generated by Y2H and

transcriptome assays (Figure 1.2).

In the genes/metabolites/drugs project type, lists of genes/

proteins (UniProt Accession, RefSeq or gene symbol), metabolites

(HMDB, YMDB or ECMD IDs) and/or drugs (DrugBank ID or

CAS number) can also be uploaded by the user as a single column

TXT file and added to the project (Figure 1.2). Because of the

gene symbols redundancies and the presence of aliases in the

databases, searching for gene symbols in the selected organism is

first performed on Swiss-Prot database and in the case of

unreviewed proteins it is extended to TrEMBL database. It is

also possible to upload a two-column TXT file containing UniProt

Accession, RefSeq or gene symbol and fold change values,

respectively, the second one representing expression/concentra-

tion levels.

IIS - An Integrative Platform for Network Analysis
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Annotation Module
In the third module, the partially annotated contigs and singlets,

or the lists of proteins/genes uploaded by the user, are searched

against nine databases (Gene Ontology [35], HPA [36], CDD

[37], MGI [38], PDB [39], DisEMBL [40], Prosite [41], Ensembl

[42] and Swiss-Prot [43], all of them queried monthly for updates)

in order to generate tables with automatic annotation that can be

exported to other software (e.g. Excel) for editing/formatting

purposes (Figure 1.3). The lists of proteins/genes are searched by

their respective UniProt Accession numbers, and the contigs/

singlets are first blasted against Swiss-Prot database and their best

hits used to make an association between their sequences from the

selected organism defined by the user and their respective UniProt

Accession numbers [44].

This module was designed in order to allow users to export

publication-ready tables with a more complete annotation of their

data (for an example and more details see Table S1 and Methods

S1). Users can also create their annotation tables containing only

some desired fields by selecting the databases of interest. By doing

this, thematic annotation tables can be created, e.g. structural

annotation tables (by selecting the CDD, PDB, DisEMBL and

Prosite databases), functional annotation tables (by selecting the

Gene Ontology, HPA and MGI databases), etc., according to the

user needs.

Interactome Module
The fourth module is used to blast the input contigs/singlets

against the Swiss-Prot database to retrieve the corresponding

UniProt Accession numbers of the organism of interest, or search

the input lists of proteins/genes, metabolites and drugs that are

already linked to their own or related UniProt Accession numbers,

and use them as queries in our Global Protein-Metabolite-Gene-

Drug Interaction Database (GPMGDID) to build the networks

(Figure 1.4). The latter was constructed in a MySQL structure by

grouping more than 1 million interactions from nine public

available databases: BioGRID [9], Intact [10], DIP [11], MINT

Figure 1. Workflow used in IIS, showing the integration of the (1) SUBMISSION, (2) ANNOTATION, (3) SEARCH and (4)
INTERACTOME MODULES for data analysis. All steps are indicated by arrows alongside a term, out or in parentheses (both in black and bold
font) that correspond to a sequence of actions (the term in parentheses meaning the tool/database used in that step).
doi:10.1371/journal.pone.0100385.g001
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[13], HPRD [14], DrugBank [15], HMDB [17], YMDB [18], and

ECMDB [19], all of them queried monthly for updates. There are

five parameters classes to select in this module: the organism, the

network configuration, the score cutoff, the two-hybrid parameters

and the expression analysis. IIS works with diverse organism

datasets that can be chosen independently for the input dataset

(project) and the GPMGDID, enabling also the construction of

networks with interactions between different organisms (e.g. host-

pathogen interactions) or using ortholog relationship. The network

configuration parameter considers the interaction level of expan-

sion from first to third neighbors, the addition or not of

metabolites and drugs from GPMGDID in the network expansion,

the deletion of nodes with connectivity degree of 0 and 1 (yielding

a more connected network), and the selection of the background

organism for the enrichment analysis. The score cutoff parameters

can be used to filter the network for more confident interactions by

three types of score: the Class score, the FSW score and the p-

value, which are described in more details in the following

sections. The order considered in the algorithm to reduce the

network size by filters is: (i) Class score, (ii) p-value, (iii) deletion of

nodes with connectivity degree of 0 and 1, and (iv) FSW score. In

the two-hybrid parameters, if the user is working with two-hybrid

or immunoprecipitation techniques and has a bait of interest to

connect with the identified novel preys, it can be done using this

option. Finally, in the expression analysis parameters, if working

with omics datasets, the user can set cutoff values to color the input

nodes as up- or down-regulated and change the node sizes

according to their fold change in expression/concentration levels.

Regarding the enrichment analysis, the program calculates the

enrichment for the GO biological processes and KEGG pathways

in the generated network using the hypergeometric distribution

[45]. The exact and approximated hypergeometric distributions

were implemented in the interactome algorithm using gamma and

log-gamma function, respectively, to calculate factorial number.

The second one was necessary to avoid stack overflow related to

large factorial numbers [46] (the empirical tests showed that the

transition from exact to approximated function occurs for GO

term or KEGG pathway with more than 1,800 related proteins in

the GPMGDID database).

This module generates a XGMML file containing all annota-

tions and metrics described below that can be directly visualized

on the website using Cytoscape web [47] from our web server

(Figure 1.4) or can be imported into Cytoscape platform [48]. The

Cytoscape platform is an open source software that enables the

visualization of all interactions (or defined subgroups of interac-

tions) and the analysis and correlation of node and edge properties

with topological network statistics using a set of core modules and

external plugins. The information available in the XGMML file

has been standardized in order to communicate with these plugins.

Construction of the GPMGDID database. The Global

Protein-Metabolite-Gene-Drug Interaction Database (GPMGDID)

is a non-redundant database which integrates all protein-metabo-

lite-gene-drug interactions described in several public databases,

divided by organism, where the interaction pairs are classified by

data type (experimental or predicted), methodology (e.g. two-

hybrid, pull down, genetic interference, etc.), organism and source

(PubMed ID of the paper that published the interaction), while the

proteins/genes involved in the interactions are characterized by

biological process, molecular function and cellular component

allowing the enrichment and compartmentalization analysis

performed by the INTERACTOME MODULE.

The publicly available interaction databases have non-standard

protein identifications, file formats and are not uniquely indexed

and annotated, which compromises the development of a single

algorithm to integrate all datasets. Therefore, the UniProt

Accession was chosen as the reference ID for the unification of

the different datasets, generating the following possible interaction

pairs: UniProtID1_UniProtID2, UniProtID1_HMDBID1, Uni-

ProtID1_YMDBID1, UniProtID1_ECMDBID1 or UniProtID1_

DrugBankID1. A large amount of interaction redundancies

generated because the same information is described in different

interaction databases was also eliminated by concatenating

interaction pairs with the source from which they were described

(PubMed IDs), producing an interaction pair ID given by

UniProtID1_UniProtID2_PubMedID. Figure 2 summarizes the

pipeline applied to construct GPMGDID database (see also

Methods S1 for more details).

Filtering high-confidence interactions by mathematical

approaches. The interacting pairs constructed by the method

described above may be error prone and must undergo a

validation step. In order to achieve a more reliable result, some

facts should be considered: proteins that actually interact are

expected to share the same cellular compartment and have

common interaction partners. It has been shown that a pair of

genuine interacting proteins is generally expected to have a

common cellular role and proteins that have common interaction

partners have a higher chance of sharing a common function.

Moreover, even if two proteins are consistently predicted to

interact they must be located at the same cell compartment and at

the same time [49–53]. Therefore, three validation approaches

were considered to verify the quality of interaction pairs in

networks constructed from GPMGDID database: Class score,

Functional Similarity Weight score (FSW score) and p-value.

These mathematical approaches are further described and can be

used as filters in the INTERACTOME MODULE to reduce the

network size for more reliable interactions.

Class score. The interactions in the GPMGDID present a

Class score similar to the cellular compartment classification (C3)

described by Brandão et al. [54], and it is based on three

characteristics: type of interaction (experimental or predicted),

number of papers describing the interaction in PubMed (PubMed

ID), and cellular component (CC) described for the interacting

nodes in the Gene Ontology database [35]. The CC used by IIS

corresponds to a concise list of the main selected subcellular

compartments from GO and are depicted in bold in Table S2 (GO

CC children terms were grouped for each selected main ancestral

CC term, considering only terms annotated for $10 genes). This

classification divides the interactions into four classes according to

their evidence and subcellular localization. Class score value

attributed for the type of interaction is +4 if it is based on

experimental data, and 0 if there is no experimental data available

(predicted); for co-localization we attribute score +1, otherwise we

display score 0; if the interaction is described in more than one

PubMed ID considering at least one paper not related to high-

throughput experiments we score +4, if the interaction is described

in more than one PubMed ID we score +3, if it is described in only

one PubMed ID we score +1, and 0 if not published. We consider

high-throughput experiment papers those describing more than

500 interactions. The Class scores are used in IIS to depict

different edge widths to the generated networks, in order to

visually assign interactions confidence (Table 1).

Functional Similarity Weight score (FSW score). In

GPMGDID, due to its integrative profile, the reliability index

for a reported interaction can be postulated in terms of the

proportion of interaction partners that two proteins have in

common. A mathematical approach called Functional Similarity

Weight (FSWeight) [51] has been proposed to assess the reliability

of protein interaction data based on the number of common

IIS - An Integrative Platform for Network Analysis
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neighbors of two proteins. The FSWeight approach was initially

designed to predict protein functions, and lately has shown a good

performance in evaluating the reliability of protein interactions

[53]. The interaction pairs of proteins that are classified with high

score by this method are likely to be true positives. On the other

hand, the pairs of proteins that are classified with low scores are

likely to be false positives. The most interesting feature of the

FSWeight is that it is able to rank the reliability of an interaction

between a pair of proteins using only the topology of the

interactions between that pair of proteins and their neighbors

within a short radius in a graph network [49,50].

Therefore, we implemented in GPMGDID the Functional

Similarity Weight score (FSW score) calculation originally

proposed by Chua et al. [51], and described by Brandão et al.

[54], for all first, second and third level interactions present in our

database. The effect of FSW score threshold in the network is

exemplified and discussed in the Results and Discussion section.

P-value. Finally, a statistical hypothesis testing was imple-

mented to avoid random interaction pairs generated during

network expansion using GPMGDID database. Every time the

user builds a new subnetwork from the GPMGDID, p-values are

calculated for each protein in the generated subnetwork, in order

to assign confidence. The p-value is calculated based on the work

by Berger et al. [24]. First, the z-score value is calculated for each

protein using a binomial proportion test that depends on the total

of interactions of the protein in the subnetwork, the total of

interactions of the protein in the GPMGDID filtered by a specific

organism, the total of interaction pairs in the subnetwork and the

total of interaction pairs in the GPMGDID filtered by a specific

organism. Next, a normal distribution that depends on the

variance and average of the values already calculated was used for

converting the z-scores to p-values.

Web interface. IIS web interface was built in JavaScript,

JSON and PHP, and locally hosted on a Linux server at http://

www.lge.ibi.unicamp.br/lnbio/IIS/. The web interface allows the

user to work in the thematic project, protected by password,

organizing and updating the set of proteins/genes, metabolites and

drugs of interest and their respective annotations and networks.

Results and Discussion

We have validated IIS’s ability to perform the analysis of

interaction profiles for both specific genes or omics data originated

from different cell types or conditions with three case studies: (i) an

yeast two-hybrid screening [28], (ii) an yeast proteome [29] and

(iii) a human cancer metabolome [30].

First case study: hNek6 yeast two-hybrid screening
The human NIMA-related kinase 6 (hNek6) was chosen based

on a previous work by our group [28] in which the PPI network of

hNek6 was manually generated, annotated and visually analyzed

Figure 2. Global Protein-Metabolite-Gene-Drug Interaction Database (GPMGDID) construction. The UniProt Accession was chosen as
the reference ID for the unification of the nine different databases used to construct GPMGDID: IntAct, DIP, MINT, BioGRID, HPRD, HMDB, YMDB,
ECMDB and DrugBank databases. The interaction redundancies were eliminated by concatenating pairs of interactions with the source (PubMed IDs),
generating an interaction pair ID given by UniProtID1_UniProtID2_PubMedID. The resultant database integrates several protein-metabolite-gene-
drug interactions classified by source, methodology and organism.
doi:10.1371/journal.pone.0100385.g002

Table 1. Interactions confidence measured by Class scores used to represent different edge widths in the networks.

Class Score Edge width Parameters1

A +9 2.5 Experimental/PubMed ID .1 (at least one not HT)/same CC

B +7/+8 2.0 Experimental/PubMed ID .1 or Experimental/PubMed ID .1/same CC

C +6 1.5 Experimental/PubMed ID = 1/same CC

D +5 1.0 Experimental/PubMed ID = 1

E +4 0.5 Experimental/PubMed ID = 0

1Parameters used to calculate the Class scores: interaction described as experimental (not predicted) (+4); interaction described in more than one paper (PubMed ID .1)
and at least one paper not describing high-throughput (HT) experiments (+4); interaction described in more than one paper (PubMed ID .1) (+3); interaction described
in only one paper (PubMed ID = 1) (+1); interacting nodes described in the same cellular component (CC) (+1). For novel interactions not described in any paper
(PubMed ID = 0), even if the interacting nodes are described in the same CC, it will be assigned Class score E.
doi:10.1371/journal.pone.0100385.t001
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by Osprey software [55] using the BioGRID database [9]. Here

we used IIS to perform all the steps from the chromatograms

processing to the annotation and interactome construction and

analysis using a standardized pipeline executed in a significantly

shorter period of time. First, hNek6 prey cDNAs were sequenced

and their chromatograms were organized into files to be submitted

to IIS in a new chromatogram project. After submission, the

chromatograms were immediately processed into reads, assembled

into contigs and singlets and blasted against GenBank/NR for a

partial annotation. The complete annotation table (Table S1)

against diverse databases was then generated by selecting all the

contigs and singlets in the ‘‘Module 3: Annotation’’ tab inside the

project and using the ‘‘Create Annotation’’ button. The same

selection was done in the ‘‘Module 4: Interactome’’ tab, and the

‘‘Create Interactome’’ button was used to build the hNek6

networks, from the first to the third neighbors levels of interactions

(Figure 3A, B and D). All the networks were visualized both on the

website using the Cytoscape web [47], and locally using the

Cytoscape software [48], which was also used to manipulate and

analyze the networks. The example chromatogram files available

for the user on the IIS website correspond to fifteen hNek6

interactions confirmed by in vitro and in vivo assays (described in

Table 5 by Meirelles et al. [28]).

Figure 3 shows the hNek6 interaction networks generated by IIS

and visualized by Cytoscape. Our new automatic analysis using

IIS made it possible to verify, as described before [28] that this

kinase is a hub (node with several connections in the network)

involved in several biological processes through its interaction with

diverse types of proteins in different cellular compartments (Table

S3), possibly at different time points during the cell cycle. In our

previous work [28], we manually curate from the literature the

hNek6 putative cellular roles, considering all the novel interacting

partners retrieved by the yeast two-hybrid screening, which were

as follows: cell cycle, cytoskeleton organization, DNA repair, NF-

kappaB and Notch signalings and cancer-related interactions.

Using our new approach, by building a network for the hNek6

interactions confirmed by in vitro and in vivo assays, considering

only the top enriched biological processes (p#0.05) and, partic-

ularly, the second neighbors expansion, we were able to identify

mostly the same processes but also new ones, e.g. apoptotic process

(GO enrichment p-value of 2.2e-48), cell division (1.1e-41),

epidermal growth factor receptor signaling pathway (3.3e-38),

transcription, DNA-dependent (6.8e-34), cell proliferation (1.0e-

31), DNA repair (1.5e-22), I-kappaB kinase/NF-kappaB cascade

(1.7e-16) and others (Table S3). Beyond cell cycle and DNA repair

biological processes/pathways, which have been more extensively

explored for Neks [56], the NF-kappaB cascade kept our attention,

since NEK6 gene was described among others to activate the NF-

kappaB signaling pathway, in a large-scale screening [57].

However, there is no explanation of how hNek6 activates this

pathway and the first possible links to that question were addressed

by our yeast two-hybrid results that showed hNek6 interactions

with Transcription factor RelB (RELB), Prx-III (PRDX3) and

TRIP-4 (TRIP4) [28]. The first neighbors expansion of our

network was not able to show enrichment in I-kappaB kinase/NF-

kappaB cascade, but in apoptotic process and transcription, where

these proteins were found as most enriched. Though, from the

second neighbors expansion, we could observe I-kappaB kinase/

NF-kappaB cascade enrichment, forming a cluster of five proteins:

Protein-tyrosine phosphatase-like A domain-containing protein 1

(PTPLAD1), NF-kappa-B inhibitor-interacting Ras-like protein 1

(NKIRAS1), E3 ubiquitin-protein ligase parkin (PARK2), GTPase

RhebL1 (RHEBL1) and Ubiquitin D (UBD) (Figure 3C). Inter-

estingly, the first neighbors of this cluster have hNek6 as a

component forming another smaller cluster of proteins also

annotated to be involved in NF-kappaB cascade (by analyzing

all their enriched biological processes depicted in Table S3):

hNek6 (NEK6), Beta-arrestin-1 (ARRB1), Estrogen receptor

(ESR1) and Sequestosome-1 (SQSTM1). Moreover, five hNek6

protein partners identified by the yeast two-hybrid system (40S

ribosomal protein S7, Cell division control protein 42 homolog, E3

ubiquitin-protein ligase RBBP6, Prx-III and TRIP-4), including

two of the three interactors described above also interact with two

other proteins from this hNek6 cluster (Beta-arrestin-1 and

Estrogen receptor), both of which negatively regulate NF-kappaB

cascade [58,59] (Figure 3C, red edges). Therefore, our hypothesis

is that hNek6 may interact directly with any of those two-hybrid

interactors, possibly regulating them by phosphorylation, which

could regulate their interaction with Beta-arrestin-1 and/or

Estrogen receptor, finally inhibiting these proteins and activating

the pathway. This analysis adds novel possible clues on how

hNek6 activates NF-kappaB cascade. Although the Transcription

factor RelB was found to interact only with hNek6 from the

referred cluster, it is already a direct link to the NF-kappaB

cascade activation, since it is a component of the NF-kappa-B

RelB-p50/p52 complex. Nek6 is also directly linked to Protein-

tyrosine phosphatase-like A domain-containing protein 1

(PTPLAD1), enriched in the I-kappaB kinase/NF-kappaB cascade

cluster. Altogether, these findings may suggest a novel non-mitotic

function for hNek6 through this pathway.

Second case study: S. cerevisiae encapsulated cells
proteome

As an example of a proteomics study, we chose the S. cerevisiae

proteome of encapsulated cells in liquid core alginate-chitosan

capsules in comparison with cells grown freely in suspension

described by Westman et al. [29]. In the context of bioethanol

production, encapsulation of yeast cells has been shown to

improve the fermentative performance in toxic lignocellulosic

hydrolysates [60] and to increase thermotolerance [61]. It has

been shown that the yeast metabolism changed significantly upon

encapsulation [29], so we used IIS to build a network for the 116

up- and 95 down-regulated proteins in yeasts growing in capsules

(described in Table S1 by Westman et al. [29]) to comparatively

analyze how encapsulation affects the cells on a more integrated

molecular level. First, we uploaded a single two-column TXT file

containing both the up- and down-regulated proteins, available as

UniProt Accession numbers and respective fold change values, in

the ‘‘Module 2: Search’’ tab inside the project. Then the retrieved

proteins were selected and added to the project, annotated in the

‘‘Module 3: Annotation’’ tab, and used as queries to build a

network in the ‘‘Module 4: Interactome’’ tab, setting expression

analysis parameters to consider fold change $1.3 as up-regulated

and fold change #21.3 as down-regulated proteins. The network

was visualized and manipulated using the Cytoscape software.

Figure 4 shows the interactome of encapsulated S. cerevisiae built

from the proteome data. Our new analysis using IIS showed the

same and other functional categories enriched among the up- and

down-regulated proteins as described before [29], but using the

GO database instead and with one considerable advantage:

together with Cytoscape it enabled the visualization of the (i)

distribution of the biological processes among the identified

proteins, (ii) the number, identity and type of each protein (up-

or down-regulated and interactors from database) in each process,

(iii) the relative fold change levels of each protein and (iv) their

interactions, all resultant data integrated in the same network. It

was also possible to analyze the network according to the enriched

KEGG pathways and GO cellular components, since these
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information were also computed and available in the generated

network (data not shown).

In a more global perspective, it was of immediate observation

that the majority of up-regulated proteins was involved in cellular

metabolic processes (eg. heme biosynthetic process, glycolysis,

NADH oxidation, fatty acid metabolic process, ergosterol biosyn-

thetic process and glycogen biosynthetic process), unlike the down-

regulated proteins, mostly involved in RNA processing (compris-

ing the most down-regulated protein Drs1p), translation and

cellular component organization or biogenesis (Figure 4A). Re-

garding the metabolic process clusters in the network, as also

emphasized by Westman et al. [29], the glycolytic pathway

enzyme Tdh1p was found in a significantly higher level in the

encapsulated yeast (Figure 4B), and the high affinity hexose

transporters Hxt6p and Hxt7p, although not clustered together,

were visually identified as the most up-regulated proteins.

Moreover, our analysis was able to identify many proteins in the

glycogen biosynthetic process cluster (eg. Gsy1p, Gsy2p, Pgm2p,

Glc3p, Ugp1p and Gdb1p) (Figure 4C), and proteins involved in

NADH oxidation (the alcohol dehydrogenases Adh1p and Adh5p,

which reduce acetaldehyde to ethanol) (Figure 4B), which were all

up-regulated. These findings strongly indicate a carbon limitation

inside the capsules, but an accumulation of glycogen as the

capsules filled up with cells, considering its importance as a storage

carbohydrate in slowly growing or starved yeast, and, more

relevant, an increase in ethanol yields. Notably, proteins involved

Figure 3. Human Nek6 interactome built from yeast two-hybrid data. (A) hNek6 first neighbors network, showing the bait hNek6 in red, the
Y2H first neighbors in blue, the first neighbors described in the GPMGDID database in green, and the metabolites/drugs interactors described in the
GPMGDID database in yellow and in different shapes: squares for metabolites and triangles for drugs. The proteins were localized according to their
cellular components (GO) described in the ‘‘Selected CC’’ node attribute field by using the Cerebral Cytoscape plugin. (B) hNek6 second neighbors
network, showing the second neighbors in orange. The proteins were distributed according to the organic layout. The insertion is depicting the
different edge widths, according to our confidence Class scores. (C) hNek6 second neighbors network showing the following protein clusters: 1. top
enriched NF-kappaB cascade, 2. first neighbors of cluster 1, 3. enriched NF-kappaB cascade subset of cluster 2, and 4. hNek6 yeast two-hybrid
interactors. The proteins were distributed according to the organic and degree-sorted circle layouts, and proteins with degree 0 and 1 were deleted
from the network. (D) hNek6 third neighbors network, showing the expansion from the first to the third level of interaction with the third neighbors
in purple. The proteins were distributed according to the organic layout. The networks were visualized using Cytoscape v2.8.3.
doi:10.1371/journal.pone.0100385.g003
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Figure 4. Interactome of S. cerevisiae encapsulated in liquid core alginate-chitosan capsules vs. cells grown freely in suspension,
built from proteome data. (A) The enriched GO biological processes (p#0.05) among the up-regulated proteins (red), the down-regulated
proteins (green) and the background intermediary proteins (grey) from GPMGDID are depicted in the network by clustering the proteins involved in
each of the biological processes with a circle layout. Clusters were assigned only to biological processes containing more than three proteins with at
least one from the proteome data; proteins belonging to more than one biological process were assigned to clusters with the best enrichment p-
values. More specific biological processes are shown only for proteins with more specific annotation in GO database. The nodes sizes of up- and
down-regulated proteins are depicted proportional to their fold change (FC $1.3, FDR p#0.05, as described by Westman et al.) [29]. (B) Network
zoom showing the glycolysis (GO enrichment p-value of 1.7e-02), NADH oxidation (2.1e-04) and ergosterol biosynthetic process (4.3e-15) clusters. (C)
Network zoom showing the glycogen biosynthetic process (2.5e-06) cluster. The network was built using first neighbors expansion, deletion of nodes
with degree 0 and 1, addition of different colors and sizes to proteins according to their fold change, and was filtered by Class scores A to C. The
network was visualized using Cytoscape v2.8.3 and the proteins were distributed according to selected enriched biological processes (GO) from the
‘‘Top Enriched BP’’ node attribute field by using the group attributes layout. The following enriched biological processes clusters are shown in the
network: 1. transcription, DNA-dependent (3.8e-25), 2. chromatin silencing at telomere (6.1e-15), 3. positive regulation of RNA elongation from RNA
polymerase II promoter (5.0e-10), 4.positive regulation of transcription from RNA polymerase II promoter (4.2e-19), 5. negative regulation of
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in the ergosterol biosynthetic process cluster (eg. Erg25p, Erg3p

and Erg11p) were also visually identified as greatly up-regulated

(Figure 4B), although not discussed in the previous report by

Westman et al. [29]. Since ergosterol is the major sterol of the

fungal plasma membrane, important for the fluidity and integrity

of the membrane and for the proper function of many membrane-

bound enzymes, with its biosynthetic pathway consisting in a

pivotal target of antifungal drugs [62], these findings may also

explain the differences between encapsulated and free growing

yeast cells. Indeed, a more intact membrane supports higher

concentrations of ethanol. Furthermore, among the stress response

proteins, comprising both up- and down-regulated proteins, it was

suggested by Westman et al. [29] that a more plausible

explanation for the apparent osmotic stress response is a cross-

talk between nutrient starvation and other environmental stress

responses. In our network analysis, this hypothesis could be

visualized by the broad spectrum of connections among the stress

response clusters with other clusters in the network (Figure 4A, red

edges).

Third case study: primary and metastatic human ovarian
cancer metabolome

For the metabolomics analysis, we used as an example the work by

Fong et al. [30], which described the metabolome of the human

normal ovary and its transformation in primary epithelial ovarian

cancer (EOC) and metastatic ovarian cancer (MOC). In the context

of oncogenesis and the importance of a comprehensive metabolic

analysis of solid tumors to reveal possible biomarkers for early

diagnosis and monitoring of cancer progression and recurrence, IIS

was used to build two comparative networks: one for the up- and

down-regulated metabolites in EOC and the other one for the up-

and down-regulated metabolites in MOC (described in Table S2 by

Fong et al. [30]). First, we converted the metabolite names to HMDB

IDs and uploaded a single two-column TXT file containing both the

up- and down-regulated metabolites for each condition (EOC and

MOC), as a list of HMDB IDs and respective fold change values, in

the ‘‘Module 2: Search’’ tab inside each project (EOC and MOC).

Then the retrieved metabolites were selected and added to the

project, and used as queries to build the networks in the ‘‘Module 4:

Interactome’’ tab, setting expression analysis parameters to consider

fold change $1.2 as up-regulated and fold change #21.2 as down-

regulated metabolites, as described by Fong et al. [30]. The network

was visualized and manipulated using the Cytoscape software.

Figure 5 shows the interactomes of (A) EOC and (B) MOC built

from the metabolome data. Our new analysis using IIS showed

similar metabolic pathways as described before [30], and also

other signaling and metabolic pathways enriched among the up-

and down-regulated metabolites. We analyzed the data based on

the KEGG database enrichment performed by IIS, which was

able to retrieve 5 of each list of 15 enriched pathways for EOC and

MOC identified by the Ingenuity Pathway Analysis (IPA):

Aminoacyl-tRNA biosynthesis (KEGG enrichment p-value of

1.3e-26), Urea cycle and metabolism of amino groups (1.4e-21),

Glycine, serine and threonine metabolism (1.1e-10), Methionine

metabolism (2.5e-09), and Phenylalanine, tyrosine and tryptophan

biosynthesis (1.4e-07) for EOC; and Alanine and aspartate

metabolism (1.8e-16), Purine metabolism (8.3e-12), Arginine and

proline metabolism (2.3e-11), Glutamate metabolism (2.0e-10),

and Pyrimidine metabolism (1.2e-10) for MOC. Though, IIS also

retrieved other 25 and 16 significant enriched pathways for EOC

and MOC, respectively, including signaling and metabolic

pathways (Figure 5). Notable among these are the Glycan

structures degradation (1.3e-04 in EOC; 3.0e-09 in MOC) and

Fatty acid metabolism (1.3e-11 in EOC; 2.1e-14 in MOC)

pathways enriched in both EOC and MOC, which could explain

the increase in fucose (2.75 fold in EOC; 1.81 fold in MOC) and

carnitine (1.79 fold in EOC; 1.88 fold in MOC) levels. The

enriched Pyruvate metabolism (5.6e-17) and Glycolysis/Gluco-

neogenesis (5.5e-32) pathways in EOC and MOC, respectively,

could also explain the increase in lactate levels when compared to

normal ovarian tissue (1.46 fold in EOC; 1.37 fold in MOC).

In order to reduce complexity, Figure 5 shows the metabolites in

only a few metabolic pathway clusters, since they are the ones

containing interacting proteins with the best enrichment p-values,

although the metabolites are also connected to the other clusters

by interactions with different proteins, e.g. carnitine is connected

to the Purine metabolism (7.9e-36) cluster in EOC by its

interaction with Xanthine dehydrogenase/oxidase (XDH), and

also connected to the Fatty acid metabolism (1.3e-11) cluster by its

interaction with Carnitine palmitoyltransferase 1A (CPT1A)

(Figure 5A, red edges). Clusters composed of at least one first

neighbor interactor represent probably the most confident

pathways, since they group direct interactors of metabolites. As

in the proteomics approach, IIS metabolomics analysis connected

to Cytoscape enabled the visualization of all resultant data

integrated in the same network, making it easier to interpret the

whole dataset and its relations, since they can bring together

information concerning: the (i) distribution of the pathways among

the identified metabolites, (ii) the number, identity and type of

each metabolite (up- or down-regulated) in each process, (iii) the

relative fold change levels of each metabolite and (iv) their

interactions.

transcription, DNA-dependent (7.1e-03), 6. positive regulation of transcriptional preinitiation complex assembly (2.5e-05), 7. vacuolar acidification
(1.1e-10), 8. replicative cell aging (3.9e-12), 9. pseudohyphal growth (3.6e-08), 10. rRNA processing (4.8e-16), 11. maturation of SSU-rRNA from
tricistronic rRNA transcript (1.2e-15), 12. regulation of translation (3.2e-10), 13. regulation of translational fidelity (2.7e-05), 14. mitochondrial
translation (9.9e-04), 15. mature ribosome assembly (5.2e-04), 16. ribosomal small subunit assembly and maintenance (1.1e-05), 17. ribosomal large
subunit biogenesis and assembly (3.9e-12), 18. protein refolding (1.8e-11), 19. protein folding (7.7e-09), 20. mRNA transport (9.7e-08), 21. poly(A)+
mRNA export from nucleus (5.2e-09), 22. protein transport (1.9e-11), 23. ribosomal small subunit export from nucleus (1.3e-08), 24. protein
localization (4.9e-07), 25. protein import into nucleus (6.9e-11), 26. protein targeting to ER (5.2e-04), 27. ER to Golgi vesicle-mediated transport (1.1e-
07), 28. endocytosis (9.6e-19), 29. lysine biosynthetic process via aminoadipic acid (7.1e-03), 30. pantothenate biosynthetic process (4.5e-04), 31. heme
biosynthetic process (1.3e-03), 32. glycolysis (1.7e-02), 33. NADH oxidation (2.1e-04), 34. phospholipid biosynthetic process (1.1e-02), 35. fatty acid
metabolic process (8.9e-04), 36. fatty acid biosynthetic process (2.7e-05), 37. protein amino acid N-linked glycosylation (2.1e-03), 38. ergosterol
biosynthetic process (4.3e-15), 39. branched chain family amino acid catabolic process (2.4e-04), 40. pentose-phosphate shunt (2.7e-02), 41. 2-
oxoglutarate metabolic process (2.4e-03), 42. one-carbon compound metabolic process (1.2e-02), 43. DNA recombination (5.8e-03), 44. metabolic
process (3.0e-03), 45. deoxyribonucleotide biosynthetic process (6.6e-06), 46. protein deubiquitination (1.8e-09), 47. aerobic respiration (3.3e-04), 48.
glycogen biosynthetic process (2.5e-06), 49. actin cytoskeleton organization and biogenesis (3.0e-05), 50. actin filament organization (5.1e-12), 51.
chitin- and beta-glucan-containing cell wall organization and biogenesis (1.0e-12), 52. cell division (2.8e-21), 53. mitosis (1.5e-17), 54. establishment of
cell polarity (2.8e-13), 55. TOR signaling pathway (8.3e-09), 56. Ras protein signal transduction (1.2e-07), 57. response to osmotic stress (1.1e-10), 58.
response to stress (3.3e-06).
doi:10.1371/journal.pone.0100385.g004
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Network attributes and parameters
It is important to point out that the network construction by IIS

considers the degree of each node in the network, showing a

gradient of node sizes, which makes it easy to distinguish the hubs.

The generated network also brings the cellular components and

the enriched biological processes and pathways of each node,

which can be used to easily separate the nodes into cell

compartments (e.g. by using different layouts or the Cerebral

Cytoscape plugin [63], as shown in Figure 3A), or cluster the nodes

into functional modules. It also considers each type of node

(proteins, metabolites and drugs) as different entities, which can be

distinguished by their different node shapes (Figure 3A), and

depicts different edge widths according to the interaction

confidence Class score, described above (Figure 3B). Other

confidence interaction measures, such as the FSW score and p-

value, or different types of interactions, can be accessed as node

and edge attributes (Methods S1). Besides, all of these parameters

can be changed by the users according to their specific needs.

As a metric of how many neighbors a pair of proteins share, the

FSW score was implemented so that it can also be used as a filter

Figure 5. Comparison between the interactomes of (A) primary human epithelial ovarian cancer and (B) metastatic ovarian cancer
vs. normal human ovary, built from metabolome data. The enriched KEGG pathways (p#0.05) among the up-regulated metabolites (red
squares), the down-regulated metabolites (green squares) and the background intermediary proteins (light blue circles for first neighbors and dark
blue circles for second neighbors) from GPMGDID are depicted in the networks by clustering the proteins involved in each of the pathways with a
circle layout. Enriched KEGG pathways specifically for each network (A) or (B) are depicted in purple and the ones in common are depicted in black.
Clusters were assigned only to pathways containing more than three proteins (disease pathways or pathways specific for defined cell types were not
considered), and metabolites were assigned only to metabolic pathway clusters containing interacting proteins with the best enrichment p-values.
The nodes sizes of up- and down-regulated metabolites are depicted proportional to their fold change (FC$1.2, p#0.05, as described by Fong et al.
[30]) and the nodes sizes of the background intermediary proteins are depicted proportional to their connectivity degree. The networks were built
using second neighbors expansion, deletion of nodes with degree 0 and 1 and addition of different colors and sizes to proteins according to their
fold change. The networks were visualized using Cytoscape v2.8.3 and the proteins were distributed according to selected enriched pathways (KEGG)
from the ‘‘Top Enriched KEGG’’ node attribute field by using the group attributes layout.
doi:10.1371/journal.pone.0100385.g005

Figure 6. Comparison between FSW score, degree and Class score. (A) Degree distribution of hNek6 third neighbors network (c= 21.59). (B)
FSW score distribution of hNek6 third neighbors network (c= 21.72). (C) Percentage of PPIs characterized by the best FSW score and Class score in
hNek6 third neighbors network. (D) Correlation between the average degree and the FSW score of hNek6 third neighbors network from FSW score 0
to 10. Both the degree distribution and the FSW score distribution approximate a power-law and are scale-free in topology. The slopes (c) were
determined by linear fitting where P(k) approximates a power-law: P(k)<k2c (k: total number of links; K: average degree; c: slope of the distribution
on the log-log plot; fsw: functional similarity weight; PPI: protein-protein interaction).
doi:10.1371/journal.pone.0100385.g006
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of hubs when building the networks. To statistically compare the

FSW distribution to the degree distribution in the networks

generated by IIS, the degree distribution P(k) and the average

degree (K) of each network were calculated as described by Stelzl et

al. [4]. We found that the FSW score distribution is similar to the

degree distribution and is also scale-free in topology (Figure 6A

and B). Therefore, the FSW score could be used as a parameter to

filter hubs from the networks, as shown by using score values 0.01

to 1.0, where the average degree of the network is greatly reduced

and most of the hubs fall outside the network (Figure 6D).

Furthermore, the effectiveness of using FSW score as a PPI

reliability index was demonstrated before [49,50,54]. Here we

ranked the top 10% of protein interactions in the hNek6 third

neighbors network by the FSW score and compared to the Class

score. We found that the top 10% of PPIs with the best FSW

scores were also enriched with the best Class scores A and B:

15.0% were characterized by Class score A and 9.4% by Class

score B, compared to 3.8% and 3.3%, respectively, considering the

total PPIs in the network (Figure 6C).

IIS annotates nodes and edges using diverse databases and

metrics, and offers a variety of filters to build the networks, which

can be used depending on the type and amount of data to be

analyzed. Though, in general, a few steps may be considered: if

working with (i) large datasets or organisms with huge interaction

databases (Table S4), the network size can be reduced by using the

Class score or FSW score filters; (ii) small datasets, the network can

give more information when expanded to second or third

neighbors; (iii) organisms for which only a few interactions were

described, the network can be built by using the ‘‘ortholog

relationship’’ option selecting a phylogenetically close model

organism; (iv) transcriptome or proteome datasets, the network

can be more coherent and concise by expanding it only to first

neighbors and using the ‘‘delete nodes with degree 0 and 1’’

option; (v) metabolome datasets, an expansion to second neighbors

may be more interesting, since it will probably allow clusters of

metabolites and first neighbors to connect with each other; and (vi)

drugs datasets, the same as for metabolome datasets.

Therefore, from the analyses presented above, IIS comes as a

platform to perform an integrative analysis of omics data focused

on interaction networks, mainly visualized via web or by

Cytoscape software, in a more complete and easy-to-interpret

way, in order to give a first overview of all the components, their

emergent properties and relations and assist researchers to direct

further relevant experiments and take important insights of their

data. IIS is freely available online at: http://www.lge.ibi.unicamp.

br/lnbio/IIS/. IIS code and database can be downloaded at:

http://bioinfo03.ibi.unicamp.br/lnbio/IIS2/download.php.

Supporting Information

Table S1 Automatic annotation table generated from
the Annotation Module.

(XLS)

Table S2 Cellular component (GO) used in our data-
base. Children terms were grouped for each selected ancestral

cellular component, considering only terms annotated for $10

genes.

(XLS)

Table S3 Node attributes from hNek6 second neighbors
network. All attributes are described in details in Methods S1.

Enriched GO Biological Processes (BP) and KEGG Pathways are

depicted with a p-value in parentheses for each protein in the

network. Only enriched terms with p#0.05 were considered in the

network analyses. hNek6 interactors retrieved by yeast two-hybrid

are depicted in bold. Nodes with degree 0 and 1 were deleted from

the network.

(XLS)

Table S4 Statistics from GPMGDID.

(XLS)

Methods S1 GPMGDID construction, IIS pipeline and
XGMML file generation.

(PDF)
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