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Abstract

Rickettsia rickettsii, the causative agent of Rocky Mountain spotted fever, is the most pathogenic member among Rickettsia
spp. Surface-exposed proteins (SEPs) of R. rickettsii may play important roles in its pathogenesis or immunity. In this study, R.
rickettsii organisms were surface-labeled with sulfo-NHS-SS-biotin and the labeled proteins were affinity-purified with
streptavidin. The isolated proteins were separated by two-dimensional electrophoresis, and 10 proteins were identified
among 23 protein spots by electrospray ionization tandem mass spectrometry. Five (OmpA, OmpB, GroEL, GroES, and a
DNA-binding protein) of the 10 proteins were previously characterized as surface proteins of R. rickettsii. Another 5 proteins
(Adr1, Adr2, OmpW, Porin_4, and TolC) were first recognized as SEPs of R. rickettsii herein. The genes encoding the 5 novel
SEPs were expressed in Escherichia coli cells, resulting in 5 recombinant SEPs (rSEPs), which were used to immunize mice.
After challenge with viable R. rickettsii cells, the rickettsial load in the spleen, liver, or lung of mice immunized with rAdr2
and in the lungs of mice immunized with other rSEPs excluding rTolC was significantly lower than in mice that were mock-
immunized with PBS. The in vitro neutralization test revealed that sera from mice immunized with rAdr1, rAdr2, or rOmpW
reduced R. rickettsii adherence to and invasion of vascular endothelial cells. The immuno-electron microscopic assay clearly
showed that the novel SEPs were located in the outer and/or inner membrane of R. rickettsii. Altogether, the 5 novel SEPs
identified herein might be involved in the interaction of R. rickettsii with vascular endothelial cells, and all of them except
TolC were protective antigens.
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Scal are involved in rickettsial attachment to host cells [10,11].
Scad (OmpB) is associated with rickettsial adherence to and
invasion of host cells [12]. Sca2 functions as a formin mimic that
causes actin-based motility of rickettsiae in host cells [13], and
Sca4 activates vinculin and interacts with the actin cytoskeleton of
host cells [14].

In addition to their functions in pathogenesis, SEPs are likely to
be important in activating immune cells to elicit protective
responses against rickettsial infection. OmpA and OmpB are well
known protective antigens of spotted fever group (SFG) rickettsiae
[15]. Recently, a surface protein (YbgF) of R. heilongjiangensis has
been recognized as a protective antigen [16].

Proteomics analysis of rickettsial surface proteins has the
potential to scientifically identify surface proteins, including those
required for the interaction of rickettsiae with host cells to cause
infection and those required for induction of protective immune
responses against the infection. In the present study, proteomic
analysis of surface cell proteins was used to identified 10 major
SEPs of R. rnickettsui, 5 of which were first recognized as the surface
proteins of R. rickettsiz and found to be associated with its outer

Introduction

Ruckettsia rickettsii is an obligate intracellular Gram-negative
bacterium that causes Rocky Mountain spotted fever (RMSF), a
serious life-threatening disease. RMSF was first found in the Snake
River Valley of Idaho in 1896 and described by Edward E Maxey
[1]. Patients suffering from RMSF usually present fever, headache,
myalgias, and rash, as well as a history of tick bite or contact. For
serious R. rickettsii infection, patients will develop symptoms of
acute lung edema, renal failure, and/or encephalitis [2,3] due to
wide spread vasculitis caused by rickettsial infection of endothelial
cells lining the small blood vessels in these vital organs [4,5].

A “zipper-like” invasion strategy has been suggested for
rickettsial invasion of non-phagocytic host cells [6,7], whereby a
receptor-mediated mechanism is initiated when a rickettsial
protein induces host intracellular signaling through extracellular
stimulation of a receptor on the surface of host cells [8]. This
mechanism suggests that surface-exposed proteins (SEPs) of both
rickettsiae and host cells play fundamental roles in the interactions
between rickettsia and the host cell.

Surface cell antigen (Sca) family proteins are recognized as the
major SEPs of rickettsiae [9], playing important roles in rickettsial
pathogenesis. Both Sca0 (outer membrane protein A, OmpA) and
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and/or inner membrane by immuno-electron microscopic assay.
The genes encoding the novel SEPs of R. rickettsit were expressed in
prokaryotic cells, and the resultant recombinant SEPs (rSEPs) were
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used to immunize mice to evaluate their immunoprotective
efficacies. The sera from mice immunized with each of the 5
rSEPs were used in an i vitro serum neutralization test to assay the
interaction of the surface molecules with host cells.

Materials and Methods

Ethics Statement

Female C3H/HeN mice at 6 weeks of age were obtained from
Vital River Laboratories (Bejjing, China). The use of animals in
the present study was approved by the Institute of Animal Care
and Use Committee JACUC No: AMMS-2013-009) at Academy
of Military Medical Science (AMMS). All of the facilities were
accredited by the AMMS Animal Care and Ethics Committee,
and the animal care met the standard of the committee. All efforts
were made to minimize suffering of the animals.

Strains and plasmids

Ruckettsia rickettsii (Sheila Smith strain) were grown in Vero cells
cultured in Dulbecco’s modification of Eagle medium (DMEM)
(Hyclone, Beijing, China) supplemented with 5% fetal bovine
serum (FBS) (Hyclone, San Jose, CA). The number of R. rickettsii or
viable rickettsial organisms in suspension was detected by qPCR
specific for R. rickettsii [17] and plaque assay [18], respectively.
Escherichia coli (E. coli) BL21 (Novagen, Madison, WI) was cultured
in Luria-Bertani (LB) medium for expression of recombinant
proteins. The prokaryotic expression plasmid pET32a (+) (Nova-
gen, Madison, WI) was used as a vector for expression of target
genes.

Biotinylated surface-exposed proteins

Rickettsia rickettsii was cultured in Vero cells and then the
propagated organisms were purified from the host cells by
isopycnic density gradient centrifugation according to a previous
method [19]. The SEPs of the purified rickettsiae were
biotinylated with sulfo-NHS-SS-biotin (Thermo Science, Rock-
ford, IL) and affinity-purified with streptavidin-agarose as
described previously [16]. The protein concentration in the
rickettsial lysate suspension was determined using Bradford
Protein Assay Kit (Real Times, Bejjing, China). Eluted biotiny-
lated proteins (300 ug) were treated with 2-D Clean Up Kit (GE
healthcare, Waukesha, WI) and then separated by isoelectric
focusing electrophoresis with a pH 3-10 NL IPG strip (Bio-Rad,
Richmond, CA) followed by 12% SDS-PAGE as described
previously [20]. The protein spots observed following 2D-PAGE
were stained with Silver Strain Plus Kit (Bio-Rad, Richmond, CA).

Mass spectrometry and bioinformatics analysis

Following 2D-PAGE, isolated protein spots were digested with
trypsin and identified by electrospray ionization tandem mass
spectrometry (ESI-MS/MS), which was performed by the
National Center of Biomedical Analysis (Bejjing, China). Mass
fingerprints of the peptides detected by ESI-MS/MS were
compared against the National Center for Biotechnology Infor-
mation (NCBI) non-redundant databases using the Mascot search
engine (http://www.matrixscience.co.uk) [20]. The signal peptides
of the identified SEPs were analyzed using SignalP4.1 web server
(http://www.cbs.dtu.dk/services/SignalP/), and transmembrane
beta-strands of Gram-negative bacteria outer membrane proteins
were predicted using PRED-TMBB web server (http://
bioinformatics.biol.uoa.gr/PRED-TMBB) [21,22]. The SignalP
4.1 server predicts the presence and location of signal peptide
cleavage sites in amino acid sequences from different organisms.
The method incorporates a prediction of cleavage sites and a
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signal peptide/non-signal peptide prediction based on a combi-
nation of several artificial neural networks. The prediction of the
transmembrane strands and the topology of beta-barrel outer
membrane proteins were performed with the PRED-TMBB web
server based on a Hidden Markov Model (HMMs) and according
to the conditional maximum likelithood criterion. The SEPs
families were classified with Pfam-A using the Pfam database
(http://pfam janelia.org/).

Preparation of recombinant proteins

The target gene sequences were amplified according to the
genomic sequence of R. rickettsi (GenBank accession number:
CP000848) using polymerase chain reaction (PCR) with cognate
primer pairs (Table S1). Each PCR-amplified gene fragments was
mserted into the pET32a (+) plasmid, and E. coli cells were
transformed with each recombinant plasmid. Recombinant
proteins were purified from the F. coli lysate using Ni-NTA
affinity resin (Qiagen GmbH, Hilden, Germany) according to the
manufacture’s instruction.

Fifteen micrograms of each purified recombinant protein was
subjected to SDS-PAGE for electrophoresis and then transferred
to polyvinylidene fluoride (PVDF) membranes (Millipore, Billerica,
MA) for immunoblotting. The membranes were immunoblotted
with sera collected from mice at 28 days after infection with R.
rickettsie [23]. Finally, the protein bands in the PVDF membrane
were developed with DAB Developing Kit (Boster, Wuhan, China)
according to the manufacture’s instruction.

Immunization of mice

Seven groups of mice (5 mice per group) were immunized with
each of 5 recombinant proteins, whole cell antigens (WCA,
inactivated at 90°C for 20 min [19]) of R. rickettsii (positive control),
or PBS (negative control). Briefly, each mouse was injected
subcutaneously with 30 pg of antigen in 200 pl PBS or PBS alone
mixed with complete Freund’s adjuvant (CFA, Sigma-Aldrich,
MO). On days 28 and 42 after primary immunization, each mouse
was injected intraperitoneally with 20 ug of cognate antigen in
200 uI PBS or PBS alone mixed with incomplete Freund’s
adjuvant (IFA, Sigma-Aldrich, MO). Blood samples were collected
at day 56 after first immunization of mice to prepare immune sera.

Serum neutralization test

To host R. rickeltsii, we used cells from a human endothelial
hybrid cell line (EAhy 926, ATCC) cultured in DMEM
containing 10% heat-inactivated FBS. Each type of immune
serum was heated (56°C for 30 min) and filter sterilized [24].
Then, 150 pul of each serum was mixed with R. rickettsii cells in
150 ul of DMEM (1.0 x10° PFU/ml) at room temperature for
60 min. Subsequently, the serum-rickettsial mixture was added to
9.7x10° host cells in 2.7 ml of DMEM containing 1% heat-
mactivated FBS. This mixture was divided into 3 replicate wells in
a 24-well plate (Corning, Corning, NY) and cultured at 33°C for
6 h [24]. After removing the supernatant, the remaining cells in
each well were collected for DNA extraction with DNeasy Blood &
Tissue Kit (Qiagen GmbH, Hilden, Germany). The DNA samples
were evaluated by quantitative polymerase chain reaction (qQPCR)
with primers specific for R. rickettsu [25].

Mice infection

Fifteen days after the last immunization, each of the vaccinated
mice was challenged ip. with a sublethal dose of R. rickettsii
(6x10° PFU). Five days later, the infected mice were sacrificed
and their spleens, livers, and lungs were collected. Next, DNA was
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extracted from 20 mg of tissue of each organ for R. rickettsii-specific

qPCR [25].

Detection of surface-exposed proteins by immuno-

electron microscopic assay

For immuno-electron microscopic analysis [26], R. rickettsia-
infected Vero cells were treated with fixing agent (4% parafor-
maldehyde, 0.5% glutaraldehyde, 0.3% picric acid, 0.1M sodium
cacodylate, pH 7.4) for 4h on ice. Then, the cells were
sequentially dehydrated with 50%, 70%, 85%, and 95% alcohol
and successively permeated in a mixture of LR White (Spi
Supplies, West Chester, PA) and alcohol or LR White alone
according to the standard method. The samples were embedded in
Spi-Pon 812 resin (Spi Supplies, West Chester, PA) and transferred
to 200 mesh nickel gird (BeiJingZhongXingBaiRui Technology
Co., Itd, Beijing, China). The grids were then incubated with each
immune serum (1:10 dilution) for 2 h. After washing with blocking
buffer, the girds were incubated with a goat anti-mouse IgG
labeled with 10 nm colloidal gold particles (Aurion, EMS) (1:20
dilution) for 2 h at room temperature. Following washing, the
grids were fixed in 1% glutaraldehyde for 10 min, washed, and
stained with uranyl acetate (Spi Supplies, West Chester, PA) and
lead citrate (Spi Supplies, West Chester, PA). Finally, the girds
were examined using a transmission electron microscopy (TEM) at
80 kV (H-7650, Hitachi Chemical co., Ltd, Japan).

Statistical analysis

All statistics were computed using SAS statistical software
(version 9.1, SAS Institute Inc., Cary, NC). The statistical
significances of the differences in rickettsial numbers produced
by qPCR were assayed using the 7 test or Wilcoxon two-sample
test according to their normality and homogeneity of variance. P<
0.05 was considered significantly different.

Results

Identification of surface-exposed proteins of R. rickettsii

After 2D-electrophoresis of the biotinylated proteins of R.
rickettsiz, 23 protein spots (indicated by numbers 1 to 23) were
deeply colored on the gel after staining (Iigure 1). Ten proteins
were identified from the 23 protein spots by mass spectrometry
and bioinformatics analysis. Five proteins (OmpA, OmpB, GroEL,
GroES, and a DNA-binding protein) had been previously
described as membrane-associated surface proteins of R. rickettsit.
The other 5 proteins (Adrl, Adr2, OmpW, Porin_4, and TolC)
were identified as surface proteins of this pathogen.

After submission of the protein sequences to the SignalP 4.1 web
server, 6 proteins (Adrl, Adr2, OmpB, OmpW, Porin_4, and
TolC) were predicted to carry a N-terminal signal peptide. The
remaining proteins (OmpA, GroEL, GroES, and DNA-binding
protein) did not contain a signal peptide (Table 1).

The sequences were analyzed using the PRED-TMBB web
server, and the transmembrane strands and the topology of -
barrel outer membrane proteins were predicted with the posterior
decoding method. The discrimination scores of all the SEPs except
GroES and DNA-binding protein were less than 2.965, which
indicated that they were outer membrane proteins. Adrl
(Figure 2A) has 8 trans-membrane beta strands connected by 4
long annulations in the outer membrane and 3 short-chains in the
inner membrane of rickettsiae. Adr2 (Figure 2B) and OmpW
(Figure 2C) both have 10 trans-membrane beta strands connected
by 5 long annulations in the outer membrane and 4 short-chains in
the inner membrane. Porin_4 (Figure 2D) has 20 trans-membrane
beta strands connected by 10 long annulations in the outer
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Figure 1. Profile of surface-exposed proteins in R. rickettsii. The
isolated biotinylated proteins (300 pg) of R. rickettsii were separated by
isoelectric focusing electrophoresis with a pH 3-10 strip followed by
12% SDS-PAGE. The protein spots in the gel were numbered from 1 to
23 and subjected to ESI-MS/MS analysis. The relative molecular masses
of the marker proteins are indicated in kDa on the left side of the figure
and the proteins identified by ESI-MS/MS are listed in Table 1.
doi:10.1371/journal.pone.0100253.g001

membrane and 9 short-chains in the inner membrane. TolC
(Figure 2E) has 4 trans-membrane beta strands connected by 2
long annulations in the outer membrane and 1 short-chain in the
inner membrane.

Immunoblotting analysis of recombinant surface-

exposed proteins

The purified recombinant proteins Adrl (rAdrl, ~43 kDa),
rAdr?2 (~41 kDa), rOmpW (~42 kDa), rPorin_4 (~64 kDa), and
rTolC (~71 kDa) were separated by SDS-PAGE (Figure 3A). In
the immunoblotting assay, each of the 5 proteins reacted with sera
from R. rickettsu-infected mice, and the serological reaction of
rAdr2 or rPorin_4 was stronger than that of rAdrl, rTolC, or
rOmpW (Figure 3B).

Immune protection elicited by surface-exposed proteins

The C3H/HeN mice were immunized with each of the 5
rSEPs, and the immunized mice were challenged with viable R.
rickettsii cells. Five days after challenge, the mice were sacrificed
and rickettsial burdens in their spleens, livers, or lungs were
determined by qPCR. The rickettsial load in spleen, liver, or lung
of mice immunized with rAdr2 or WCA of R. rickettsii was
significantly lower than that in mice mock-immunized with PBS.
In contrast, the rickettsial load in spleen or liver and lung of mice
immunized with rAdrl, rOmpW, or rPorin_4, but not with rTolC,
was lower and significantly lower, respectively, compared with
mock-immunized mice (Figure 4).

Serum neutralization

Viable R. rickettsii organisms were incubated with various
immunosera, and then the serum-treated organisms were used to
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Figure 2. 2-D transmembrane structures of surface-exposed proteins predicted using the PRED-TMBB server. The 2-D transmembrane
structures of Adr1(A), Adr2 (B), OmpW (C), Porin_4 (D), and TolC (E) of R. rickettsii were designed by the transmembrane protein representation in 2
dimensions (TMRPres2D) tool according to their amino acid sequences, respectively. Coloring based on the charge and electric potential (assuming
pH =7): blue represents the negatively charged amino acids, red represents the positively charged amino acids, and gray indicates the neutral amino
acids. IN means intracellular membrane, OUT means outer membrane, gray ball and double lines represent the lipid bilayer, the green numbers
represent the amino acid ID inside or outside of the cell membrane; NH, and COOH represent the amino and carboxy terminus, respectively.
doi:10.1371/journal.pone.0100253.g002
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Figure 3. Inmunoblotting analysis of surface-exposed proteins. (A) Five recombinant SEPs purified from E. coli cell lysate were separated by
12% SDS-PAGE and stained by G-250 Coomassie Brilliant Blue. (B) Immunoblotting analysis of SEPs: lane M, protein molecular mass markers; lanes 1
to 5, rTolC, rPorin_4, rAdr1, rOmpW, and rAdr2.

doi:10.1371/journal.pone.0100253.g003
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Figure 4. Protection against R. rickettsii infection induced by
surface-exposed proteins. C3H/HeN mice (n=5) were immunized
three times with each rSEPs, WCA, or PBS, followed by a sublethal
challenge with R. rickettsii. Five days after challenge, the mice were
sacrificed and the rickettsial load in their spleens (A), livers (B), or lungs
(C) was determined using R. rickettsii-specific qPCR. The rickettsial load
is expressed as mean copies * standard deviations, and the results
were analyzed using T test or Wilcoxon two-sample test according to
their normality and homogeneity of variance, *P<<0.05 and **P<<0.01.
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Horizontal lines indicate statistically significant differences between the
WCA-immunized group and the rSEPs-immunized groups.
doi:10.1371/journal.pone.0100253.9g004

infect vascular endothelial cells (host cells). After incubation host
cells with the serum-treated organisms, the total amount of
rickettsiae treated with rAdrl-, rAdr2-, or rOmpW-immunized
sera was significantly less than that treated with sera from mice
that had been mock-immunized with PBS (negative sera). In
contrast, the total amount of rickettsiae treated with rPorin_4- or
rTolC-immunized sera was less than that treated with negative
sera, although this difference was not significant (Figure 5).
Interestingly, the total amount of rickettsiae treated with WCA-
immunized sera was significantly higher than that treated with
rAdrl-, rAdr2-, rOmpW- or PBS-immunized serum.

Detection of surface-exposed proteins by immuno-
electron microscopic assay

To further validate their location on the surface of rickettsiae, R.
rickettsii cells were immunolabeled with colloidal gold using
immuno-electron microscopic assay. As shown in Figure 6, R.
rickettsui cells treated with rAdrl-, rAdr2-, rOmpW-, rPorin_4-, or
rTolC-immunized sera, but not with negative sera, were decorated
with gold particles. The particles were observed in both the outer
and the inner membrane of R. rickettsii treated with rAdrl-, rAdr2-,
rOmpW-, or rTolC-immunized sera, while only R. rickettsii treated
with Porin_4- immunized sera displayed particles in the inner
membrane.

Discussion

Rickettsia spp. are obligate intracellular bacteria, and their
surface molecules provide a crucial interface for their interactions
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Figure 5. Neutralization of R. rickettsii by sera from mice
immunized with surface-exposed proteins. Viable R. rickettsii
organisms were incubated with naive serum, anti-rAdr1, -rAdr2, -
rOmpW, -rPorin_4, -rTolC, or -WCA (positive control) immune serum for
60 min. After incubation, the mixture was added into EA.hy 926 cells for
6 h. The total number of R. rickettsii that adhered to and invaded the
host cells was determined using R. rickettsii-specific qPCR. The results
were analyzed using the T test or Wilcoxon two-sample test according
to their normality and homogeneity of variance. The statistically
significant differences between anti-WCA immune serum and anti-
rSEPs immune serum groups were indicated by horizontal lines. The
values are presented as mean * standard deviations (n=3); *P<<0.05,
**p<0.01, and ***P<<0.001.

doi:10.1371/journal.pone.0100253.9005
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Figure 6. Detection of surface-exposed proteins using immuno-electron microscopic assay. Vero cells infected with R. rickettsii were
incubated with anti-rAdr1 (A), -rAdr2 (B), -rOmpW (C), -rPorin_4 (D), -rTolC (E), or -PBS (F) serum and subsequently immunolabeled with colloidal gold
particles (10 nm) using standard procedures. The cells were then observed by transmission electron microscope. The black arrows indicate target
SEPs in the inner membrane (IM) and outer membrane (OM) of R. rickettsii. Bar =100 nm.

doi:10.1371/journal.pone.0100253.g006

with host cells [27]. SEPs may mediate rickettsial adherence to
host cells and subsequent interaction with host cytosolic proteins,
promoting rickettsial invasion, survival and replication in host cells
[10-14]. In addition, rickettsial SEPs may be important antigens
that efficiently activate immunocytes, including dendritic cells, NK
cells, and/or T/B lymphocytes, to induce protection against
rickettsial infection [15,16,28-30]. Characterization of R. rickettsii
SEPs will provide an important foundation for further under-
standing the interactions between rickettsiae and hosts. In the
present study, 10 major SEPs of R. rickettsiz were identified using
biotin-streptavidin affinity chromatography coupled with 2D-
PAGE and ESI-MS/MS. The prediction of transmembrane
strands and the topology of B-barrel outer membrane proteins
suggested that all of the 10 SEPs except GroEL, GroES and DNA-
binding protein were outer membrane proteins of R. rickettsii.

Among the 10 SEPs, OmpA and OmpB are well known major
outer membrane proteins of R. rickettsiz and function in rickettsial
invasion of host cells [10,31-33]. Both GroEL and GroES belong
to the heat shock proteins family, which plays important roles in
the folding, preventing aggregation and repairing misfolded or
damaged proteins in R. rickettsic [34]. In addition to the cytoplasm,
GroEL and/or GroES were also found on cell surfaces or in
membrane fractions of R. conori [35], R. felis [36], R. parker: [37],
and/or R. typhi [27]. DNA-binding protein has a strong adsorption
capacity and tendency to small nucleotide fragments, which
participates in NF-kB activation in response to R. rickettsii-induced
expression of certain genes in vascular endothelial cells [38].

In the present study, we focused only on the newly identified
SEPs (Adrl, Adr2, OmpW, Porin_4, and TolC) of R. ricketts.
Rickettsial adhesins Adrl and Adr2 were respectively identified in
two strong spots in the SEP profile of R. rickettsiz. Both of these
proteins have been previously recognized in R. prowazeki [39], R.
conorr [40], and R. heilongjiangensis [16], and shown to participate in
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rickettsial adhesion and entry into the host cells [39-41] since
antibody to Adrl in R. conori and antibody to Adr2 in R. prowazekit
could efficiently inhibit rickettsia invasion of host cells [39,41].
OmpW was previously identified in R. keilongjiangensis [16] and is
typically localized to the outer membrane of Gram-negative
bacteria and associated with bacterial resistance to various forms
of environmental stress [42]. Porin_4 was identified in three spots
(spots 17, 18 and 19) in the profile. This abundant protein is
typically present as a trimer in the outer membrane of Gram-
negative bacteria [43] and forms a relatively large water-filled
channel and molecular filter, that allows the diffusion of
hydrophilic molecules into the periplasmic space [44]. Addition-
ally, porins are major outer membrane proteins that also serve as
binding sites of phages and bacteriocins [44]. TolC, which was
identified in one spot close to porin_4 in the SEP profile, is usually
present as a trimeric channel across the inner and outer
membrane of Gram-negative bacterial and is required for the
export of virulence proteins and toxic compounds [45,46]. In
Rickettsia typhi, 'T'olC was found to be the component of the putative
type I secretion system, functioning in secretion of rickettsia
ankyrin repeat protein 1 (RARP-1) across the outer membrane of
R. typhi into the cytoplasm of mammalian cells [47]. Comparison
of Adrl (Figure S1), Adr2 (Fig S2), OmpW (Figure S3), Porin_4
(Figure S4), and TolC: (Figure S5) amino acid sequences from SFG
rickettsiae showed that all of them were high conservative among
SFG rickettsiae (with an amino acid similarity of 87%~99%)
except R. akari, R. australis, and R. helvetica (Table S2).

The 5 novel SEPs of R. rickettsii were found to be membrane-
spanning proteins. To further define their location, R. rickettsii
organisms were stained with specific immunosera to each SEP
using immunoelectron microscopy, which has been successfully
applied to determine the surface expression of RickA in R. raoultii
[48]. All of the SEPs except Porin_4 were present in both the inner
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and outer membrane, while Porin_4 was observed only in the
inner membrane of R. rickettsi based on immuno-electron
microscopic assay despite its previous identification in the outer
membrane of Gram-negative bacteria [43]. Immuno-electron
microscopic assay revealed that each SEPs had a punctate
distribution on the surface of R. rickettsiz rather than a diffuse
distribution, which suggested that they were located in different
regions of the rickettsial membrane. This localization might be
associated with their special function (s), such as attachment,
motility, molecular transport, and/or conjugation.

SIFG rickettsiae express a family of Sca (surface cell antigen)
proteins [9]. Members of this family have modular structures,
including an N-terminal signal sequence, a central passenger
peptide, and a C-terminal ““translocation module” (B-peptide)
[49]. Following translation, the peptide is initially secreted across
the inner membrane according to information present in the N-
terminal signal sequence. The C-terminal peptide is then inserted
into the outer membrane to form a barrel-rich transmembrane
pore through which the passenger peptide passes, exposing the
passenger peptide to the extracellular environment [11]. Based on
these features, the 5 novel SEPs of R. rickettsiz should belong to the
Sca family.

Although previous studies have demonstrated that antibodies
against Adrl in R. conorz and Adr2 in R. prowazekii can prevent
rickettsiae from entering host cells [39,41], the functions of the 5
novel SEPs of R. rickettsii remain to be described. To assay the
potential effects of specific antibodies against these SEPs on the
interaction of R. rickeitsii with vascular endothelial cells, sera from
mice immunized with each of the 5 rSEPs were applied to
neutralize R. rickettsit in vitro. Our results showed that the specific
antibodies in sera from mice immunized with any of the 5 rSEPs
could reduce rickettsial invasion of vascular endothelial cells, and
this reduction by sera from rAdrl-, rAdr2-, or rOmpW-
immunized mice was significant. We postulate that the 5 novel
SEPs, particularly Adrl, Adr2, and OmpW, are involved in the
interaction of R. rickettsii with vascular endothelial cells due to the
potential of the specific antibodies to prevent the rickettsial surface
molecules from interaction with the corresponding surface
molecules on host cells. Additionally, sera from mice immunized
with R. rickettsi WCA markedly enhanced rickettsial invasion of
vascular endothelial cells, which has been previously observed in
neutralization assays with sera from mice immunized with R.
conori or R. heilongjiangensis [50,51]. It has been postulated that
antibodies against numerous rickettsial surface molecules in WCA-
immunized sera can interact with multiple Fc receptors expressed
by vascular endothelial cells, potentially promoting rickettsial
entrance into host cells [50].

In addition, SEPs may be important antigen molecules to
mediate interaction between rickettsiae and hosts cells [52],
playing a key role in immune responses against rickettsial infection
[16]. To validate their capacity to elicit specific immune
protection, these rSEPs were used to immunize mice, which were
subsequently challenged with viable R. rickettsi cells. Our results
showed that the rickettsial load in lung, spleen, or liver of mice
immunized with rAdr2 and that in lung of mice immunized with
rAdrl, rOmpW, or rPorin_4, but not rTolC, were significantly
lower than of the rickettsial load in mock-immunized mice. The
lung is the most important target organ of R. rickettsii, and thus, the
significant protection of the lung conferred by Adrl, Adr2,
OmpW, and Porin_4, suggests they are protective antigens.
Surprisingly, the protective efficacy of rAdr2 was similar to that of
WCA of R. rickettsui. This result firmly indicates that Adr2 is a
candidate vaccine against R. rickettsii infection.
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Discontinued RMSF vaccines derived from killed rickettsiae
purified from R. rickettsi-infected ticks or embryonated eggs [53]
were relatively ineffective and adversely reactive in preventing R.
rickettsii infection in humans [54]. Therefore, there have been
efforts to develop a safe and effective subunit vaccine against
RMSF. The protective antigens of R. rickettsiz, identified in the
present and in the previous studies, or their antigenic epitopes,
particularly the immunodominant epitopes of T and B cells, may
be combined to develop more efficient subunit vaccines of RMSF.

In conclusion, the 5 novel SEPs (Adrl, Adr2, OmpW, Porin_4,
and TolC) were localized to the outer and/or inner membrane of
R. rickettsiu by immuno-electron microscopic assay. All of these
rSEPs except rTolC conferred significant protection against R.
rickettsie in the lungs of mice, and rAdr2 induced more efficient
protection similarly to R. rickettsit WCA. These findings suggested
that Adrl, Adr2, OmpW, and Porin_4 were protective antigens.
Sera from mice immunized with each of the rSEPs reduced
invasion of R. rnckelisii into vascular endothelial cells, and this
reduction by sera from rAdrl-, rAdr2-, or rOmpW-immunized
mice was significant. These results indicated that the novel SEPs,
particularly Adrl, Adr2, and OmpW, were involved in the
interaction of R. rickettsii with vascular endothelial cells.

Supporting Information

Figure S1 Comparison analysis of Adrl amino acid
sequences from spotted fever group rickettsiae. Adrl
amino sequences between R. rickettsii (list on the top line) and other
spotted fever group rickettsiae (list under the R. rickettsi line) were
compared by CLC Genomic Workbench V3.6.1 software (CLC
BIO Inc., Aarhus, Denmark). NCBI accession numbers of Adrl in
SFG rickettsiae as follows: Rickettsia rickettsii str. Sheila Smith,
ABV76850.1; Rickettsia africae str. ESF-5, YP_002845692.1;
Ruckettsia akari str. Hartford, YP_001494015.1; Ricketisia amblyommai
str. GAT-30V, YP_005365990.1; Rickettsia australis str. Cutlack,
YP_005414527.1; Rickettsia conori str. Malish 7, NP_360918.1;
Rickettsia  heilongjiangensis  str. 054, YP_004764920.1; Rickettsia
Helvetica, WP_010421009.1; Rickettsia honei, WP_016917657.1,
Rickettsia japonica str. YH, YP_004885269.1; Rickettsia massiliae str.
MTUS5, YP_001499799.1; Rickettsia montanensis str. OSU 85-930,
YP_005391649.1; Rickettsia parkert str. Portsmouth,
YP_005393487.1; Rickettsia peacockis str. Rustic, YP_002916697.1;
Rickettsia  rhipicephali str. 3-7-female6-CWPP, YP_005391036.1;
Rickettsia sibirica 246, WP_004997220.1; Ruckeitsia slovaca str. D-
CWPP, YP_005066302.1.

(TIF)

Figure S2 Comparison analysis of Adr2 amino acid
sequences from spotted fever group rickettsiae. Adr2
amino sequences between R. rickettsii (list on the top line) and other
spotted fever group rickettsiae (list under the R. rickettsu line) were
compared by CLC Genomic Workbench V3.6.1 software (CLC
BIO Inc., Aarhus, Denmark). NCBI accession numbers of Adr2 in
SFG rickettsiae as follows: Ricketisia rickeitsii str. Sheila Smith,
ABV76851.1; Rickettsia africae  str. ESF-5, YP_002845693.1;
Rickettsia akari str. Hartford, YP_001494016.1; Rickettsia amblyommui
str. GAT-30V, YP_005365991.1; Rickettsia australis str. Cutlack,
YP_005414526.1; Rucketisia conoriz str. Malish 7, NP_360919.1;
Rickettsia  heilongjiangensis  str. 054, YP_004764921.1; Rickettsia
Helvetica, WP_010421007.1; Rickettsia honei, WP_016917656.1,
Rickettsia japonica str. YH, YP_004885270.1; Rickettsia massiliae str.
MTU)5, YP_005302541.1; Rickettsia montanensis str. OSU 85-930,
YP_005391650.1; Rickettsia parkert str. Portsmouth,
YP_005393488.1; Rickettsia peacockii str. Rustic, YP_002916696.1;
Ruckettsia rhipicephali str. 3-7-female6-CWPP, YP_005391037.1;
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Rickettsia sibirica 246, WP_004997218.1; Rickettsia slovaca str. D-
CWPP, YP_005066303.1.

(TIF)

Figure 83 Comparison analysis of OmpW amino acid
sequences from spotted fever group rickettsiae. OmpW
amino sequences between R. rickettsi (list on the top line) and other
spotted fever group rickettsiae (list under the R. rickettsu line) were
compared by CLC Genomic Workbench V3.6.1 software (CLC
BIO Inc., Aarhus, Denmark). NCBI accession numbers of OmpW
in SFG rickettsiae as follows: Rickeitsia rickettsu str. Sheila Smith,
ABV75714.1; Rickeitsia africae str. ESF-5, YP_002844819.1;
Rickettsia akari str. Hartford, YP_001492955.1; Rickettsia amblyommui
str. GAT-30V, YP_005364912.1; Rickettsia australis str. Cutlack,
YP_005414414.1; Rucketisia conoriz str. Malish 7, NP_359742.1;
Ruckettsia  hetlongjiangensis  str. 054, YP_004763826.1; Rickettsia
Helvetica, WP_010420430.1; Rickettsia honei, WP_016917580.1,
Rickettsia japonica str. YH, YP_004884443.1; Rickettsia massiliae str.
MTUS5, YP_001498965.1; Rickettsia montanensis str. OSU 85-930,
YP_005391832.1; Rickettsia parkert str. Portsmouth,
YP_005392367.1; Rickettsia peacockit str. Rustic, YP_002916393.1;
Rickettsia rhapicephali str. 3-7-female6-CWPP, YP_005389961.1;
Rickeitsia sibirica 246, WP_004996776.1; Rickettsia slovaca str. D-
CWPP, YP_005065351.1.

(TIF)

Figure S4 Comparison analysis of Porin_4 amino acid
sequences from spotted fever group rickettsiae. Porin_4
amino sequences between R. rickettsi (list on the top line) and other
spotted fever group rickettsiae (list under the R. rickettsii line) were
compared by CLC Genomic Workbench V3.6.1 software (CLC
BIO Inc., Aarhus, Denmark). NCBI accession numbers of Porin_4
in SFG rickettsiae as follows: Rickeitsia rickettsui str. Sheila Smith,
ABV75707.1; Rickettsia africae  str. ESF-5, YP_002844812.1;
Rickettsia akari str. Hartford, YP_001492948.1; Rickettsia amblyommui
str. GAT-30V, YP_005364919.1; Rickettsia australis str. Cutlack,
YP_005414407.1; Rucketisia conoriz str. Malish 7, NP_359735.1;
Rickettsia  heilongjiangensis  str. 054, YP_004763819.1; Rickettsia
Helvetica, WP_010420474.1; Rickettsia honei, WP_016917574.1,
Rickettsia japonica str. YH, YP_004884436.1; Rickettsia massiliae str.
MTUS5, YP_001498958.1; Rickettsia montanensis str. OSU 85-930,
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