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Abstract

Coreference resolution tries to identify all expressions (called mentions) in observed text that refer to the same entity.
Beside entity extraction and relation extraction, it represents one of the three complementary tasks in Information
Extraction. In this paper we describe a novel coreference resolution system SkipCor that reformulates the problem as a
sequence labeling task. None of the existing supervised, unsupervised, pairwise or sequence-based models are similar to
our approach, which only uses linear-chain conditional random fields and supports high scalability with fast model training
and inference, and a straightforward parallelization. We evaluate the proposed system against the ACE 2004, CoNLL 2012
and SemEval 2010 benchmark datasets. SkipCor clearly outperforms two baseline systems that detect coreferentiality using
the same features as SkipCor. The obtained results are at least comparable to the current state-of-the-art in coreference
resolution.
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Introduction

The field of Information Extraction (IE) deals with automatic

extraction of structured information such as person names,

locations, organizations etc. from unstructured or semi-structured

text. The roots of IE dates back to 1970s when the first approaches

emerged [1]. Since then a lot of effort has been put in finding

solutions that would facilitate efficient and accurate IE. This has

resulted in many different IE systems that are available today or at

least described in the literature [2,3]. Nevertheless, we are still not

able to extract information with high precision and recall

especially when performing IE on large unstructured datasets

such as on the web for example. This and the fact that the amount

of unstructured data is rapidly growing make the IE field more and

more important.

The IE task can be divided into three subtasks: entity extraction,

relation extraction and coreference resolution. As its name implies,

the entity extraction focuses on the extraction of entities, i.e. parts

of the text or expressions in text that can be categorized as one of

the predefined categories, such as the names of places, persons,

organizations, dates, etc. The relation extraction then seeks to

identify relations among the identified entities (e.g. some

expression that was identified as a name of a person is found to

be related to some other expression identified as an organization).

Finally, the coreference resolution tries to identify parts of the text

or expressions that refer to the same entity in the analyzed text.

The expressions that we observe in the coreference resolution are

called ‘‘mentions’’ and can be one of the following types: named

mentions (e.g. ‘‘John Doe was here’’), nominal mentions (e.g. ‘‘the boy

was here’’) or pronominal mentions (e.g. ‘‘he was here’’) [4]. To

detect mentions that refer to the same entity, a two-steps

procedure is usually performed: (1) the identification of all

mentions in the observed text and (2) the clustering of the

identified mentions so that all mentions referring to the same entity

fall into the same cluster.

Coreference resolution [5] represents an important step in IE as

it provides bases for merging contextual information extracted

through other tasks [6]. For example relations and attributes that

are identified in entity [7] and relation extraction and are

associated with a particular mention hold not only for that

particular mention but also for other coreferent mentions, even the

distance between them is several words or sentences [8]. The

identification of coreferent mentions in text has already proved

useful in various domains, ranging from mining news articles [9] to

biological data [10].

In this paper we describe a novel coreference resolution system

‘SkipCor’, which is based on the well known conditional random

fields algorithm [11]. The novelty of SkipCor lies in a special

transformation of input data into the so called n skip-mention

sequences, in which only every (n+1)-th mention is included. This

allows the use of very simple first-order (i.e., linear-chain) models

that enable much faster and exact training and inference than do

the general models. Thus, in contrast to most other approaches,

the proposed system is completely parallelizable with a linear time

complexity (in the number of mentions in the text). We compare

SkipCor to a baseline system, on seven standard benchmark

datasets. It clearly outperforms the baseline system that uses only a

single sequence of mentions and a standard pairwise system that,

as in traditional approaches mentioned above, looks at all the

mention pairs in order to identify the coreferent ones. Further-

more, the results obtained are at least comparable to the current
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state-of-the-art in coreference resolution. We also investigate the

drop in accuracy to be expected in real-world scenarios, where

systems are trained on one dataset, and adopted on another,

something which may be of independent interest.

Background

The majority of techniques for coreference resolution transform

the problem into a pairwise classification task [12,13] (i.e., the

algorithm checks every pair of mentions for coreference). This

enables the use of standard machine learning classifiers that rely

on hand-labeled data sets. On the other hand, unsupervised

techniques infer the coreferentiality based on sequences of

mentions [14,15], which are much harder to train and are not

easily generalized to new problems or domains. In this section we

will provide an overview of the different coreference resolution

systems, with special focus on approaches based on graphical

models [11] (as SkipCor).

One of the earliest supervised approaches used a decision tree

algorithm and twelve informative feature functions [16]. That

approach was the first to improve on the performance of

previously state-of-the-art rule-based techniques. Even though

the adopted features were based solely on pairs of mentions with

local information, it was difficult to improve their results by only

using more sophisticated algorithms. Therefore, a number of

innovative and linguistic-rich feature functions [13,17] along with

different algorithms like maximum entropy [18], SVM classifiers

[19] and Markov Logic Networks [20] have been proposed in the

recent literature. Recently, Bengston and Roth [17] have

systematically divided different feature functions into categories

and clearly demonstrated their importance. In particular, they

have shown that the development of well-designed features can

greatly improve the performance of a coreference resolution

system. Due to the similarities among the proposed supervised

systems, the Reconcile platform [21] was developed in order to

provide a common framework for new algorithms, features, and

their evaluation.

Unsupervised approaches demand no training data. Neverthe-

less, unsupervised state-of-the-art systems still achieve comparable

results to the supervised systems. Haghighi and Klein [15]

proposed a modular unsupervised system using rich features.

The system is based on a three-step procedure, consisting of the

extraction of syntactic paths from the mentions, the evaluation of

semantic compatibility between the mentions, and the selection of

reference mentions, which serve as the basis for using pairwise

decisions over transitive closures. Lee et al. [14] upgraded

Raghunathan’s system [22], which is based on a multi-pass sieve

approach. They employed thirteen sieves (i.e., sequential process-

ing steps) sorted by precision. During the execution of each sieve,

the entire dataset is processed by applying a few manually written

patterns. These hand-crafted patterns relate only to syntactic parse

trees and extracted named entities, and are based on different

heuristics and dataset specifications. Some unsupervised tech-

niques have also been proposed. They infer coreferentiality based

on sequences of mentions [23–25].

In the field of factor graphs, McCallum et al. [26] proposed

three general conditional random fields (CRF) models to solve the

coreference resolution problem. The first is a general model (i.e.,

the CRF structure is unrestricted) and the training or inference is

therefore complex. In such cases exact inference is not possible

and therefore approximation algorithms must be used to compute

right marginal values for the underlying CRF structure [27]. The

second model represents pairs of mentions by specific attributes,

while the third represents the pairs as nodes in the model. Wellner

et al. [28] successfully applied coreference resolution to citation

matching, interestingly by using a special case of McCallum’s first

model combined with named entity extraction. Most similar to the

linear models, a skip-chain CRF has been proposed in [29], which

also supports the use of long-distance dependencies by incorpo-

rating additional cliques into the model. Still, longer times are

needed for training and inference compared to linear-chain CRF.

Cullota et al. [12] proposed the use of first-order probabilistic

models over sets of mentions; thus, the algorithm operates directly

on the entities. To avoid a combinatorial explosion of all possible

entity subsets, they incrementally merged different mentions into

sets. Later, they also included the step of canonicalization [28],

which refers to the process of generating the underlying entities

along with their attributes. Recently, Sundar et al. [30] proposed a

CRF-based coreference resolution system. They further decom-

posed the problem into two subtasks: pronominal resolution using

general CRFs that has only parse tree features, and non-

pronominal resolution using linear-chain CRFs that has different

string similarity features. Although the system is based on linear

models, the input to the models still consists merely of sequences of

length two.

In Table 1 we show the classification of some of the coreference

resolution approaches that have been put forth in the literature.

We categorize the systems along two dimensions: the type of input

to the algorithm, and the type of model learning. As can be

observed, the proposed SkipCor system is novel from the

perspective of the selected dimensions. Among the unsupervised

approaches, coreference resolution systems have been developed

for both pairwise and sequence-based input types. In contrast,

supervised approaches have mainly employed only pairwise

comparisons. The system in [30] is similar to our baseline

algorithm, SkipCorPair; however, it predicts whether two men-

tions are coreferent using a CRF algorithm. Also, [26] presents

some CRF-based methods, but it evaluates only a version where

each node represents a pair of mentions.

In summary, SkipCor represents a novel CRF-based approach

that identifies coreferences over mention chains and employs

simple clustering to uncover all mentions in the text that refer to

the same entity. In contrast to other systems, we adopt a

supervised algorithm for training and inference on sequence-

based data. Thus, instead of using a pairwise or set-based

approach, we consider sequences of mentions in some document

and use simple linear-chain CRF models. To enable the use of

such simple models, we introduce an adequate transformation of

the data into skip-mention sequences. Consequently, the feature

functions also refer to non-local information and can detect distant

mention coreferences. Note also that the training and inference of

linear-chain CRFs can be solved with a fast and exact algorithm,

which significantly reduces the time complexity of the system.

Conditional Random Fields
Conditional random fields (CRF) [11] is a discriminative model

that estimates the joint distribution p(yjx,w) over the target

sequence y conditioned on the observed sequence x and weight

vector w (see below). We represent a sentence by a sequence of

words xi with additional corresponding sequences that represent

attribute values such as part-of-speech tags xk1

i , lemmas xk2

i ,

relations xk3

i , and other observable values x
kj

i . These values are

used by feature functions fl that are weighted during CRF training

in order to model the target sequence y. The sequence y
corresponds to the source sequence and consists of the labels that

we would like to automatically infer. For named entity recognition,

we commonly use tags such as PER for person type, ORG for

Linear-Chain CRF Coreference Resolution
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organization, and LOC for location. Similarly for relationship

extraction, we use tags WORKS-AT, LIVES-IN, etc. For the

coreference resolution task, we build sequences containing only

mentions, as opposed to sequences containing all the words in a

document. Then we use the label C if the current mention is

coreferent with the previous one, and O otherwise.

In the field of IE, CRFs have been successfully employed for

various sequence labeling tasks and have achieved state-of-the-art

results. It can also deal with a large number of multiple,

overlapping, and non-independent features.

Training a CRF is thus maximizing the conditional log-

likelihood of the training data, by which we find a weight vector

w that predicts the most probable sequence ŷy for a given �xx. Hence,

ŷy~ arg max
�yy

p(yjx,w) ð1Þ

where the conditional distribution is

p(yjx,w)~

exp
X

m
l~1 wl

Xlength(x)

i~1

fl(y,x,i)

" #

C(x,w)
ð2Þ

Here, m is the number of feature functions and C(x,w) is a

normalization constant computed over all possible sequences y.

The structure of a CRF defines how the dependencies with

target labels are modeled. A general graphical model (i.e., a graph

denoting the conditional dependence structure) can depend on

many labels and is therefore intractable for training or inference

without complex approximation algorithms. Thus, we use only a

simple linear-chain CRF (LCRF) model, which depends on the

current and previous labels (i.e., a first order model). The structure

of such a model is represented in Figure 1. Furthermore, with the

use of a number of feature functions and special dataset

transformations, our method achieves comparable results to the

best known systems.

Methods

In this section we introduce the proposed SkipCor algorithm.

First, we overview and introduce new feature functions used by

conditional random fields models in the present paper. Next, we

explain the data representation using skip-mention sequences and

illustrate the coreference resolution execution of the proposed

system on an example document. We also support the proposed

representation by examining the distribution of consecutive

coreferent mention distances on a representative coreference

dataset. Last, we explain the implementation [31] of the proposed

SkipCor system and discuss the time complexity of the algorithm.

Feature Functions
The selection of informative features is the main source of an

increase of precision and recall when training machine learning

classifiers. Feature functions are usually implemented as templates

and the final features are then generated by scanning the entire

training data. In natural language processing, a few thousand or

more features are commonly used, which can be efficiently

handled by a CRF. A feature function that returns 1 if the current

mention is of person type or the previous mention is equal to

‘‘Mr.’’ and 0 otherwise, is defined by:

fl(y,x,i)~if yi~~PER _ xi{1~~‘‘Mr:00ð Þ

then return 1 else return 0

Although many feature functions have been proposed in the

literature [7,16,17,32–34], we introduce new feature functions for

the purpose of this research. These can be sorted into the following

categories:

Preprocessing. These feature functions use standard pre-

processing labels, which are a result of the preprocessing step, such

as lemmas, part-of-speech (POS) tags, chunks, and parse trees. The

derived feature functions are ‘‘target label distribution’’, ‘‘do POS

tags match on distances up to two mentions away’’, ‘‘distribution

of POS tags’’, ‘‘mention type match’’, ‘‘is a mention pronoun of

demonstrative/definitive noun phrase’’, ‘‘is mention a pronoun’’,

‘‘length between mentions within a parse tree’’, ‘‘parse tree path

from the root node’’, ‘‘parse tree path between the two mentions’’,

‘‘depth of a mention within a parse tree’’, and ‘‘parse tree parent

value match’’.

Location. Sometimes it is important to know where the

mention resides. Location feature functions deal with the

mention’s location compared to the whole document, sentence,

or other mentions. Our approach already implicitly uses mention

distance at each skip-mention model, but we still employ some

specific feature functions. These are ‘‘sentence/mention/token

distance between the two mentions’’, ‘‘is first/last mention’’ and

‘‘are mentions within the same sentence’’.

Mention Shape. Mention constituents are represented as

word phrases and by using mention shape features we are

Table 1. Classification of coreference resolution approaches.

UNSUPERVISED SUPERVISED

SEQUENCE-BASED [23–25] SkipCor

PAIRWISE [14,15,22], etc. [12,13,16–20,26,30]

According to the two-dimensional classification of coreference resolution systems, the proposed SkipCor system solves the problem in a novel fashion.
doi:10.1371/journal.pone.0100101.t001

Figure 1. Linear-chain conditional random fields model. Black
nodes represent observable values, which are in our case entity
mentions. White nodes represent hidden labels that we need to predict
and define whether the current observable value is coreferent with the
previous one.
doi:10.1371/journal.pone.0100101.g001

Linear-Chain CRF Coreference Resolution
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interested in whether two of them share some property. These

feature functions are string-based and are implemented as follows:

‘‘does a mention start with an upper case’’, ‘‘do both mentions

start with upper case’’, ‘‘does a prefix/postfix/whole of left/right

mention on distances up to five mentions match’’, ‘‘does a mention

text/extent match’’, ‘‘is one mention appositive of another’’, ‘‘is

one mention prefix/suffix/substring of another’’, ‘‘Hearst mention

co-occurrence rules’’, ‘‘is a mention within quotes’’, ‘‘does a

mention contain head/extent words of another’’ and ‘‘length

difference between the two mentions’’.

Semantic. This class of feature functions captures semantic

relationships between mentions by employing additional semantic

sources, such as WordNet [35], specialized lexicons, semantic

gazeteer lists, and ontologies. The semantic feature functions are

‘‘do named entity types match’’, ‘‘do mentions agree on gender/

number’’ [36], ‘‘is one mention appositive of another’’, ‘‘is a

mention an alias of another’’ (heuristically), ‘‘edit distance

similarity between two mentions’’, ‘‘WordNet relation (hyper-

nym/hyponym/synonym) between the mentions’’, ‘‘do mentions

share the same WordNet synset’’, ‘‘current mention word sense’’,

‘‘do both mentions represent an animate object’’ [37] and ‘‘do

both mentions speak’’ (taking context words into account).

A brief description and exact list of feature functions that we use

is presented in Table 2. Still, their exact implementations can be

retrieved from our public source repository [31] (within the class

FeatureFunctionPackages).

Skip-mention Sequences
Since merely linear-chain CRF models are used, we can identify

only coreferences over two directly consecutive mentions. Thus, to

detect coreferences over mentions on larger distances, i.e., having

one, two, three, or more mentions in between, we propose a skip-

mention dataset transformation.

To support our transformation idea, we show the distribution of

distances between two consecutive coreferent mentions (see

Figure 2) in the SemEval2010 evaluation dataset. Although the

figure shows the distribution for only one dataset, it is represen-

tative enough to illustrate the general problem, which is the same

for all other datasets. According to the distribution, only 10% of

the directly consecutive mention pairs are coreferent, while the

highest number (i.e., 12.5%) of coreferent mention pairs are at

distance one - i.e., having one other mention in between. Taking

into account all mention pairs up to a distance of 20, cumulatively,

81% of the mention pairs can be identified. With distances up to

50, about 92% of the mention pairs can be identified. However, by

using longer or all possible distances, the accuracy of a general

coreference system is not expected to increase since more false

positives are extracted. To overcome such problems, a promising

cut-off point is selected (see Figure 3).

Thus, to detect coreferences we form a zero skip-mention

sequence from each document, which contains all the mentions

from a document. Then we form specific s skip-mention

sequences. Each s skip-mention sequence contains every (sz1)-
th mention from a document and one linear-chain CRF model is

trained for each value of s. In the next section we present an

example of detecting coreferences using skip-mention sequences.

A Worked Example
In this section we illustrate the detection of coreferences using

our approach from the following document: ‘‘John is married to

Jena. He is a mechanic at OBI and she works there. It is a DIY

market.’’. Let �xx~ x1,x2,x3,:::,xn½ � denote a sequence of all

mentions within the document. Mentions xi are ordered by their

occurrence in the document. For example, from the document we

select all entity mentions into one training mention sequence x:

x~½John, Jena, He, OBI, she, there, It, DIY market� ð3Þ

As mentions mostly consist of noun phrases we could also

identify a mechanic as a mention. Due to the simplification of the

process the phrase was not identified as a mention during the

mention detection. Our goal is now to detect the target clusters for

each entity xJohn,xJena and xOBI:

xJohn~fJohn, Heg, ð4Þ

xJena~fJena, sheg, ð5Þ

xOBI~fOBI, there, It, DIY marketg ð6Þ

In some cases, a mention could overlap with another mention.

We treat such pairs as separate mentions and order them

lexicographically by the index of the first word and mention

length.

First, we decide to use zero, one and two for s skip-mention

sequences and this is also a parameter to the system. In Figure 4,

we show a training mention sequence x, which is applicable to

first-order probabilistic models. We call it a ‘zero skip-mention

sequence’ because it includes all mentions from a document and

there are no (i.e., zero) other mentions between any two

consecutive mentions in it. To identify coreferent mentions in

the sequences, we need to label them using the labels fO,Cg. The

label C states that the current mention is coreferent with the

previous one, whereas O states that the current mention is not

coreferent with the previous one. Our linear-chain CRF models

are learned over these labels and are therefore able to infer new

labels for unseen mention sequences. Observe that for the toy

example above, first-order models detect just three coreferent

mentions fthere,It,DIY Marketg from a zero skip-mention

sequence.

To solve the problem of identification of coreferent mentions at

longer distances that contain other mention in between (e.g., OBI

and there), we introduce further transformations. All additional

skip-mention sequences are generated from the initial zero skip-

mention sequence x and are labeled accordingly using fO,Cg
labels. We also train a separate linear-chain CRF model for each

additional skip-mention sequence type, which enables us to tag

new unseen data for specific skip-mention distance.

Next, we then generate one skip-mention sequences (see

Figure 5), which contain every second mention from the x above.

The trained model for one skip-mention sequences can therefore

extend our results by two new pairs fJohn,Heg and fOBI,thereg.
Analogously, for the two skip-mention sequences (see Figure 6) we

could get our final missing pairs fOBI,Itg and fJena,sheg.
Lastly, we perform mention clustering from the previously

extracted results from all the skip-mention sequences and return

target entity clusters xJohn,xJena and xOBI.

As shown in the example above, the transformation into higher

skip-mention sequences returns more sequences per document.

Intuitively, at distance zero, we get one training sequence per

document (it contains all document mentions). At distance one, we

get two sequences (each contains every second mention). At

distance two, we get three sequences, etc. Therefore, the

Linear-Chain CRF Coreference Resolution
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transformation into d skip-mention sequences returns dz1

sequences of length
n

d
, where n is the number of all mentions in

the document.

The SkipCor System
The SkipCor system takes a set of documents as input and

returns a set of coreferent mention clusters, where each cluster

represents an entity to which the mentions refer. The algorithm

first reads mentions from the text and then transforms them into

skip-mention sequences. Then, we load LCRF models specific to

the generated skip-mention sequences and each of these indepen-

dent models returns separately tagged skip-mention sequences,

which are used at the clustering step. The final result is therefore a

set of entities (represented as clusters of mentions) for each input

document. We show a high level SkipCor data flow in Figure 7

and the detailed algorithms for training and inference are

presented in Table 3 and Table 4, respectively.

Table 2. Feature functions description.

Name Description Model

Target label distribution Distribution of target labels. A, S, C

Starts upper Does the mention start with an upper case letter. A, S, C

Starts upper twice Do two consequent mentions start with an upper case letter. A, S, C

Prefix value Value of the prefix (length of 2 and 3) for the mention on offset distance
(distances from 25 to 5) from the current mention.

A, S, C

Suffix value Value of the suffix (length of 2 and 3) for the mention on offset distance
(distances from 25 to 5) from the current mention.

A, S, C

Consequent value A combination of values of the consequent mentions on offset distance
(distances from 24 to 4) from the current mention.

A, S, C

String match Do consequent mention values match. A, S, C

Gender match Does the gender of two consequent mentions match. A, S, C

Gender value The gender value of the mention. A, S, C

Is appositive Is the mention appositive of the another. A, S, C

Alias Is the mention alias or abbreviation of the another. A, S, C

Is prefix Is the mention prefix of the another. A, S, C

Is suffix Is the mention suffix of the another. A, S, C

Similarity value How similar are the two mention values according to the Jaro Winkler [53] metric. A, S, C

Is pronoun Is the mention a pronoun. A, S, C

Same sentence Are consequent mentions in the same sentence. A, S, C

Hearst co-occurence [54] Does the text between the two mentions follow some predefined rules, e.g. mi such as mj . A, S, C

Sentence distance What is the distance between the sentences of the two mentions. A, S, C

Is quoted Is the mention within the parentheses. A, S, C

Substring match Is the mention a substring of the another. A

Starts with Does the mention starts with the another. A, S, C

Ends with Does the mention ends with the another. A, S, C

Number match Do the mentions match in number (i.e., singular, plural). A, S, C

Mention type Type of mention (i.e., pronoun, name, nominal). A

Relative pronoun Heuristic decision if the mention is a relative pronoun of the another. A

WordNet [35] How is the mention semantically connected to the another (e.g., is a hypernym, synonym). A

WordNet synset Are the two consequent mentions in the same synset. S, C

Entity type What is the named entity type or subtype of the mention. A

Length difference What is the difference in length of the two consecutive mentions. A, S, C

Is demonstrative Is the mention a demonstrative noun phrase. A, S, C

Offset match Do consecutive POS values on distances from 22 to 2 match. A

Parse tree path Path values between the two mentions in a parse tree. A, S, C

Parse tree mention depth Depth of the mention within the parse tree. A, S, C

Parse tree parent value Parse tree value of the mention on lengths of one, two or three. A, S, C

Relation Does a relationship exist between the two consecutive mentions. S

Speaker Who is the current speaker in a transcript text. C

The feature functions are used by all skip-mention CRF models and are modeled as unigram or bigram features. The exact details (e.g., which mention values are used
by a specific feature functions) and implementations can be retrieved from our public source repository [31] (within the class FeatureFunctionPackages). The
abbreviations A, S and C define which feature functions were used when training the models for the ACE2004, SemEval2010 and CoNLL2012 datasets, respectively.
doi:10.1371/journal.pone.0100101.t002

Linear-Chain CRF Coreference Resolution
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The training phase is similar to the inference phase. The only

difference is that the training must occur before any inference (the

dashed rectangle in Figure 7). Each of the trained LCRF models is

then able to infer the labels for a specific skip-mention distance.

During the training phase, Table 3, we build a skip-mention

coreference resolution model. The algorithm takes as input the

training documents, a list of feature functions, and a list of skip-

mention distances. First, in the pre-processing step, we import the

training data in the form of sentences and enrich them with

additional tags (e.g., part-of-speech tags, lemmas, parse trees).

Then we generate mention sequences (i.e., with zero skip-

mentions) for each document. These sequences contain references

to the original sentences, therefore the feature functions can use

context data from the original input text and not only from the

mention sequences. The main part of training the algorithm is the

for loop, in which we transform the original mention sequences

into the appropriate si skip-mention sequences, generate features,

and train a specific model for every si using the LCRFTrain

function. Each for loop execution is independent of the others,

thus, the algorithm can be parallelized. Lastly, the final result of

training is a SkipCor model, which is a tuple consisting of a list of

trained skip-mention linear-chain CRF models, a list of the

corresponding skip-mention distances, and a list of the feature

functions.

To detect coreferences in unseen documents, we follow the

algorithm shown in Table 4. As input, we take a raw text

document and a SkipCor model that was trained using the

algorithm in Table 3. During the execution, similarly to the

training phase, we preprocess the input document and generate

the initial mention sequence. If the mentions were not already

detected in the input document, we perform a rule-based mention

detection [14] to generate the initial mention sequence. Due to

Figure 2. Distribution of distances between two consecutive coreferent mentions. The data was taken from the SemEval2010 [46]
coreference dataset. Distance x between two consecutive mentions means that there exist x other mentions between them.
doi:10.1371/journal.pone.0100101.g002

Figure 3. Coreference resolution results using different skip-mention sequences. Evaluation of the proposed system on the whole
ACE2004 [45] and SemEval2010 [46] datasets using the metrics BCubed [41], MUC [9] and CEAFe [42].
doi:10.1371/journal.pone.0100101.g003
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fact that we are processing only one document, we get only one

zero skip-mention sequence at this step (line 2). In the parallel for

loop, we transform the initial mention sequence into si skip-

mention sequences, generate the features, and execute the labeling

of the specific si skip-mention LCRF model. All mention pairs that

are identified as coreferring are stored in a set, which is the result

of the parallel for loop. Lastly, during the clustering step we merge

the coreferent mentions into mention clusters, where each cluster

represents an underlying entity. These entity clusters are returned

as the final result of the SkipCor coreference resolution.

The clustering step is performed using hierarchical agglomer-

ative clustering. All the identified coreferent pairs that were

extracted from the labeled zero-skip mention sequence are

represented as initial mention clusters. If a mention is coreferent

to no other mentions, it will form a singleton cluster. The initial

clusters are then iteratively merged according to other labeled si

skip-mention sequences. The final result of clustering is also the

final result of the SkipCor labeling, and consists of a set of clusters

that represent separate entities.

The time complexity of both proposed methods is mainly

determined by the training and inference of the LCRF models

(i.e., LCRFTrain and LCRFLabel), since other routines can be

run in linear time. Still, some third-party methods used at pre-

processing could consume more time. Due to the parallel

execution of the for loop, we need to find the longest lasting

execution. Let us say that the CRF training or inference has a time

complexity of O(ELQ) [38], where E is the number of edges in the

graph, L is the number of labels, and Q is the size of the maximal

clique. In our type of CRF model, we use two possible labels:

O, C, and the size of every clique is two. The number of edges E
depends on the sequence input to the algorithm. Let us say that

there are n mentions in a document, which results in a zero skip-

mention sequence with 2n{1~O(n) edges. Moreover, every

other generated d skip-mention sequence contains

d(
2n

d
{1)~2n{d~O(n) edges. Thus, we conclude that by

employing parallelization, CRF models would use O(22n)~O(n)
of time. Additionally, next to other linear time procedures, it is also

important to include the time for feature function initialization,

which takes on the order of O(nm), where m is the number of

input feature functions.

Results and Discussion

In this section, we first explain the coreference resolution

evaluation metrics, the system settings that are used during the

analysis, and give an overview of the SkipCor baseline systems.

Then we introduce the evaluation datasets with some general

statistics, labeling specifics, and additional attributes used for

training. Next, we show the evaluation results on all the datasets,

compare the SkipCor system to two baseline systems, and discuss

the results. Lastly, we see how the system accuracy drops when

training it on one dataset and testing it on another, to show the

expected accuracy in real life scenarios.

Experimental Framework
There is no general agreement on which metric to use for the

coreference resolution task. We here adopt the measures most

commonly used in the literature, which will be described below.

Prior to the measures we use in this paper, a graph based scoring

algorithm had been used, that produced very unintuitive results

[39,40]. There have been a number of metrics proposed, so we

evaluate the system using the following most commonly used

measures:

Figure 4. Zero skip-mention training sequence. Initial mention
sequence that contains all mentions from the input text ‘‘John is
married to Jena. He is a mechanic at OBI and she works there. It is a DIY
market.’’ If the current mention is coreferent with the previous one, it is
labeled with C, otherwise with O.
doi:10.1371/journal.pone.0100101.g004

Figure 5. One skip-mention training sequences. Mention
sequences that include every second mention (i.e., one skip-mention)
from the input text ‘‘John is married to Jena. He is a mechanic at OBI and
she works there. It is a DIY market.’’ If the current mention is coreferent
with the previous one, it is labeled with C, otherwise with O.
doi:10.1371/journal.pone.0100101.g005

Figure 6. Two skip-mention training sequences. Mention
sequences that include every third mention (i.e., two skip-mention)
from the input text ‘‘John is married to Jena. He is a mechanic at OBI and
she works there. It is a DIY market.’’ If the current mention is coreferent
with the previous one, it is labeled with C, otherwise with O.
doi:10.1371/journal.pone.0100101.g006
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MUC. The key idea in developing the MUC measure [9] was

to give an intuitive explanation of the results for coreference

resolution systems. It is a link-based metric (it focuses on pairs of

mentions) and is the most widely used. MUC counts false positives

by computing the minimum number of links that need to be added

in order to connect all the mentions referring to an entity. Recall,

on the other hand, measures how many of the links must be

removed so that no two mentions referring to different entities are

connected in the graph. Thus, the MUC metric gives better scores

to systems having more mentions per entity, while it also ignores

entities with only one mention (singleton entities).

BCubed. The BCubed metric [41] tries to address the

shortcomings of MUC by focusing on mentions, and measures

the overlap of the predicted and true clusters by computing the

values of recall and precision for each mention. If k is the key

entity and r the response entity containing the mention m, the

recall for mention m is calculated as
jk\rj
jkj , and the precision for

the same mention, as
jk\rj
jrj . This score has the advantage of

measuring the impact of singleton entities, and gives more weight

to the splitting or merging of larger entities.

CEAF. The goal of the CEAF metric [42] is to achieve better

interpretability. The result therefore reflects the percentage of

correctly recognized entities. We use entity-based metric (in

contrast to a mention-based version) that tries to match the

response entity with at most one key entity. For CEAF, the value

of recall is
total similarity

jkj , while precision is
total similarity

jrj .

For the evaluation in this paper, only exact mention matches are

considered as correct, see [43] with some modifications proposed

by Cai and Strube [5].

The majority of the state-of-the-art systems were evaluated on

specialized shared tasks at MUC (Message Understanding

Conference) [44], ACE (Automatic Content Extraction) [45],

SemEval2010 (Semantic Evaluation) [46], and, most recently, at

CoNLL-2011 and CoNLL-2012 (Conference on Computational

Language Learning) [43,47]. Some general information regarding

the English datasets that we used in our evaluation is shown in

Table 5. We focused primarily on newswire and broadcast news

texts, which have been the most thoroughly studied in the past. To

be more specific, we used the following datasets: (1) The ACE

2004 dataset, which in addition to broadcast news and newswire

texts, also contains transcripts of conversations and various news

reports transcribed and translated from Chinese and Arabic. It is

the de facto standard dataset for all major information extraction

tasks. (2) The SemEval 2010 dataset was designed specifically to

evaluate coreference resolution systems in six languages. The

English section of the dataset contains newswire and broadcast

news from The Wall Street Journal and the TDT-4 collection. (3)

The CoNLL 2012 corpus is one of the largest coreference

resolution datasets. It tries to provide a much larger selection of

coreferring entities, connecting together events and entities. The

corpus consists of newswire texts, magazine articles, broadcast

news, broadcast conversations, web data, conversational speech,

and an English translation of the New Testament.

The proposed system is trained to detect coreferences over all

tagged mention types: named, nominal, and pronominal. Due to

differences in annotator agreements and rules for tagging the

mentions, we cannot compare the results between the corpora. For

example, the ACE and CoNLL datasets both include tags for all

three mention types, but CoNLL includes more general entities.

The CoNLL dataset also includes exact mention phrase bound-

aries, without considering parse tree constituents (a subtree that

identifies an exact token sequence). Therefore it is expected for the

results to be lower on CoNLL. Furthermore, SemEval includes

only nominal mention types and heuristically identified singleton

mentions. Nevertheless, we still conducted additional experiments

involving training on one dataset type or domain and testing on

another. We will present these results since the main motivation

for the whole IE field is to develop techniques that work on an

Figure 7. High level skip-mention coreference resolution data flow. The input to the system is given as a set of documents. For each
document we select mentions and transform them into mention sequences. According to the system parameters, sequences contain every s+1th
mention (i.e., s skip-mention). A model is trained for each sequence type and then used for labeling. After sequences are labeled, the mentions are
then clustered. Each cluster of mentions represents a specific entity, which is also the final result of the system.
doi:10.1371/journal.pone.0100101.g007

Table 3. Algorithm 1.

Algorithm 1: Skip-mention classifier training

Input: training documents D, feature functions fl[F and skip-mention
distances si[S

Output: skip-mention model (skipMentionCRF ,S,F )

1: sentences/importTrainingData(D)

2: sentences/preprocessInputText(sentences)

3: mentionSequences/readMentions(sentences)

4: skipMentionCRF/½� ==empty list

5: parallel for each si[S:

6: skipMentionSequences/transform(mentionSequences,si)

7: initializeFeatureFunctions(skipMentionSequences,F )

8: skipMentionCRFi/LCRFTrain(skipMentionSequences)

9: return (skipMentionCRF ,S,F )

doi:10.1371/journal.pone.0100101.t003
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unpredictable user text input, where a user does not know what

kind of data the algorithms were trained on.

To get additional annotations for the datasets, we used Apache

OpenNLP toolkit [48] sentence splitter, POS tagger, and a

dependency parser. For the LCRF training and inference, we used

CRFSuite [49] with a cut-off threshold of three features and a

default setting, which uses the L-BFGS optimization method. The

whole implementation along with the evaluation of the proposed

skip-mention coreference resolution is available in a public source

code repository [31].

Empirical Comparisons
As already mentioned, the accuracy of the system depends on

the skip-mention sequence types: the accuracy may not increase

when using larger and larger skip-mention distances. In Figure 3,

we show the results of training the models using different skip-

mention sequence distances. From the results, we observe that

when taking into account skip-mention distances larger than 40,

the F1 scores do not increase or change significantly because

although the recall scores increase, the precision scores decrease.

Therefore, the final F1 score remains almost stalled due to a

compensation of both scores, or even starts to slightly decrease.

The scores that we further present in the evaluation were recorded

using all skip-mention distances from zero to 25 (cut-off lines in

Figure 3). We did not perform any mention detection, and

therefore we always compare the results to the settings with

already detected mentions.

We compared the proposed SkipCor system to the baseline

systems SkipCorZero and SkipCorPair, both using the same

feature functions and settings as SkipCor. The only difference

between them is the use of different skip-mention sequence types.

SkipCorZero detects coreferences only over zero skip-mention

sequences, while SkipCorPair checks every mention pair within a

document and predicts whether the two mentions are coreferent

or not. Due to the large number of mention pairs considered by

SkipCorPair, we limited the distance of the mention pairs to ten

mentions. SkipCorPair therefore consists of ten LCRF models,

each of which is trained to label coreferentiality on skip-mention

sequences of length of two mentions.

In Table 6 we present the results for the ACE2004 dataset.

When using the newswire and broadcast news portion, we split the

data into training and testing sets in the ratio 70:30. For the whole

ACE dataset, we used 336 documents for training and the others

for testing [12]. SkipCorZero and SkipCorPair achieved relatively

good or best precision values but very low recall. Generally,

SkipCorPair outperformed SkipCorZero, while the proposed

SkipCor system outperformed both of them. In comparison to

other proposed systems, SkipCor achieved a slightly better

BCubed score but a lower MUC score. As the results are so

close, and opposite for the two measures, it is hard to decide which

system is better. On broadcast news, we achieved better MUC and

BCubed scores, which are similar to the ones from the newswire

section. On the other hand, the precision values are lower, but we

achieved a lower difference between the precision and recall

compared to the competitive systems. Therefore, we uncovered a

lot more mention clusters that have more errors, but the overall

results are better. Lastly, we tested the system over the whole

dataset (ACE2004-ALL), where we achieved results comparable to

those of other systems.

The results for the CoNLL2012 dataset are shown in Table 7.

The corpus is already separated into training, testing, and

Table 4. Algorithm 2.

Algorithm 2: Skip-mention classifier labeling

Input: document D and a skip-mention model
(skipMentionCRF ,S,F )

Output: coreferent mention clusters

1: sentences/preprocessInputText(D)

2: mentionSequence/detectMentions(sentences)

3: coreferentMentions/1

4: parallel for each si[S:

5: skipMentionSequences/transform(mentionSequence,si)

6: initializeFeatureFunctions(skipMentionSequences,F )

7: coreferentMentions add LCRFLabel

(skipMentionCRFi ,skipMentionSequences)

8: mentionClusters/cluster(coreferentMentions)

9: return mentionClusters

doi:10.1371/journal.pone.0100101.t004

Table 5. Dataset descriptions.

Dataset # documents # sentences # tokens # mentions # entities

ACE2004-ALL 450 7,518 191,387 29,724 12,439

ACE2004-NW 127 2,865 74,987 11,188 4,701

ACE2004-BN 220 3,782 71,602 11,323 4,918

SemEval2010-Train 229 3,648 78,831 21,550 16,082

SemEval2010-Test 85 1,141 24,121 6,692 4,839

CoNLL2012-ALL-Train 1,914 75,185 1,299,310 154,760 33,113

CoNLL2012-ALL-Test 221 9,479 169,579 19,677 4,217

CoNLL2012-NW-Train 734 15,288 387,082 34,470 9,404

CoNLL2012-NW-Test 88 1,898 49,235 4,361 1,168

CoNLL2012-BN-Train 748 9,723 180,300 22,262 6,433

CoNLL2012-BN-Test 93 1,252 23,209 2,936 790

The acronyms ALL (i.e., whole), NW (i.e., newswire), BN (i.e., broadcast news) stand for different subdatasets of the whole dataset, which is further divided into training
and test portions.
doi:10.1371/journal.pone.0100101.t005
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development datasets (we did not use the last when training). We

used gold mention boundaries and additional manual tags, which

are included in the data, therefore the results are comparable to

the Gold Mention Boundaries setting. Fernandes et al. [34]

proposed the shared task winning system and they are also the only

ones who published their results on the broadcast news and

newswire subdatasets (i.e., CONLL2012-BN, CONLL2012-NW).

Similarly to the ACE2004 results, SkipCor performed better than

SkipCorPair and SkipCorZero, except on the CoNLL2012-BN

subdataset, where SkipCorPair outperformed SkipCor as it

achieved the best precision and good recall. Otherwise, on most

of the measures, SkipCor slightly outperformed the other systems

and achieved better results with the MUC metric, generating

cleaner mention clusters. For the full shared task, nine research

teams submitted their results, but we show the results of only the

top six. We significantly outperformed the others according to the

MUC metric, where we increased the precision while having a

comparable level of recall. According to the BCubed metric, the

results are very similar, but in terms of CEAF we performed a little

worse. The systems at the shared task were ranked using the

CoNLL2012 measure, which is an average score of the MUC, the

BCubed, and the CEAF F -scores. The winning Fernandes et al.

[34] system achieved a CoNLL2012 score of 63.1 on English data,

whereas our system achieved a score of 61.3, ranking as the

second. The next then got the score of 60.7, with the others

ranging down to the score of 43.0.

In Table 8 we show the results for the SemEval2010 dataset,

which is already separated into training and testing portions. We

compared the systems using the Gold-standard Closed setting, for

which systems can use only the provided attributes with true

mention boundaries. On this dataset, SkipCor outperformed

SkipCorZero on all three measures and outperformed SkipCor-

Pair in terms of the CEAF and BCubed metrics. Interestingly,

SkipCorPair achieved a significantly higher MUC precision score,

and it therefore outperformed SkipCor in this measure. Compared

to other systems, SkipCor achieved better BCubed and CEAF

scores, but a lower MUC score. Interestingly, in the selected

setting, the RelaxCor system performed the best, but our system

outperformed it on all three measures. Focusing only on the MUC

measure, we got the second place, as the SUCRE system achieved

a better recall score.

System UBIU [50], which entered the SemEval2010 shared

task, also competed at the CoNLL2012 task, with a few

modifications [51]. Our system significantly outperformed UBIU

on both tasks and in terms of all three metrics. In contrast to our

proposal, UBIU uses pairwise classification with a form of

memory-based machine learning.

According to the results we showed, SkipCor outperformed

both SkipCorZero and SkipCorPair. SkipCorZero mostly

achieved good precision but very low recall. This is due to the

identification of coreferences only between consecutive mentions

within a document. SkipCor therefore uses skip-mention sequenc-

es to boost the recall values and consequently also the final result.

Table 6. Results of the proposed SkipCor system, baseline systems, and other approaches on the ACE2004 datasets.

MUC BCubed

P R F P R F

System ACE2004-NW

SkipCor 78.6 68.8 73.4 75.7 78.6 77.1

SkipCorZero 78.5 22.6 35.1 96.3 51.9 67.4

SkipCorPair 78.2 49.0 60.3 85.3 61.7 71.6

Finkel et al. [55] 78.7 58.5 67.1 86.8 65.2 74.5

Soon et al. [16]1 85.3 37.8 52.4 94.1 56.9 70.9

Haghighi et al. [15] 77.0 75.9 76.5 79.4 74.5 76.9

Stoyanov et al. [21] - - 62.1 - - 75.5

ACE2004-BN

SkipCor 76.3 71.3 73.7 76.2 81.5 78.8

SkipCorZero 79.3 28.3 41.7 95.9 57.3 71.8

SkipCorPair 80.9 59.4 68.5 86.3 70.7 77.7

Finkel et al. [55] 87.8 46.8 61.1 93.5 59.9 73.1

Soon et al. [16]1 90.0 43.2 58.3 95.6 58.4 72.5

ACE2004-ALL

SkipCor 79.5 70.9 75.0 76.3 81.1 78.6

SkipCorZero 81.3 28.9 42.6 95.6 55.4 70.2

SkipCorPair 80.5 57.1 66.8 84.8 68.9 76.0

Cullota et al. [12] - - - 86.7 73.2 79.3

Bengston et al. [17] - - - 88.3 74.5 80.8

Haghighi et al. [15]2 74.8 77.7 76.2 79.6 78.5 79.0

Coreference resolution systems evaluated on the ACE2004 dataset (i.e., ALL) [45] and its newswire (i.e., NW) and broadcast news (i.e., BN) subdatasets using the metrics
MUC [9] and BCubed [41].
1Results were reported by Finkel and Manning [42].
2The MUC F1-score value does not agree with reported precision and recall and has been recalculated.
doi:10.1371/journal.pone.0100101.t006
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SkipCorPair ranks somewhere between SkipCorZero and Skip-

Cor. It checks for coreferences between mention pairs and is

therefore very similar to other pairwise approaches. Due to a lot of

pairwise comparisons, many mention sequences of length two

must be generated, and therefore SkipCorPair executes more

slowly than SkipCor.

Generally, SkipCor showed improvements on most of the

datasets or achieved comparable results. We did not asses

statistical significance of the differences in accuracy between the

various systems because their implementations are not accessible

and also referenced papers report single F score values only.

Although some of the the existing rule-based systems are easy to

implement and achieved good or best results, they may not be

easily adapted to a different domain. This is also the reason why

we proposed a simple machine-learned method for the task.

SkipCor mostly obtained very good recall scores and a little bit

lower precision. Other top performance systems use hybrid

approaches, combining rule-based strategies with machine learn-

ing. All of them also employ feature engineering with a heavy use

of lexicalized features. At the ACE2004 task, Haghighi et al. [15]

used a completely deterministic approach, driven entirely by

syntactic and semantic constraints. Bengston and Roth [17]

focused especially on rich feature functions engineering with a

simple pairwise classifier based on averaged perceptron. At the

SemEval2010 shared task, the best two systems used a combina-

tion of manual rules and a set of machine learning classifiers (i.e.,

decision trees, naive Bayes, SVM, or maximum entropy models).

Lastly, the CoNLL2012 task winner, Fernandes et al. [34], looked

for the best mention clustering within a document using a

specialized version of structure perceptron and represented

mention clusters as coreference trees. The only system that used

first-order probabilistic models was the one by Cullota et al. [12]

on the ACE dataset. Their usage is completely different from that

of our approach, because they still perform standard pairwise

comparisons and then use first-order logic over mention clusters.

Other CRF-based approaches, which were mentioned within the

section on related work, were tested only against a limited version

of a coreference resolution dataset or focused on an entity

resolution task, which is a little similar to coreference resolution.

Performance in Real-world Scenarios
In addition to standard evaluation techniques, we trained

SkipCor on one dataset and tested it on another (Table 9).

Although the datasets do not have the same annotation guidelines

or domain, this is interesting, as showing the results that can be

expected by an end user on real data.

First, we notice only a minor performance drop when testing

within the datasets from the same shared task. For example, the

results between broadcast news and newswire data remained

almost the same as for the CoNLL and ACE2004 data separately.

Furthermore, CoNLL models performed only a little worse on the

ACE2004 dataset than originally. On the other hand, ACE2004

models performed less well on the CoNLL dataset, with a drop of

roughly 20%. Both the CoNLL and ACE2004 models achieved

low MUC scores on SemEval, but the best BCubed and CEAF

scores. The difference is due to the fact that SemEval contains only

nominal mentions and heuristically tagged singletons, which are

more easily discovered, and they boost the scores. A model trained

on SemEval performed the worst on both CoNLL and ACE2004.

Interestingly, it achieved better MUC scores on CoNLL data than

on the native SemEval testing dataset.

To conclude, the results typically show drops in accuracy on

other domains or other datasets of the same or a different domain,

from their performance on the same dataset. A similar analysis on

T
a

b
le

8
.

R
e

su
lt

s
o

f
th

e
p

ro
p

o
se

d
Sk

ip
C

o
r

sy
st

e
m

,
b

as
e

lin
e

sy
st

e
m

s,
an

d
o

th
e

r
ap

p
ro

ac
h

e
s

o
n

th
e

Se
m

Ev
al

2
0

1
0

d
at

as
e

t.

M
U

C
B

C
u

b
e

d
C

E
A

F

P
R

F
P

R
F

P
R

F

S
y

st
e

m
S

e
m

E
v

a
l2

0
1

0

Sk
ip

C
o

r
6

8
.8

3
0

.1
4

1
.8

9
4

.8
8

0
.8

8
7

.3
7

4
.0

7
8

.5
7

6
.2

Sk
ip

C
o

rZ
e

ro
6

7
.0

3
.6

6
.8

9
9

.6
7

5
.1

8
5

.7
7

3
.0

7
3

.1
7

3
.1

Sk
ip

C
o

rP
ai

r
7

6
.7

3
5

.6
4

8
.7

9
7

.1
7

9
.0

8
7

.1
7

2
.7

7
9

.4
7

5
.9

R
e

la
xC

o
r

[6
0

]
7

2
.4

2
1

.9
3

3
.7

9
7

.0
7

4
.8

8
4

.5
7

5
.6

7
5

.6
7

5
.6

SU
C

R
E

[6
1

]
5

4
.9

6
8

.1
6

0
.8

7
8

.5
8

6
.7

8
2

.4
7

4
.3

7
4

.3
7

4
.3

T
A

N
L-

1
[3

3
]

2
4

.4
2

3
.7

2
4

.0
7

2
.1

7
4

.6
7

3
.4

6
1

.4
7

5
.0

6
7

.6

U
B

IU
[5

0
]

2
5

.5
1

7
.2

2
0

.5
8

3
.5

6
7

.8
7

4
.8

6
8

.2
6

3
.4

6
5

.7

C
o

re
fe

re
n

ce
re

so
lu

ti
o

n
sy

st
e

m
s

e
va

lu
at

e
d

o
n

th
e

Se
m

Ev
al

2
0

1
0

d
at

as
e

t
[4

6
]

u
si

n
g

th
e

m
e

tr
ic

s
M

U
C

[9
],

B
C

u
b

e
d

[4
1

]
an

d
C

EA
F

[4
2

].
d

o
i:1

0
.1

3
7

1
/j

o
u

rn
al

.p
o

n
e

.0
1

0
0

1
0

1
.t

0
0

8

Linear-Chain CRF Coreference Resolution

PLOS ONE | www.plosone.org 12 June 2014 | Volume 9 | Issue 6 | e100101



different coreference datasets has also been conducted before [52],

and their findings also show that evaluation on the same dataset

the models were trained on gives the best results.

Conclusions

The present paper proposed ‘SkipCor’, a novel skip-mention

coreference resolution system that is based solely on the linear-

chain conditional random fields algorithm. To support the

identification of all coreferent mentions in the text, the basic

algorithm was extended with an adequate transformation of the

data into different skip-mention sequences. In contrast to

traditional approaches, the proposed system avoids checking all

possible pairwise comparisons or using a single model. Thus, the

system is completely parallelizable with a linear time complexity.

Due to the amount of textual data available to date, the latter is of

considerable importance in practical applications. We also stressed

that the proposed skip-mention sequences could be adopted within

other approaches in a straightforward fashion, which represents a

prominent direction for future research.

The proposed system was evaluated on standard coreference

resolution datasets that are the focus of evaluations for the majority

of the techniques in the field. We compared the system to some

baseline algorithms and also to the best performing coreference

systems reported in the literature. The results obtained are

comparable to the current state-of-the-art in coreference resolu-

tion, while we also more thoroughly analysed the contribution of

the proposed skip-mention sequences. In addition, the analysis

revealed that although accuracy in real-world scenarios can be

even larger than expected, it decreases significantly when the

system is trained on less reliable datasets.

Future work will focus on the development of more intelligent

SkipCor mention clustering techniques (e.g., weighted scoring of

coreference models) to minimize the number of merged conflicting

mentions. Moreover, the system will be extended with a domain

ontology that will provide an additional source of feature

functions.
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