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Abstract

Hill numbers (or the ‘‘effective number of species’’) are increasingly used to characterize species diversity of an assemblage.
This work extends Hill numbers to incorporate species pairwise functional distances calculated from species traits. We derive
a parametric class of functional Hill numbers, which quantify ‘‘the effective number of equally abundant and (functionally)
equally distinct species’’ in an assemblage. We also propose a class of mean functional diversity (per species), which
quantifies the effective sum of functional distances between a fixed species to all other species. The product of the
functional Hill number and the mean functional diversity thus quantifies the (total) functional diversity, i.e., the effective
total distance between species of the assemblage. The three measures (functional Hill numbers, mean functional diversity
and total functional diversity) quantify different aspects of species trait space, and all are based on species abundance and
species pairwise functional distances. When all species are equally distinct, our functional Hill numbers reduce to ordinary
Hill numbers. When species abundances are not considered or species are equally abundant, our total functional diversity
reduces to the sum of all pairwise distances between species of an assemblage. The functional Hill numbers and the mean
functional diversity both satisfy a replication principle, implying the total functional diversity satisfies a quadratic replication
principle. When there are multiple assemblages defined by the investigator, each of the three measures of the pooled
assemblage (gamma) can be multiplicatively decomposed into alpha and beta components, and the two components are
independent. The resulting beta component measures pure functional differentiation among assemblages and can be
further transformed to obtain several classes of normalized functional similarity (or differentiation) measures, including N-
assemblage functional generalizations of the classic Jaccard, Sørensen, Horn and Morisita-Horn similarity indices. The
proposed measures are applied to artificial and real data for illustration.
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Introduction

Functional diversity quantifies the diversity of species traits in

biological communities, and is widely regarded as a key to

understanding ecosystem processes and environmental stress or

disturbance [1–11]. A higher functional diversity signifies greater

differences among species trait values, more distinct ecological

functions, and thus potentially better functional stability to

perturbations caused by human impacts or environment stresses

[12–15]. Thus, it is critical to quantify functional diversity properly

[16].

Functional diversity is typically quantified by using measures

based on species trait values and species abundance (or any

measure of species importance, e.g., cover or biomass). A wide

array of functional diversity measures have been developed in the

literature [4,17–22]; see [23–26] for reviews. There are three

major approaches to construct functional diversity measures: trait-

value-based [27], dendrogram-based [4,28–31], and distance-

based [17,32–35]. For the trait-value-based approach, measures

are calculated from species trait values directly. In the dendro-

gram-based approach, a functional dendrogram is constructed by

applying a clustering algorithm to the species pairwise distance

matrix. However, it has been shown that different clustering

methods may lead to different conclusions [21,30,31]. An

unavoidable issue in the dendrogram-based approach is how to

select a clustering algorithm to construct a functional dendrogram.

This paper is focused on the distance-based approach which

does not require a dendrogram. The selection of clustering

algorithm can thus be avoided. A commonly used functional

diversity index in the distance-based approach is FAD (Functional

Attribute Diversity), the sum of pairwise distances between species

[17]. However, FAD does not take into account species

abundances. Rao’s quadratic entropy Q and its transformations

have also been extensively applied to quantify functional diversity

[32–35]. The measure Q, a generalization of the traditional Gini-

Simpson index, incorporates both species pairwise distances and

species abundances. However, it inherits mathematical properties

of the Gini-Simpson index which are inappropriate for a diversity

measure [35,36–38]. The problems with interpreting Q as a

diversity measure will be briefly discussed and illustrated by

examples later in this paper. Ricotta and Szeidl [35] and de Bello

et al. [39] resolved these problems by converting Q to ‘‘species

equivalents’’; see later text for details. However, we show here that

their solution in its original form does not behave properly for non-

ultrametric distance matrices. (A distance metric d is ultrametric if

it satisfies the criterion d(x, y)#max{d(x, z), d(y, z)} for all x, y and z.)
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In many applications, the distance matrices calculated from

species traits do not satisfy this criterion and thus are non-

ultrametric. For example, the commonly used Gower distance

matrices calculated from three habitats in our real data (see

Examples and Applications) are all non-ultrametric. Also, measures

based on quadratic entropy gives common species much more

weight than their population fraction. It would be more

informative to have a parameter to control the sensitivity of the

measure to species abundances. We were thus motivated to derive

a new parametric class of measures that are valid for both

ultrametric and non-ultrametric matrices.

Our framework is based on Hill numbers, a one-parameter

family of diversity indices (differing among themselves only by a

parameter q which determines the sensitivity to the relative

abundances) that incorporate species richness and relative

abundances. Hill numbers include species richness, Shannon

diversity (the exponential of entropy) and Simpson diversity

(inverse of the Simpson index). They were first used in ecology by

MacArthur [40], developed by Hill [41], and recently reintro-

duced to ecologists by Jost [42,43]. A very brief description of Hill

numbers is provided below.

Hill numbers are increasingly used to characterize abundance-

based species diversity of an assemblage; see a series of papers in a

recent forum [44]. An important advantage of using Hill numbers

is that Hill numbers obey an intuitive replication principle, an

essential mathematical property that captures biologists’ intuitive

notion of diversity [40,41]; see Conclusion and Discussion for more

details. The replication principle requires that if we have N equally

diverse, equally large assemblages with no species in common, the

diversity of the pooled assemblage must be N times the diversity of

a single assemblage. We refer to the special case of N = 2 as a

‘‘doubling property’’ as defined in [36]. Hill numbers were

recently extended to incorporate phylogenetic distance and

dendrogram-based functional distance between species [45] while

still satisfying the replication principle.

This work first generalizes Hill numbers to distance-based

functional Hill numbers, which quantify ‘‘the effective number of

equally abundant and (functionally) equally distinct species’’.

Throughout this paper, species are equally distinct if all species

pairwise functional distances are a fixed constant. To fully

characterize distance-based functional diversity, we also need

measures in units of ‘‘distance’’. The product of our functional Hill

number and Rao’s quadratic entropy (the abundance-weighted

mean distance between species) quantifies the mean functional

diversity (per species), i.e., the effective sum of functional distances

between a fixed species to all other species (plus intraspecific

distance if exists). The product of the functional Hill number and

the mean functional diversity thus quantifies the total functional

diversity (or simply functional diversity), the effective total distance

between species of the assemblage. When all species are equally

distinct, our functional Hill numbers reduce to ordinary Hill

numbers. When species abundances are not considered or species

are equally abundant, our total functional diversity reduces to FAD

[17]. Thus our approach also extends FAD to incorporate species

abundances. Different perspectives regarding the distance-based

approaches and the replication principle can be found in

[46,47,48] and [48], respectively.

When there are multiple assemblages defined by the investiga-

tor, Hill numbers can be multiplicatively partitioned into

independent (or unrelated) alpha and beta components [43,49].

An advantage of our approach is that each of the three functional

diversity measures we propose (functional Hill numbers, mean

functional diversity and total functional diversity) can be used for

complete multiplicative partitioning. The beta component can be

further transformed onto the range [0, 1] to obtain normalized

measures of functional similarity (or differentiation), including N-

assemblage functional generalizations of the classic Jaccard,

Sørensen, Horn and Morisita-Horn similarity indices. Our

framework thus unites functional diversity measures and functional

similarity (or differentiation) among assemblages. Our previous

work on Hill numbers covered taxonomic diversity and phyloge-

netic diversity. With the present development of functional Hill

numbers, we now have a unified approach to quantifying and

partitioning taxonomic, phylogenetic and functional diversities.

Most previously-proposed diversity measures can be transformed

into this framework and can be better understood through it. See

Chao et al. [50] for an integrated framework.

Hill Numbers
In the traditional species diversity, only species richness and

species abundances are considered. Assume there are S species in

an assemblage and species are indexed by i = 1, 2, …, S. Let pi

denote the relative abundance of the ith species. Hill [41]

integrated species richness and species abundances into a

parametric class of diversity measures later called Hill numbers,

or the effective numbers of species, defined for q?1 as

qD~
XS

i~1

p
q
i

 !1=(1{q)

: ð1aÞ

The parameter q determines the sensitivity of the measure to the

relative abundances. When q = 0, 0D is simply species richness. For

q = 1, Eq. 1a is undefined, but its limit as q tends to 1 is the

exponential of the familiar Shannon entropy, and is referred to as

Shannon diversity in [51]:

1D~ lim
q?1

qD~exp {
XS

i~1

pi log pi

 !
: ð1bÞ

The measure 1D weighs species in proportion to their abundances.

When q = 2, Eq. 1a yields the inverse of the Simpson concentra-

tion which is referred to as Simpson diversity [51]:

2D~1=
XS

i~1

p2
i : ð1cÞ

This measure places more weight on the abundant species and

strongly discounts rare species. For all q, if qD = u, the diversity (of

order q) of the actual assemblage is the same as that of an idealized

assemblage with u equally abundant species. This is why Hill

numbers are referred to as the effective numbers of species or as

species equivalents.

A complete characterization of the traditional abundance-based

species diversity of an assemblage with S species and relative

abundances (p1,p2,:::,pS) is conveyed by a diversity profile plotting
qD versus q from q = 0 to q = 3 or 4 (beyond this it changes little)

[52]. Although Hill numbers for q,0 can be calculated, they are

dominated by the abundances of rare species and have poor

statistical sampling properties. We thus restrict ourselves to the

case q$0 throughout the paper.

Hill [41] proved a weak version of replication principle for Hill

numbers: if two equally large assemblages with no species in

common have identical relative abundance distributions, then the

Hill number of the pooled assemblage is doubled. Chiu et al.

(Appendix B of [36]) recently proved a strong version as given in

Distance-Based Functional Diversity Measures
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Introduction: the assumptions needed are that N assemblages with no

species in common are equally large and equally diverse (relative

abundance distributions may be different, unlike the weak version).

Species richness is a Hill number (with q = 0) and obeys both

versions of the replication principle, but most other traditional

diversity indices do not obey even the weak version. The

replication principle has been discussed for characterizing

abundance-based species diversity measures [40–43,53–56]. This

replication principle will be generalized to functional diversity

measures in later sections.

Previous Distance-based Functional Diversity and
Differentiation Measures

A large number of functional diversity measures have been

proposed in the literature, and each measure quantifies a different

aspect of species trait space. Here we mainly review those distance-

based functional indices and differentiation measures that are

related to our functional generalization of Hill numbers. The FAD

measure is defined as [17]

FAD~
XS

i~1

XS

j~1

dij , ð2aÞ

where dij is the functional distance between the ith and jth species,

dij = dji$0. However, this measure does not take into account the

abundances of the species, which may play an important role in

the functioning of ecosystems; see [19,57–63].

Functional diversity measures combining both functional

distance and species abundance have been proposed

[20,32,33,34,64,65]. Rao’s quadratic entropy for an assemblage

with species relative abundances (p1,p2,:::,pS) is the most widely

used measure [32]:

Q~
XS

i~1

XS

j~1

dijpipj : ð2bÞ

The measure Q is interpreted as the mean distance between any

two randomly sampled individuals in the assemblage. It can also

be interpreted as the abundance-weighted mean distance between

two species. Here the weighting factor for a distance dij is the

product of the relative abundances, pipj. This measure is an

extension of the Gini-Simpson index. Although this measure has

wide applications in many disciplines, Q, like the Gini-Simpson

index, is not linear with respect to the addition of new species and

thus does not obey the replication principle, causing counterin-

tuitive results in ecological applications [35,36,66]. For an additive

decomposition, another problem arises when the species functional

distance matrix does not result in the concavity of Q [5,67] (e.g. for

the Gower distance matrix, in general). Then Q in the pooled

assemblage (gamma quadratic entropy) may be smaller than the Q

of the average of local assemblages (alpha quadratic entropy),

implying Q in this situation could not to be used for additive

decomposition [67,68,69]. When additive decomposition is

feasible, the associated differentiation measure that has been used

in the literature is the quadratic entropy excess normalized by the

gamma quadratic entropy [70,71]:

Q�b~
Qc{Qa

Qc
, ð2cÞ

where Qa and Qc denote respectively the alpha and gamma

quadratic entropy. However, when alpha quadratic entropy is

high, the differentiation measure Q�b always tends to zero

(implying no differentiation) regardless of distance matrices and

differences in species abundances across assemblages [36]. This

behavior leads to severe interpretational problems.

To fix the problems with Q, Ricotta and Szeidl [35] and de

Bello et al. [39] made an advance by transforming Q to the

‘‘species equivalents’’, which is the effective number of equally

distinct species with a constant distance dmax for all different-

species pairs; here dmax denotes the maximum value in the distance

matrix. Their transformation is expressed as

Qe~
1

1{Q=dmax
: ð2dÞ

We refer to this number as ‘‘the effective number of (equally distinct)

species with maximum distance’’. Equivalently, they scale all distances

so they are between 0 and 1, by dividing each distance by its

maximum value in the distance matrix prior to all analyses. de

Bello et al. [39], Villéger et al. [72] and Escalas et al. [73] applied

the above formula to gamma and alpha quadratic entropies and

obtained the corresponding effective number of species for gamma

(denoted here by Qe, c) and alpha (denoted by Qe, a), where the

subscript ‘‘e’’ denotes ‘‘effective’’. The resulting beta based on a

multiplicative decomposition is Qe, b = Qe, c=Qe, a. de Bello [39]

further transformed this beta diversity into a normalized

differentiation measure so that the resulting measure is in the unit

interval [0, 1]:

Q�e, b~(1{1=Qe, b)=(1{1=N), ð2eÞ

where N denotes the number of assemblages. Villéger et al. [72]

also proposed a normalized differentiation measure:

Q��e, b~(Qe, b{1)=(N{1): ð2fÞ

However, as we will show by examples, Eq. 2d and the two

associated differentiation measures (given in Eqs. 2e and 2f) might

yield un-interpretable results when they are applied to non-

ultrametric distance matrices. This motivates our new approach

which is valid for both ultrametric and non-ultrametric matrices.

Guiasu and Guiasu [38,74] proposed a class of distance-

weighted Gini-Simpson index as follows:

GSD~
XS

i~1

XS

j~1

dijpipj(1{pipj)~Q{
XS

i~1

XS

j~1

dij(pipj)
2: ð2gÞ

They also proposed the corresponding measure for a multiplicative

decomposition. We will show that the three measures (FAD, Q and

GSD) are closely related to our proposed measures. Leinster and

Cobbold [75] derived a parametric class of measures sensitive to

species similarity. Scheiner [63] also proposed a metric that

integrates abundance, phylogeny, and function. Since both

approaches are also based on a framework of Hill numbers, it is

important to distinguish these two previous approaches from ours;

see Conclusion and Discussion for more details. Neither Leinster and

Cobbold’s approach nor Scheiner’s metric have been developed to

construct normalized similarity (or differentiation) measures that

can be applied to analyze datasets such as those discussed in

Examples and Applications.

Distance-Based Functional Diversity Measures
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Proposed Functional Diversity Measures
A Simple Framework for Ordinary Hill Numbers. We

first present a simple conceptual framework for ordinary Hill

numbers. Then we extend it to obtain our proposed functional Hill

numbers. The intuitive interpretation of the ‘‘effective number of

species’’ implies that if an assemblage with S species and species

abundance vector (p1,p2,:::,pS) has diversity D, then the diversity

of this actual assemblage is the same as that of an idealized

reference assemblage with D species and species abundance (1/D,

1/D, …, 1/D).

Now we construct the q-th power sum (q?1) of the abundances

(p1,p2,:::,pS) with unity weight for each species, i.e.,
PS

i~1 p
q
i ; see

Table 1. Taking the same function for the idealized reference

assemblage, i.e., replacing S and (p1,p2,:::,pS) by D and (1/D, 1/D,

…, 1/D) respectively, we obtain
PD

i~1 (1=D)q~D1{q. Equating

the two sums shows that D is the Hill number of order q:

XS

i~1

p
q
i ~

XD

i~1

(
1

D
)q~D1{q[D~qD~(

XS

i~1

p
q
i )1=(1{q):

This provides a simple and intuitive derivation of Hill numbers.

This derivation facilitates the extension of Hill numbers to

incorporate functional distances.

Functional Diversity Measures of an Assemblage. Let dij

denote the functional distance between the ith and jth species, with

dij$0, and dij = dji. Denote the S6S symmetric pairwise distance

matrix by D~[dij]. In our approach, species functional distance,

which quantifies the proximity of species in functional trait space,

can be any type of symmetric matrix. To extend Hill numbers to

incorporate functional distances between species, we consider a

framework based on pairs of species [38,74]. That is, we consider a

collection of all S2 pairs of species: {(1, 1), (1, 2), (1, 3), …, (S, S)}.

The joint ‘‘relative abundance’’ or joint probability for each

species-pair (i, j) is pipj. Consider the matrix V~½pipj �, where the (i,

j) element of the matrix is pipj (Table 1). Note that the mean

distance between any two species weighted by their joint

probability is Rao’s quadratic entropy defined in Eq. 2b.

Analogous to the derivation of Hill numbers, we consider the q-

th power sum (q?1) of all elements of the matrix V~½pipj � with

weight dij for species pair (i, j), i.e.,
PS

j~1

PS
i~1 dij(pipj)

q. A similar

concept of the ‘‘effective number of equally abundant and equally

distinct species’’ as in ordinary Hill numbers can be applied to the

functional version as follows. When species are equally distinct

with a constant pairwise distance, the quadratic entropy Q must be

equal to this constant. An assemblage with the effective number of

species D means that this assemblage has the same diversity as an

idealized reference assemblage having D equally common and

equally distinct species with a constant distance Q for all S2 pairs of

species. Here we have S2 pairs because same-species pairs are

included so that intraspecific variability can be considered when

trait values are available at the individual level [25,76]. (If there is

no intraspecific variability, then the distance for a same-species

pair is set to be 0 and a common distance Q�~QD= D{1ð Þ is set

for different-species pairs; see Table 1. All measures derived in the

following are still valid when intraspecific distance is zero, and all

interpretations can be adapted to the case when there is no

intraspecific variability.) For simplicity, our derivation and

interpretations are mainly based on S2 pairs of species.

Taking the same q-th power sum function (q?1) for the

idealized reference assemblage with a constant weight Q for all D2

species pairs, we obtain
PD
i~1

PD
j~1

Q( 1
D

1
D

)q. Equating the two sums

from the actual and the idealized reference assemblages leads to

XS

i~1

XS

j~1

dij(pipj)
q~

XD

i~1

XD

j~1

Q(
1

D

1

D
)q:

Then we can solve D and the solution given below is denoted by
qD(Q):

D~qD(Q)~
XS

i~1

XS

j~1

dij

Q
(pipj)

q

" # 1
2(1{q)

, q=1: ð3Þ

For q = 1, we define the following limit as our measure:

1D(Q)~ lim
q?1

qD(Q)~exp {
1

2

XS

i~1

XS

j~1

dij

Q
pipj log(pipj):

" #
:

The measure qD(Q) is a function of the distance matrix D~[dij]

and the joint probability matrix V~½pipj �. Here we express it as a

function of the quadratic entropy Q to emphasize the important

role of Q in the construction of other measures (see Eqs. 4a and 4b)

and in the proof of the replication principle (discussed later). The

measure qD(Q) is the dimension (the number of columns or rows)

of the distance matrix of the idealized reference assemblage in

Table 1. We refer to it as the functional Hill number of order q. The

measure qD(Q) can be interpreted as ‘‘the effective number of equally

abundant and (functionally) equally distinct species’’ with a constant

distance Q for all species pairs. Thus if qD(Q) = v, then the

functional Hill number of order q of the actual assemblage is the

same as that of an idealized assemblage having v equally abundant

and equally distinct species with a constant distance Q for all

species pairs; see Table 1 for illustration.

To derive measures in units of ‘‘distance’’, note that in the

idealized reference assemblage, all columns and all rows have

identical sums. We define the column (or row) sum as our

proposed measure of mean functional diversity (per species), qMD(Q), of

order q:

qMD Qð Þ~½qD(Q)�|Q, ð4aÞ

which quantifies the effective sum of pairwise distances between a

fixed species and all other species (plus intraspecific distance if

exists). In other words, qMD(Q) measures the dispersion per species

in the functional trait space [18]. The product of the functional

Hill numbers and the mean functional diversity thus quantifies the

total functional diversity (or simply functional diversity), qFD(Q), in the

assemblage:

qFD Qð Þ~qD(Q)|qMD(Q)~½qD(Q)�2|Q

~
XS

i~1

XS

j~1

dij

pipj

Q

� �q
" #1=(1{q)

:
ð4bÞ

This functional diversity quantifies the effective total distance

between species of the assemblage. If qFD(Q) = u, then the effective

total distance between species of the actual assemblage with

quadratic entropy Q is the same as that of an idealized assemblage

having (u/Q)1/2 equally abundant and equally distinct species with

a constant distance Q for all species pairs.

Distance-Based Functional Diversity Measures
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Consider the following special cases to intuitively understand

the meaning of our functional diversity measures and their

relationships with FAD (Eq. 2a) or GSD (Eq. 2g):

(a) When all species in the assemblage are equally distinct (i.e.,

dij:Q for all species pairs (i, j), for i, j = 1, 2, …, S), the

functional Hill number qD(Q) reduces to ordinary Hill

number.

(b) For q = 0, 0D(Q) = (FAD/Q)1/2, 0MD(Q) = (FAD6Q)1/2, and
0FD(Q) = FAD, where FAD is defined in Eq. 2a. Thus, our

measures have a direct link to FAD.

(c) If all species are equally abundant, then for any distance

matrix (dij), we have qD(Q) = S, and qFD(Q) = FAD for all

orders of q. Therefore, when species abundances are not

considered (q = 0) or species are equally abundant, our total

functional diversity reduces to FAD. In the equally abundant

case, we have qMD(Q)~qFD(Q)=S, implying that our mean

functional diversity is conceptually similar to the Modified

Functional Attribute Diversity (MFAD) proposed by

Schmera et al. [18].

(d) When q = 2, we have the following link to the weighted Gini-

Simpson index GSD defined in Eq. 2g [38,74]:

Table 1. A framework for Hill numbers, functional Hill numbers, mean functional diversity and (total) functional diversity of a
single assemblage.

Abundance vector/matrix weights q-th power sum (q?1)
Equating the two q-th power
sums

(1) Hill numbers

Actual
assemblage

S species with relative
abundance vector:

Unity weight for each species XS

i~1

p
q
i

XS

i~1

p
q
i ~

XD

i~1

1

D

� �q

~D1{q

[ qD~
XS

i~1

p
q
i

 !1= 1{qð Þ

(p1,p2,:::,pS) (1, 1, …., 1)

Idealized
reference
assemblage

D equally-abundant species Unity weight for each species XD

i~1

1

D

� �q

~D1{q
(Hill number of order q)

1

D
,

1

D
, � � � , 1

D

� �
(1, 1, …., 1)

(2) Functional Hill number, mean functional diversity and (total) functional diversity

Actual
assemblage

S|S matrix of the product of relative
abundances for pairs of species

p2
1 p1p2 . . . p1pS

p2p1 p2
2 . . . p2pS

..

. ..
.

P
..
.

pSp1 pSp2 . . . p2
S

2
6664

3
7775

S|S distance matrix as weight

d11 d12 . . . d1S

d21 d22 . . . d2S

..

. ..
.

P
..
.

dS1 dS2 . . . dSS

2
6664

3
7775

XS

i~1

XS

j~1

dij pipj

� �q
XS

i~1

XS

j~1

dij pipj

� �q

~
XD

i~1

XD

j~1

Q
1

D

1

D

� �q

~
XD

i=j

XD

j~1

Q�
1

D

1

D

� �q

Idealized
reference
assemblage

D|D matrix of the product of equal
relative abundances for pairs of
species

D|D idealized distance matrix
as weights

PD
i~1

PD
j~1

Q
1

D

1

D

� �q

Or

PD
i=j

PD
j~1

Q�
1

D

1

D

� �q

[qD~qD Qð Þ

~
XS

i~1

XS

j~1

dij

Q
pipj

� �q

" # 1

2 1{qð Þ

1
D

� �2 1
D

� �2
. . . 1

D

� �2

. . .
..
. ..

.
P

..

.

1
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..
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P
..
.

Q Q . . . Q

(Functional Hill
number = number of rows or
columns in the idealized distance
matrix)
qMD(Q)~½qD(Q){1�|Q�

~½qD(Q�|Q

or

0 Q� . . . Q�

Q� 0 . . . Q�

..

. ..
.

P
..
.

Q� Q� . . . 0

2
6664

3
7775

(Mean functional
diversity = column/row sum in
the idealized distance matrix)

Q�~QD= D{1ð Þ qFD(Q)

~qD(Q)½qD(Q){1�|Q�

~ qD(Q)| qMD(Q)

(Total functional diversity = grand
sum of the idealized distance
matrix)

doi:10.1371/journal.pone.0100014.t001
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2FD(Q)~
XS

i~1

XS

j~1

dij

Q2
(pipj)

2

 !{1

~
Q2

Q{GSD

: ð4cÞ

As with the diversity profile for Hill numbers, a profile which

plots qD(Q), qMD(Q) or qFD(Q) with respect to the order q

completely characterizes the information each measure gives for

an assemblage. As proved in Appendix S1, all three measures
qD(Q), qMD(Q) and qFD(Q) are Schur-concave with respect to the

product of relative abundances, implying these measures satisfy a

functional version of ‘‘weak monotonicity’’ [45,77,78]. That is, if a

rarest new species is added to an assemblage, then the measure
qFD(Q) does not decrease regardless of distance matrices. Also, if a

rarest new species is added to an assemblage such that the

quadratic entropy remains unchanged, then all three measures do

not decrease.
Functional Diversity Measures for a Pair of

Assemblages. We next extend Rao’s quadratic entropy, FAD,

functional Hill number, mean functional diversity and total

functional diversity to a pair of assemblages (say, I and II).

Assume that there are S1 species in Assemblage I and S2 species in

Assemblage II. Let the two sets of species relative abundances be

denoted by (p11,p21,:::,pS1,1) and (p12,p22,:::,pS2,2) for Assemblage

I and II respectively.

We first extend Rao’s quadratic entropy to a pair of

assemblages. Assume that an individual is randomly selected from

each of the assemblages. Then the probability that the individual

from Assemblage I belongs to species i and the individual from

Assemblage II belongs to species j is pi1pj2, i = 1, 2, …, S1, j = 1, 2,

…, S2. The mean distance between these two randomly selected

individuals is

Q12~
XS1

i~1

XS2

j~1

dijpi1pj2: ð5aÞ

This measure can also be interpreted as the abundance-weighted

mean distance between a species from Assemblage I and a species

from Assemblage II, and the weighting factor is the product of

their relative abundances. For simplicity, we refer to Q12 as the

mean distance between species of Assemblage I and Assemblage II. Clearly,

we have Q12 = Q21. The traditional Rao’s quadratic entropy for

Assemblage I is simply Q11 for the same-assemblage pair (I, I) and

the quadratic entropy for Assemblage II is simply Q22 for the

same-assemblage pair (II, II).

We can apply a similar approach to that in Table 1 by

conceptually thinking that there are two idealized assemblages,

and each assemblage includes qD(Q12) equally abundant and

equally distinct species such that the two actual assemblages and

the two idealized assemblages have the same value of a given

diversity measure. Replacing the joint probability matrix V~½pipj �
in Table 1 with the S16S2 matrix V12~½pi1pj2� and using parallel

derivations, we obtain the following functional Hill number for

Assemblage I and Assemblage II:

qD(Q12)~
XS1

i~1

XS2

j~1

dij

Q12
(pi1pj2)q

" # 1
2(1{q)

: ð5bÞ

This measure is interpreted as ‘‘the effective numbers of equally

abundant and equally distinct species in each of two assemblages,

with a constant distance Q12 between species of Assemblage I and

Assemblage II’’. We also define the mean functional diversity of

Assemblages I and II as qMD(Q12)~qD(Q12)|Q12, which

quantifies the effective sum of pairwise distances between a fixed

species in one assemblage and all species in the other assemblage.

Then the product of qD(Q12) and qMD(Q12) quantifies the total

functional diversity (or simply functional diversity) of Assemblage I and

Assemblage II as

qFD(Q12)~qD(Q12)|qMD(Q12)~
XS1

i~1

XS2

j~1

dij

pi1pj2

Q12

� �q
" # 1

1{q

:ð5cÞ

In the special case of q = 0, the above total functional diversity

reduces to the total sum of all pairwise distances between species of

Assemblage I and Assemblage II. Since Q12 is not involved in the

measure for q = 0, we denote 0FD(Q12);FAD12, which represents

an extension of Walker’s FAD to a pair of assemblages. Thus

FAD11 is identical to FAD for Assemblage I and FAD22 is identical

to FAD for Assemblage II. Also, we have the following relationship:

0MD Q12ð Þ~(FAD12|Q12)1=2: ð5dÞ

Replication Principle. We generalize the concept of the

replication principle to a functional version and show that the

proposed functional Hill numbers and the mean functional

diversity both satisfy the replication principle. Consequently, the

product of these two measures (i.e., our proposed total functional

diversity) satisfies a quadratic replication principle (i.e., the total

functional diversity of the pooled assemblage is N2 times that of

any individual assemblage.) A general proof of the replication

principle for N completely distinct assemblages is given in

Appendix S1. Throughout this paper, N assemblages are completely

distinct if there are no shared species (and thus no shared species

pairwise distances).

To simplify the concept, here we present the replication

principle only for two assemblages. Assume that two equally large

and completely distinct assemblages are pooled. Let Q11, Q12, Q21,

and Q22 denote respectively the mean distance between species of

the four pairs of assemblages, (I, I), (I, II), (II, I) and (II, II). Assume

that the functional Hill number of order q for all of the four pairs

of assemblages is a constant qD. When the two assemblages are

combined, the quadratic entropy in the pooled assemblage

becomes (1=4)(Q11zQ12zQ21zQ22) and the functional Hill

number of order q in the pooled assemblage is doubled.

Consequently, if we further assume that the four mean distances

(Q11, Q12, Q21 and Q22) are identical, then the mean functional

diversity in the pooled assemblage is also doubled, and the total

functional diversity is quadrupled; see Appendix S1 for a general

proof for N assemblage.

In Guiasu and Guiasu’s work on the quadrupling property [74],

they proved a weak version of the quadrupling property for their

proposed weighted Gini-Simpson type index (Eq. 4c) when two

equally large and completely distinct assemblages (I and II) are

pooled. They assume that the joint probability matrices for the

four pairs of assemblages, (I, I), (I, II), (II, I) and (II, II), are

identical, and also assume that the species distance matrices for the

four pairs of assemblages are also identical. The latter assumption

implies the FAD for the four pairs is a constant (say, A), i.e.,

FAD11 = FAD12 = FAD21 = FAD22;A. This weak version can be

directly used to understand why the functional diversity of order

zero (i.e., FAD) satisfies a quadrupling property. In this simple case,

Distance-Based Functional Diversity Measures
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consider the distance matrix of the pooled assemblage when the

two actual assemblages have no species shared. It is readily seen

that the total distance between species in the pooled assemblage is

quadrupled because the FAD in the pooled assemblage is FAD11+
FAD12+FAD21+FAD22 = 46A. As shown in the proof (Appendix

S1), our replication principle is a strong version in the sense that

there are no restrictions on the joint probability matrices and on

the distance matrices.

Partitioning Functional Diversity Measures
Assume that there are N assemblages defined by the investiga-

tor. The functional Hill number qD(Q) (Eq. 3), mean functional

diversity qMD(Q) (Eq. 4a) and total functional diversity qFD(Q) (Eq.

4b) of the pooled assemblage can each be decomposed into

independent alpha and beta components. Here we adopt the

decomposition method developed by Chiu et al. [36]. We first

briefly review Chiu et al.’s method for partitioning Hill numbers in

order to provide necessary backgrounds. To calculate the gamma

Hill numbers, species abundances are pooled over assemblages;

the gamma diversity is Hill numbers computed from the species

relative abundances in the pooled assemblage. However, as noted

by de Bello et al. [39], how to define species relative abundances in

the pooled assemblage depends on how we pool data over

assemblages. The pooling scheme depends on the objective of the

study. If the objective is to compare absolute abundances among

assemblages (given the total abundance in the pooled assemblage),

we should pool individuals over assemblages; if the objective is to

compare relative abundances among assemblages, we should pool

relative abundances of individual assemblages. These two kinds of

pooling schemes lead to different relative abundances in the

pooled assemblage. (The former is equivalent to an assemblage-

size-weighted pooling scheme for relative abundances, whereas the

latter naturally reduces to the equal-assemblage-weighted pooling

scheme.) See Chao et al. [50, their Appendix 2] for a simple

example for illustration.

Suppose in the pooled assemblage there are S species indexed

by 1, 2, …, S. To incorporate both kinds of pooling schemes into

our framework, we define zik as any measure of species

‘‘abundance’’ of the ith species in the kth assemblage, i = 1, 2,

…, S, k = 1, 2, …, N. Some of the zik may be zero. The measure zik

can be absolute abundances, relative abundances, incidence,

biomasses, cover areas or any other species importance measure.

Define zzk~
PS

i~1 zik as the size of the kth assemblage. Let

zzz~
PN

k~1 zzk be the total abundance in pooled assemblage

and ziz~
PN

k~1 zik be the total abundances of the ith species in

the pooled assemblage. Then the species relative abundance set in

the pooled assemblage for both pooling schemes can be expressed

as {ziz=zzz; i = 1, 2,…, S}. Note that if we pool relative

abundances over assemblages instead of absolute abundance, we

have the special case that z+k = 1 and z++ = N.

The abundance-based gamma diversity is Hill numbers

computed from the species relative abundances {ziz=zzz; i = 1,

2,…, S} and is interpreted as the effective number of species in the

pooled assemblage. The traditional definition of alpha diversity is

‘‘the mean of the diversities of individual assemblages’’. Routledge

[55] and Jost [43] each derived a mathematical formula for alpha

diversity based on this traditional definition and obtained the

corresponding multiplicative beta component. As Chiu et al. [36]

indicated, this traditional approach to alpha diversity based on Hill

numbers leads to a beta that can only be used to produce

differentiation measures to compare species relative abundances,

but not absolute abundances. This is because in the framework of

Hill numbers, diversity is a function of relative abundances only,

and thus ‘‘the mean of individual diversities’’ lose information

about absolute abundances. Chiu et al. [36] expanded the

conventional concept of alpha and proposed a modified definition

for abundance-based alpha diversity: ‘‘alpha diversity is the

effective number of species per assemblage’’ so that the resulting

beta can be transformed to quantify the differentiation (or

similarity) among N sets of vectors (z1k,z2k,:::,zSk), k = 1, 2, …,

N, for any measure of species importance zik, including absolute

abundances. Based on this expanded definition, Chiu et al. derived

a new formula for abundance-based alpha diversity.

When the data represent species relative abundances (i.e., equal-

weight for assemblages), all three alpha formulas (Routledge, Jost

and Chiu et al.) are identical. They differ, however, when the data

represent species absolute abundances (i.e., assemblage-size as

weight); Routledge’s beta may exceed N and Jost’s beta may be less

than unity (i.e., gamma may be less than alpha) if q?1. Also, for

q = 0, Routledge’s alpha and beta are not independent [49]. Chiu

et al.’s new formula of the abundance-based alpha diversity has the

following advantages: (1) it leads to a beta that can be applied to

compare any types of data (zik), depending on the investigator’s

objective; (2) gamma is always greater than or equal to alpha for all

orders q$0; (3) beta is always between unity (when all assemblages

are identical in species absolute abundances) and N (when the N

assemblages have no species in common); and (4) alpha and beta

components are independent for all orders q$0.

Based on species abundance (zik) and a species pairwise distance

matrix, we now extend Chiu et al. approach to decompose the

functional diversity qFD(Q) of the pooled assemblage into within-

assemblage component (functional alpha diversity) and between-

assemblage component (functional beta diversity). As with the

partition of Hill numbers, the functional gamma diversity of order

q is based on the distance matrix [dij] and the relative abundance

�ppiz~ziz=zzz in the pooled assemblage. It then follows from Eq.

4b, the functional gamma diversity of order q can be written as

qFDc(Q)~
XS

i~1

XS

j~1

dij

�ppiz�ppjz

Q

� �q
" #1=(1{q)

~
XS

i~1

XS

j~1

dij

zizzjz

Qz2
zz

� �q
" #1=(1{q)

q§0, q=1,

ð6aÞ

where Q~
P

i

P
j dij�ppiz�ppjz is the quadratic entropy in the pooled

assemblage. The limit when q approaches unity exists and is equal

to

1FDc(Q)~ lim
q?1

qFDc(Q)

~exp {
XS

i~1

XS

j~1

dij

�ppiz�ppjz

Q

� �
log

�ppiz�ppjz

Q

� �" #
:

ð6bÞ

The functional gamma diversity is interpreted as the effective total

distance between species in the pooled assemblage with a constant

distance Q for all species pairs.

We follow Chiu et al.’s definition of alpha diversity to define the

functional alpha diversity as the effective total distance between

species of a pair of individual assemblages. Then we obtain (details

of derivation are provided in Appendix S2) the functional alpha

diversity of order q:
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qFDa(Q)~
1

N2

XN

k,m~1

XS

i,j~1

dij

zikzjm

Qz2
zz

� �q" #1=(1{q)

,q§0, q=1: ð7aÞ

1FDa(Q)~ lim
q?1

qFDa(Q)

~
1

N2
exp {

XN

k,m~1

XS

i,j~1

dij

zikzjm

Qz2
zz

� �
log

zikzjm

Qz2
zz

� �" #
:
ð7bÞ

Note that in our alpha formula, Q still refers to the quadratic

entropy for the pooled assemblage. When relative abundances are

the relevant quantities for the investigative question, we simply

define the measure zik as the ith species relative abundance in the

kth assemblage. Then zzz~N and thus z++ is replaced by N in all

of the above formulas, Eqs. 6a, 6b, 7a and 7b.

As with ordinary Hill numbers [36,43], the complete partition-

ing of functional gamma diversity into independent within- and

between-assemblage (alpha and beta) components is multiplicative.

That is, the functional beta diversity is the ratio of functional gamma

to functional alpha diversities:

qFDb(Q)~
qFDc(Q)
qFDa(Q)

: ð8Þ

The decomposition procedures for the other two measures are

generally parallel and interpretations are similar. A summary of

the decomposition of the three measures with interpretations is

given in Table 2 and the formulas for decomposing functional Hill

numbers are provided in Appendix S2. Note that for functional

Hill number and mean functional diversity, their beta components

are identical, i.e., qDb(Q) = qMDb(Q). Also, we have
qFDb(Q)~½qDb(Q)�2.

For each of the three measures (qD(Q), qMD(Q) and qFD(Q)), the

gamma value is always greater than or equal to the corresponding

alpha component for all orders q$0 and all distance matrices; see

Appendix S2 for a proof. When N assemblages are identical in

species identities and abundance, the beta components of all three

measures take their minimum value of unity. When all

assemblages are completely distinct (no shared species and thus

no shared pairwise distances), we have qDb(Q) = qMDb(Q) and

both attain the maximum value of N, and qFDb(Q) attains the

maximum value of N2. The functional beta Hill number, qDb(Q),

thus quantifies the effective number of equally large and completely

distinct assemblages. The functional beta diversity, qFDb(Q),

quantifies the effective number of equally large and completely distinct

pairs of assemblages. In Appendix S2, we show that qDb(Q) is always

between unity and N; and qFDb(Q) is always between unity and

N2. Thus, the range of each beta component is independent of the

corresponding alpha component, implying that the alpha and beta

components based on the multiplicative partitioning for each of

the three functional diversity measures (qD(Q),qMD(Q),qFD(Q))
are unrelated (or independent).

We also note the following properties:

(1) When all species are equally distinct, the functional beta Hill

numbers qDb(Q) reduce to the beta diversity for ordinary Hill

numbers, and the functional beta diversity qFDb(Q) reduces

to the squared beta diversity of ordinary Hill numbers [36].

(2) When q = 0, we have 0Dc(Q)~(FADc=Q)1=2, 0MDc(Q)~

(FADc|Q)1=2 and 0FDc(Q)~FADc, where FADc denotes

the sum of pairwise distances in the pooled assemblage. For

the alpha components, we have 0Da(Q)~(FADpair=Q)1=2=N,
0MDa(Q)~(FADpair|Q)1=2=N and 0FDa(Q)~FADpair=N2,

where FADpair is the sum of FADs over all possible pairs of

assemblages (there are N2 pairs of assemblages). So the functional

alpha diversity for q = 0 is the average of FAD per pair of

assemblages. Therefore, we have 0Db(Q)~0MDb(Q)~

N(FADc=FADpair)
1=2 and 0FDb(Q) = N2FADc=FADpair.

(3) For the special case q = 1 and q = 2, we will present formulas

for some special transformations of the functional beta

diversity in the next section.

Four Classes of Normalized Functional Similarity
Measures

Our functional beta components, qDb(Q)( = qMDb(Q)) and
qFDb(Q), all quantify pure functional differentiation among the N

assemblages and their ranges depends only on N. Thus, each can

be transformed to obtain the normalized similarity and differen-

tiation measures in [0, 1] so that the dependence on N can be

removed [36,43,49,79]. As stated in the preceding section and

proved in Appendix S2, the range of qDb(Q) is different from that

of qFDb(Q), so the transformations to normalized similarity

measures in [0, 1] are thus different for these two beta

Table 2. Decomposition of the functional Hill number qD(Q) (Eq. 3), the mean functional diversity qMD(Q) (Eq. 4a) and the (total)
functional diversity qFD(Q) (Eq. 4b) along with interpretations.

Measure Functional Hill number qD Qð Þ Mean functional diversity qMD Qð Þ (Total) functional diversity qFD Qð Þ

Gamma qDc Qð Þ qMDc Qð Þ~Q| qDc Qð Þ
� �

qFDc Qð Þ~Q| qDc Qð Þ
� �2

The effective number of species in
the pooled assemblage

The effective mean distance between
species in the pooled assemblage

The effective total distance between species in
the pooled assemblage (Eq. 6)

Alpha qDa Qð Þ qMDa Qð Þ~Q| qDa Qð Þ½ � qFDa Qð Þ~Q| qDa Qð Þ½ �2

The effective number of species in
an individual assemblage

The effective mean distance between
species in an individual assemblage

The effective total distance between species in a
pair of local assemblage (Eq. 7)

Beta qDb(Q)~
qDc(Q)
qDa(Q)

qMDb(Q)~
qMDc(Q)
qMDa(Q)

~qDb(Q) qFDb(Q)~
qFDc(Q)
qFDa(Q)

~½qDb(Q)�2

The effective number of equally large
and completely distinct assemblages

The effective number of equally large and
completely distinct assemblages

The effective number of equally large and
completely distinct assemblage pairs

doi:10.1371/journal.pone.0100014.t002
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components. The similarity measures based on qDb(Q) quantify

species-overlap from different perspectives, whereas the similarity

measures based on qFDb(Q) quantify distance-overlap from different

perspectives. In most applications of functional diversity, we

suggest using the distance-overlap similarity measures and their

corresponding differentiation measures. We now describe the two

major classes of normalized distance-overlap measures based on
qFDb(Q); see Table 3 for all formulas and Appendix S3 for details.

(1) A class of local distance-overlap measures from the

perspective of a pair of local assemblages

C�qN (Q)~
N2(1{q){½qFDb(Q)�1{q

N2(1{q){1
: ð9aÞ

Here ‘‘local’’ refers to a property of a pair of individual

assemblage. This measure gives the effective average proportion

of the species pairwise distances in a pair of local assemblages that

are shared with all other pairs of assemblages. See Appendix S3 for

the interpretation of the ‘‘effective’’ average proportion.

We first give the special case of q = 0 to intuitively explain its

properties: since 0FDc(Q)~FADc and 0FDa(Q)~FADpair=N2,

the measure C�0N (Q) reduces to

C�0N (Q)~
(FADpair{FADc)=(N2{1)

FADpair=N2
, ð9bÞ

where FADc and FADpair are defined in the preceding section. In

this expression, the denominator is the zero-order functional alpha

diversity, which is the average of FADs over all N2 assemblage

pairs; the numerator is the average of all repeated pairwise

distances in the N221 pairs of assemblages (excluding the

assemblage-pair in which a pairwise distance is first counted).

The measure C�0N (Q) thus quantifies the proportion of repeated

distances in a pair of local assemblages. This interpretation is

conceptually similar to the traditional Sørensen similarity index.

The difference is that here we consider ‘‘assemblage-pairs’’ in

functional distance-overlap measures rather than ‘‘individual

assemblage’’ as in the traditional measure. Thus, this index can

be regarded as an extension of the Sørensen index to functional

similarity. Therefore, the measure C�0N (Q) is referred to as ‘‘func-

Sørensen’’ in Table 3. For q = 1, this local distance-overlap

measure is called ‘‘func-Horn’’ in Table 3 because when all

distances are identical and (zik) represents species relative

abundance within each assemblage, it reduces to the classical

Horn measure [80]. For q = 2, this measure is called ‘‘func-

Morisita-Horn’’ in Table 3 because its interpretation is generally

similar to the classic Morisita-Horn measure [81]. See Appendix

S3 for more details.

(2) A class of regional distance-overlap measures in the pooled

assemblage

U�qN (Q)~
½1=qFDb(Q)�1{q

{(1=N)2(1{q)

1{(1=N)2(1{q)
: ð10aÞ

Here ‘‘regional’’ refers to a property of the pooled assemblage.

This class of measures differs from the local distance-overlap

measures by taking a regional perspective. It quantifies the

effective proportion of the species pairwise distances in the pooled

assemblage that are shared with all pairs of local assemblages

(Appendix S3).

For the special case of q = 0, the measure U�0N (Q) reduces to

U�0N (Q)~
(FADpair{FADc)=(N2{1)

FADc
: ð10bÞ

Again, the interpretation is similar to the measure C�0N (Q) (in Eq.

9b) except that the denominator is replaced by the gamma FAD.

Thus, our index can be regarded as an extension of the Jaccard

Table 3. Two major classes of distance-overlap (or similarity) measures and their special cases based on the functional beta
diversity qFDb(Q).

Order q Local distance-overlap Regional distance-overlap

C�qN Qð Þ

~
N2 1{qð Þ{ qFDb Qð Þ

� �1{q

N2 1{qð Þ{1

U�qN Qð Þ

~
1
�

qFDb Qð Þ
� �1{q

{ 1=Nð Þ2 1{qð Þ

1{ 1=Nð Þ2 1{qð Þ

q = 0 Func-Sørensen Func-Jaccard

N2{N2 FADc

�
FADpair

� �
N2{1

FADpair

�
FADc{1

N2{1

q = 1 Func-Horn

1{
log1 FDc Qð Þ{log1 FDa Qð Þ

2 log N

q = 2 Func-Morisita-Horn Func-regional-overlap

PS
i,j

dij

PN
k,m

zizzjz

N

� �2
{ zikzjm

� �2
h i

N2{1ð Þ
PS
i,j

PN
k,m

dij zikzjm

� �2

PS
i,j

dij

PN
k,m

zizzjz

N

	 
2

{ zjkzjm

� �2

� �

1{1=N2ð Þ
PS
i,j

dij zizzjz

� �2

The corresponding differentiation measures are the one-complements of the similarity measures. (The indices i and j are used to identify species, i, j = 1, 2, …, S, and the
indices k and m are used to identify assemblages, k, m = 1, 2, …, N.)
Notation.
zik = the abundance of the ith species in the kth assemblage, zzk~

PS
i~1 zik , ziz~

PN
k~1 zik , and zzz~

PS
i~1

PN
k~1 zik ; see text for details. FADc = sum of the

pairwise distances between species in the pooled assemblage; FADpair = sum of FAD over all possible pairs of assemblages (there are N2 pairs of assemblages).

S = species richness in the pooled assemblage. �SS = average species richness per assemblage.
doi:10.1371/journal.pone.0100014.t003
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index to functional similarity. This is why the measure U�0N (Q) is

referred to as the N-assemblage ‘‘func-Jaccard’’ in Table 3. Since

U�1N (Q) = C�1N (Q), the measure U�qN (Q) for q = 1 is also called

‘‘func-Horn’’ measure. For q = 2, this measure is referred to as

‘‘func-regional-overlap’’ measure; see Appendix S3.

As shown in Chiu et al. [36], we can also define two additional

classes of functional distance-overlap measures. First, a class of

functional distance-homogeneity measures which is a linear

function of the inverse of the functional beta diversity:

S�qN (Q)~
1=½qFDb(Q)�{1=N2

1{1=N2
: ð11Þ

Second, we have a class of measures which is a linear function of

the functional beta diversity:

V�qN (Q)~
N2{qFDb(Q)

N2{1
: ð12Þ

Its complement quantifies the functional distance-turnover rate.

All the four classes of similarity measures are continuous in q$0,

so a functional similarity or differentiation profile as a function of q

can be made for any of them. We suggest using this method for

conveying complete information about the functional similarity or

differentiation of a set of assemblages. It is thus sufficient to focus

on the two major classes (C�qN (Q) and U�qN (Q)) because they

include S�qN (Q) and V�qN (Q) as special cases for q = 0 and 2. See

Example 3 for illustrative profiles.

Our decomposition presented above is based on the multipli-

cative scheme. We can also apply the additive decomposition to

each of the three measures, qD(Q) (Eq. 3), qMD(Q) (Eq. 4a) and
qFDb(Q) (Eq. 4b). For example, we can define the ‘‘functional

diversity excess’’ as qFDc(Q){qFDa(Q). The excess quantifies the

effective total distances between species in the pooled assemblage

not contained in a typical pair of local assemblages. As with

ordinary Hill numbers [49], the functional diversity excess

depends not only on the number of assemblages N, but also on

the functional alpha diversity. Consequently, the excess measure

cannot be directly applied to compare the similarity or differen-

tiation among assemblages across multiple sets of assemblages even

if the numbers of assemblages in these multiple regions are the

same. We can eliminate these dependences by using appropriate

normalizations [49]. In Appendix S4, we show that after proper

normalizations, the multiplicative approach and additive approach

both lead to the same four classes of normalized functional

similarity and differentiation measures presented above. Thus, a

consensus can be achieved on functional similarity and differen-

tiation measures, including those measures given in Table 3.

Examples and Applications
To examine the performance of our functional diversity

measures and to compare our proposed similarity and differen-

tiation measures with previous indices, we use both artificial

distance matrices (Examples 1 and 2) and real data (Example 3) for

illustration. Although the distance matrices considered in our

artificial examples are simple, they provide transparent answers so

that we can clearly examine the performance of measures. Any

meaningful differentiation measure should work properly for all

matrices. If a functional diversity or similarity/differentiation

measure cannot yield logical and sensible results for simple

matrices, we would not expect it to work for complicated cases.

The more complicated distance matrix calculated from real species

traits is used in Example 3 for illustration.

In our comparisons, we consider various functional differenti-

ation measures: (1) a differentiation measure (Eq. 2c) based on the

traditional additive decomposition of quadratic entropy; (2) two

differentiation measures (Eqs. 2e and 2f) based on the effective

number of species with maximum distance; and (3) the proposed

distance-based differentiation measures derived from our func-

tional beta diversity (in Table 3 of this paper). Appendix S5

presents a simple example to show that the traditional measure

based on the additive partitioning of the quadratic entropy (Eq. 2c)

cannot work properly even for a very simple functional distance

matrix; see Chiu et al. [36] for theoretic discussions and more

examples.

Example 1: Effect of Functional Distances on

Differentiation Measures. Consider two assemblages (I and

II). Each assemblage contains 20 species, with 12 shared species

and 8 non-shared species. There are 28 species in the pooled

assemblage. For each assemblage, we first consider the equally

abundant case in order to examine how differentiation measures

vary with functional distances. (Two non-equally-abundant cases

are given in Appendix S5.) The classical Sørensen-type dissimi-

larity index (the proportion of non-shared species in an individual

assemblage) is 8/20 = 0.4. (The abundance-based local differenti-

ation measure based on Hill numbers is 0.4 for all q$0; see [36].)

The classical Jaccard-type dissimilarity index (the proportion of

non-shared species in the pooled assemblage) is 1–12/28 = 0.571;

see Table 4 for abundance-based regional differentiation measure

based on Hill numbers [36]. For functional differentiation

measures, the quantifying target is shifted to the proportion of

the total non-shared distances (incorporating abundances if q.0)

in an individual assemblage (1{C�qN (Q)) or in the pooled

assemblage (1{U�qN (Q)).

We generated two contrasting types of distance matrices (Matrix

I and Matrix II). Both matrices are displayed in Appendix S6. For

easy presentation, species are indexed by 1, 2, …, 28 in the pooled

assemblage. Assemblage I includes Species 1–20, and Assemblage

II includes Species 9–28 (Species 9–20 are shared). In Matrix I, the

distances for two species within an assemblage follow the same

distribution as those for species from the pooled assemblage so that

the alpha quadratic entropy Qa (the average distance between any

two individuals within an assemblage) is close to the gamma

quadratic entropy Qc (the average distance between any two

individuals in the pooled assemblage). In this case, we expect that

any meaningful functional differentiation measure is largely

determined by species abundances. In Matrix II, the gamma

quadratic entropy Qc is much higher than the alpha quadratic

entropy Qa, as described below. Consequently, we expect that

functional distances should play an important role in character-

izing functional differentiation.

(a) Matrix I. All the species pairwise distances in the 28628

distance matrix of the pooled assemblage were generated

from a beta (4, 4) distribution, which is a symmetric

distribution with respect to 0.5. In this case, the alpha

quadratic entropy (Qa = 0.47) is close to the gamma

quadratic entropy (Qc = 0.48).

(b) Matrix II. We constructed the 28628 distance matrix by

generating substantially larger distances for pairs of ‘‘non-

shared species’’ (s1, s2), where the first species s1 is a non-

shared species in Assemblage I, and the second species s2 is a

non-shared species in Assemblage II. The distances for such

pairs of non-shared species were generated from a uniform

(0.8, 1) distribution whereas the distances for other species

pairs were generated from a uniform (0, 0.2) distribution. We

have Qa = 0.102 and Qc = 0.167. There is large relative
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difference between Qa and Qc, as reflected by the high

relative difference (with respect to the alpha) of 63.7%.

In Table 4, we first compare separately for Matrix I and Matrix

II the differentiation measures incorporating both abundance and

function (A&F), function (F) only, and abundance (A) only. The

measures considering both (A&F) are based on our proposed

measures 1{C�qN (Q) and 1{U�qN (Q) (with formulas in Table 3)

derived from the functional beta diversity. The measure based

only on function only (F) does not consider abundance, so it is

identical to the zero-order of the measure considering A&F. The

measures considering abundance only (A) refer to the abundance-

based local differentiation measure (12CqN) and regional differ-

entiation measure (12UqN) based on partitioning Hill numbers

([36], p. 31).

Comparing the column under A& F and the column under A

within Matrix I, we find for each fixed order of q = 0 and q = 2 that

there is appreciable difference between these two values (A& F and

A) but the difference is limited to some extent (relatively to the

corresponding difference for Matrix II); the difference is very little

for q = 1. This is valid for both differentiation measures

1{C�qN (Q) and 1{U�qN (Q). Thus, for Matrix I (with similar

distributional pattern of distances for all species pairs), functional

differentiation is largely determined by species abundance pattern

and function plays a minor factor.

In contrast, for Matrix II, the impact of function on our

differentiation measures is clearly seen for both measures

1{C�qN (Q) and 1{U�qN (Q) by noting that our measure

considering both (A&F) is much higher than the corresponding

measure considering A for all orders q = 0, 1 and 2. This is because

the functional distances for pairs of non-shared species are

substantially larger than those of other species pairs, leading to a

large increase in the proportion of non-shared distances in an

assemblage (as reflected in our local distance-differentiation

measure 1{C�qN (Q)), and also in the pooled assemblage (as

reflected in our regional distance-differentiation measure

1{U�qN (Q)). In this case, function has profound effect on

characterizing functional differentiation. Since the two measures

(A&F and A) of q = 1 differ little for Matrix I whereas they differ

substantially for Matrix II, their difference is a potentially useful

indicator for the effect of function. All the above findings not only

hold for equally abundant species as the example presented here

but also are generally valid if species abundances are heteroge-

neous; see Appendix S5 for two heterogeneous cases.

For both matrices the proposed measures exhibit moderate

differentiation between the two assemblages for Matrix I and

moderate to high differentiation for Matrix II. For example, our

proposed measure, 1{C�qN (Q), yields values 0.324 (for q = 0),

0.408 (for q = 1) and 0.491 (for q = 2) for Matrix I. The

corresponding three values for Matrix II are 0.579 (for q = 0),

0.628 (for q = 1) and 0.678 (for q = 2). Table 4 reveals that the

differentiation measure based on the additive partitioning of the

quadratic entropy exhibits an unreasonably low differentiation

value of 0.002 for Matrix I. As shown in reference [36], this

measure does not properly quantify functional differentiation; also

see the example in Appendix S5. The two measures based on the

effective number of species with maximum distance (Eqs. 2e and

2f) for both matrices also show unreasonably low differentiation.

For Matrix I, the measure in Eq. 2e gives a value of 0.004 and the

measure in Eq. 2f gives a value of 0.002, implying that there is

almost no differentiation among the two assemblages. These are

counter-intuitive and unexpected values because function has

almost no effect and thus all measures for Matrix I should yield
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close results to those based on abundances only (the column under

A in Table 4). This example also helps show that the measures in

Eqs. 2e and 2f cannot be applied to non-ultrametric cases, as the

two matrices are both non-ultrametric (Appendix S6). Similar

findings about substantially low functional differentiation are also

revealed in other papers [82,83]. For Matrix II, each of the two

previously developed measures (Eqs. 2e and 2f) is also substantially

lower than our proposed differentiation measure considering both

(A&F). More evidence from other perspectives is provided in

Example 2 below.

Example 2: Ultrametric vs. Non-ultrametric Distance

Matrices. In this example, we compare the performance of

various differentiation measures when they are applied to an

ultrametric matrix (Case I in Table 5) and a non-ultrametric

matrix (Case II in Table 5). Each matrix represents a distance

matrix for a pooled assemblage of four species. In each case, there

are two completely distinct assemblages (no species shared). There

are two equally common species (a, b) in the first assemblage, and

two equally common species (c, d) in the other assemblage. We use

this simple example to show that the effective approach based on

the effective number of species with maximum distance (Eq. 2d)

and the associated differentiation measures (Eqs. 2e and 2f) may

lead to un-interpretable conclusions if they are applied to non-

ultrametric distance matrices.

Comparing the two distance matrices, we see that the two

matrices are identical except for the distances for the two pairs, (a,

c) and (b, d). The distance between Species a and Species c is 0.2 in

Case I but it is increased to 0.9 in Case II; the distance for Species

b and Species d is 0.2 in Case I but it is increased to 0.8 in Case II.

Thus, when the matrix is changed from Case I to Case II, the

distance for any two species in different assemblages is either

increased or kept as the same, whereas all the distances for species

in the same assemblage are kept the same. By intuition and by

theory for our measures (Proposition S2.2 in Appendix S2), any

sensible differentiation measure should not decrease.

In Table 5, we compare various differentiation measures

between the two assemblages separately for Case I and Case II.

The measures based on Eqs. 2e and 2f both produce a maximum

differentiation of unity for Case I. This is intuitively understand-

able because the two assemblages are completely distinct and all

distances for two species in different assemblages are higher than

the distances for two species within an assemblage. In both Case 1

and Case II, the proposed differentiation measures, 1{C�qN (Q)

and 1{U�qN (Q), attain the maximum differentiation of unity for

all orders of q, showing the differentiation does not decrease from

Case I to Case II. However, the two differentiation measures (Eqs.

2e and 2f) for Case II give unexpectedly lower differentiation than

that of Case I. This example shows why application of Eq. 2d and

the associated differentiation measures (Eqs. 2e and 2f) to non-

ultrametric cases might be misleading. Although the measure

based on additively partitioning quadratic entropy (Eq. 2c) yields

higher differentiation for Case II, we have demonstrated its

counter-intuitive behavior in Appendix S5 and in Example 1.

In this example, we specifically use the extreme case that two

assemblages are completely distinct (no shared species) for

illustrative purpose. A more general property of monotonicity is

proved in Appendix S2 (Proposition S2.2): any differentiation

measure based on our functional beta diversity is a non-decreasing

function with respect to the distance of any non-shared species pair

regardless of species abundance distributions. This property of

monotonicity implies that the differentiation measure including

1{C�qN (Q) and 1{U�qN (Q) do not decrease if the distance for a

non-shared species pair becomes larger even if the two assem-

blages are not completely distinct. In Appendix S5, we provide a

supplementary example in which there are shared species between

assemblages; our proposed measures yield the expected property

of monotonicity, while the two previous differentiation measures

(Eqs. 2e and 2f) do not.

Example 3: A Real Functional Distance Matrix for Dune

Vegetation. We apply our proposed measures to the real data

discussed by Ricotta et al. in [84]. The data contain a total of 43

vascular plant species collected from 272 random vegetation plots

of 262 m in size during the period 2002–2009 in three

successively less extreme fore dune habitats: embryo dunes (EM;

17 species in 70 plots), mobile dunes (MO; 39 species in 131 plots)

Table 5. Comparison of various differentiation measures between two assemblages for an ultramteric distance matrix (Case I
below) and a non-ultrametric distance matrix (Case II below).

Measure Ultrametric distance matrix (Case I) Non-ultrametric distance matrix (Case II)

1{C�qN (Q) 1 (for all q$0) 1 (for all q$0)

1{U�qN (Q) 1 (for all q$0) 1 (for all q$0)

Q�b~
Qc{Qa

Qc

0.6 0.826

Q�e,b~
1{1=Qe,b

1{1=N

1 0.559

Q��e,b~
Qe,b{1

N{1

1 0.388

Assume the two assemblages are completely distinct. There are two equally common species (a, b) in the fisrt assemblage, and two equally common species (c, d) in the
second assemblage. In the pooled assemblage, there are four species (a, b, c, d) with relative abundances (0.25, 0.25, 0.25, 0.25). As explained in the text, we expect that
the differentiation for Case II should not be lower than that for Case I. See Appendix S5 for a non-completely-distinct case.

Case I: An ultrametric distance matrix for four species (a, b, c, d) with Qc = 0.125, Qa = 0.05.

0 0:1 0:2 0:2
0:1 0 0:2 0:2
0:2 0:2 0 0:1
0:2 0:2 0:1 0

2
664

3
775

Case II: A non-ultrametric distance matrix for four species (a, b, c, d) with Qc = 0.288, Qa = 0.05.

0 0:1 0:9 0:2
0:1 0 0:2 0:8
0:9 0:2 0 0:1
0:2 0:8 0:1 0

2
664

3
775

doi:10.1371/journal.pone.0100014.t005
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and transition dunes (TR; 42 species in 71 plots) along the

Tyrrhenian coast, where EM is closest to the sea, MO is between

EM and TR, and TR is farthest from the sea; see [85,86,87] for

details. There are 17 shared species (out of a total of 39 species)

between EM and MO, 16 shared species (out of a total of 43

species) between EM and TR, and 38 shared species (out of a total

of 43 species) between MO and TR. In each habitat, we pooled

species abundance data over plots and applied various diversity

and differentiation measures based on the species relative

abundances (Table S5.4 in Appendix S5) in the three type

habitats.

All species were described by a set of sixteen functional traits

which include seven quantitative variables: plant height, leaf size,

leaf thickness, seed mass, seed shape, leaf dry mass and specific leaf

area, together with nine categorical variables: life form, growth

form, leaf texture, dispersal mode, leaf persistence, plant life span,

pollination system, clonality and flowering phenology. Based on

these sixteen traits, the species distance matrix in the pooled

assemblage was calculated by a Gower mixed-variables coefficient

of distance with equal weights for all traits [71]. The Gower

species pairwise distance matrix of the pooled assemblage is

provided in Appendix S6. The matrix and the three sub-matrices

(corresponding to those of three habitats) are all non-ultrametric.

The two idealized examples (Example 1 and Example 2) just given

showed that previously-proposed functional differential measures

led to unexpected conclusions when applied to non-ultrametric

matrices. This real example shows how such mathematical

problems can lead to misinterpretation of important ecological

patterns.

For each of the three habitats, we present four diversity

measures: ordinary Hill numbers qD (Eq. 1a), our functional Hill

number qD(Q) (Eq. 3), mean functional diversity qMD(Q) (Eq. 4a)

and functional diversity qFD(Q) (Eq. 4b). The diversity profiles for

the four diversity measures as a function of order q are shown in

Fig. 1. A consistent pattern is revealed in Fig. 1: EM has the lowest

diversity, MO is intermediate, and TR has the highest diversity.

This pattern is valid for all orders of q, and is expected from

ecologists’ perspectives [84]. The EM is closest to the sea, and

hence exposed to wind disturbance, flooding, salt spray, and other

harsh environmental factors. Therefore, the assemblage in the EM

is mainly composed of a few specialized pioneer species with

similar functional traits (as reflected by the value of quadratic

entropy, which is respectively 0.513, 0.556, and 0.561 in EM, MO

and TR) to adapt the extreme environment, leading to the lowest

functional diversity in this habitat. The vegetation of the MO is

less affected by harsh environment factors, so the vegetation

presents more diverse species composition, resulting in larger

functional distances and thus higher functional diversity. The

species richness and evenness in the TR are the highest among the

three habitats and the vegetation of TR is even more weakly

constrained by these environmental factors, supporting an even

higher functional diversity. The diversity pattern for Hill numbers

is similar to those based on functional diversity measures, as will be

discussed later. In each of the three functional diversity profiles

(the two middle panels and the right panel of Fig. 1), the initial

value (i.e., the value for q = 0) represents the diversity when only

function is considered.

The formula in Eq. 2d produces much lower values of species

equivalents: 2.94 (EM), 3.39 (MO) and 2.95 (TR), substantially

lower than the corresponding functional Hill numbers (q = 2): 7.72

(EM), 15.27 (MO), 19.42 (TR); see the second panel of Fig. 1.

Moreover, the number of species equivalents from Eq. 2d give a

diversity ordering MO.TR<EM, which does not conform to

ecologists’ expectation.

In Fig. 2, we show the differentiation profiles of the two

proposed measures 1{C�qN (Q) and 1{U�qN (Q) as a function of

order q for q between 0 and 5. In Table 6, we compare various

differentiation measures between any two habitats (EM vs. MO,

EM vs. TR and MO vs. TR). In the same table, as we did in

Table 4, we also show the differentiation values incorporating both

abundance and function (A&F), function (F) only, and abundance

(A) only. Table 6 reveals that in any pair of assemblages, we have a

pattern similar to that in Table 4 for Matrix I. That is, our

differentiation measures considering both (A&F) yield comparable

results to those considering abundance only (A) for q = 0 and for

q = 2, and yield very close results for q = 1. As with Example 1, this

may be explained by the fact that the gamma quadratic entropy in

each pair of assemblage is only slightly higher than the alpha

quadratic entropy. The relative differences between gamma and

alpha quadratic entropies is respectively 2.8%, 4.5% and 2.7% for

EM vs. MO, EM vs. TR and MO vs. TR. Therefore, abundance

is the major factor that determines the differentiation between any

two habitats, implying that the four measures incorporating

abundances with or without considering function exhibit very

similar patterns in Fig. 1.

Our proposed differentiation measures, 1{C�qN (Q) and

1{U�qN (Q) (Table 6 and Fig. 2) implies that EM vs. TR has

the highest functional differentiation, MO vs. TR has the lowest

differentiation, and EM vs. MO is somewhat in between for any

fixed order q between 0 and 5. This pattern is anticipated. As

discussed above, the vegetation within EM is composed by few

specialized plants with similar ecological functions to adapt the

extreme environmental stress. However, these traits are unique to

species in EM when compared with species in the other two

habitats. There are also fewer shared species between EM and TR

(also EM and MO). In contrast, the vegetation in MO and TR is

similarly diverse and most species in these two habitats are shared.

These explain why MO vs. TR exhibits the lowest functional

differentiation, whereas EM vs. TR (also EM vs. MO) exhibit

higher functional differentiation.

Table 6 and Fig. 2 further reveal that the two measures

1{C�qN (Q) and 1{U�qN (Q) for the three pairs of habitats give

moderate to high differentiation. For example, for q = 2, our

differentiation measure 1{C�2N (Q) for the three pairs (EM vs.

MO, EM vs. TR and MO vs. TR) is respectively 0.658, 0.885 and

0.539, and the corresponding differentiation measure 1{U�2N (Q)

is respectively 0.324, 0.659 and 0.226. In sharp contrast, the three

previous measures based on the quadratic entropy (Eqs. 2c, 2e and

2f) show substantially lower differentiation. For these data, the

differentiation measure based on the additive decomposition of

quadratic entropy (Eq. 2c) for EM vs. MO, EM vs. TR and MO

vs. TR is respectively 0.028, 0.042 and 0.026. This wrongly

implies substantially low differentiation between any two habitats.

For the differentiation measure based on Eq. 2f are also low

(0.034, 0.054 and 0.035). These values also give an unexpected

ordering in that EM vs. MO exhibits the lowest functional

differentiation, which is counter-intuitive. Similarly, the measure

given in Eq. 2e gives a wrong ordering. All three examples

demonstrate that our functional diversity measures and their

associated differentiation measures yield the expected results and

ecologically sensible interpretations.

Conclusion and Discussion

We have extended ordinary Hill numbers to the distance-based

functional Hill number qD(Q) to take into account the pairwise

functional distance between species (see Eq. 3, in units of effective

number of equally abundant and equally distinct species). Here Q
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(Rao’s quadratic entropy) plays an important indirect role, even

though the measure Q itself cannot be directly used to measure

functional diversity as noted by several authors [26,35,36,39]. We

have also proposed a class of mean functional diversity
qMD(Q) = qD(Q)|Q; see Eq. 4a. The product of the functional

Hill number and the mean functional diversity quantifies the (total)

functional diversity qFD(Q) = ½qD(Q)�2|Q, i.e., the effective total

distance between species of the assemblage. See Fig. 1 for an

example comparing ordinary Hill numbers and the three

functional diversity measures. The three proposed measures

quantify different aspects of species trait space. Our approach is

valid not only for any symmetric distance matrices in ecology, but

also for all types of symmetric matrices in other disciplines.

Since the pioneering work by MacArthur [40] and Hill [41], the

replication principle has been identified as an essential property for

characterizing abundance-based species diversity. As we reviewed

in this paper, Hill numbers obey the replication principle. Hill

numbers have been extended to phylogenetic Hill numbers (in

units of ‘‘species equivalent’’) and related branch diversity (in units

of ‘‘branch length’’); both satisfy a phylogenetic generalization of

the replication principle [36,45]. In this paper, we have proved

that the functional Hill numbers (in units of ‘‘species equivalent’’)

and the mean functional diversity (in units of ‘‘functional

distance’’) both satisfy a functional version of the replication

principle, and also proved that the functional diversity (in units of

‘‘functional distance’’) satisfies a quadratic replication principle.

Therefore, we think replication principle is an essential property

for measures in units of species equivalents, but for other related

measures this property may be valid (e.g., branch diversity, mean

functional diversity), or may be replaced by a quadratic (or a

power function of N) property; see [48] for a different perspective.

Recently, Chao et al. [50] integrated species diversity,

phylogenetic diversity and functional diversity into a unified

framework of ‘‘attribute diversity’’ based on Hill numbers. Both

Leinster and Cobbold [75] and Scheiner [63] derived their

integrative metrics under a framework of Hill numbers and their

metrics are also in units of ‘‘species equivalents’’. In Appendix S5,

we provide detailed comparison to distinguish these two previous

approaches from ours. Generally, we find that Leinster &

Cobbold’s measure may not be sensitive to species abundances

when species similarity matrix is computed from species traits in

functional analysis. If species similarity matrix deviates greatly

from a naı̈ve identity matrix, then their measure typically yields

very low diversity values especially for assemblages with many

species; this causes problems for the interpretation of ‘‘species

equivalents’’ in their approach. Reeve et al. [88] recently proposed

a diversity partition based on Leinster & Cobbold’s measure. In

Figure 1. Diversity profiles as a function of order q for ordinary Hill numbers qD (left panel), functional Hill numbers qD(Q) (the
second panel from the left), mean functional diversity qMD(Q) (the third panel from the left) and (total) functional diversity qFD(Q)
(right panel) for three habitats (TR, MO, and EM). All the profiles show a consistent diversity pattern about the ordering of the three habitats:
TR.MO.EM.
doi:10.1371/journal.pone.0100014.g001

Figure 2. Differentiation profiles for the functional differentiation measures 1{C�qN (Q) (left panel) and 1{U�qN (Q) (right panel) as a
function of order q for three pairs of habitats (EM vs. MO, EM vs. TR and MO vs. TR.)
doi:10.1371/journal.pone.0100014.g002
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the same Appendix, we show by an example that their gamma

diversity may be less than their proposed alpha diversity even in

equal weight case. Scheiner’s approach and our measures have

different meanings of ‘‘species equivalents’’ and thus quantify

different aspects and properties of ecosystems. Scheiner’s measure

cannot be directly linked to most of the previous commonly used

phylogenetic diversity (e.g., Faith’s PD) and functional measures

(e.g., FAD).

Except for Rao’s quadratic entropy, the decomposition of other

functional diversity measures is rarely discussed in the literature. In

this paper, we have developed the decomposition of the proposed

three functional diversity measures of any order q; see Table 2 for

a summary. In the decomposition of each of the three measures,

the alpha and beta components are unrelated (or independent),

and thus each beta component measures pure functional

differentiation among assemblages and can be transformed onto

the range [0,1] to obtain the normalized distance-overlap

measures (from the beta component based on the functional

diversity) or species-overlap measures (from the beta components

based on decomposing the functional Hill numbers and the mean

functional diversity). In most applications, we recommend

applying the distance-overlap measures (given in Table 3 for the

two major classes of similarity measures). An important advantage

of using the framework of Hill numbers is that there is a direct link

between functional diversity measures and functional similarity (or

differentiation) among assemblages. To convey the information

about functional differentiation among multiple assemblages, we

suggest plotting the differentiation profiles for two differentiation

measures, 1{C�qN (Q) (from the perspective of a pair of local

assemblages) and 1{U�qN (Q) (from the perspective of the pooled

assemblage) with respect to q; see Fig. 2 for examples. For the

special case of q = 0, the measure C�0N (Q) (Eq. 9b and Table 3) in

terms of FAD represents the functional generalization of the

Sørensen similarity index, and the measure U�0N (Q) (Eq. 10b and

Table 3) represents the functional generalization of the classic

Jaccard similarity index. Conceptually different approach to

diversity decomposition was proposed by Kosman [48].

Villéger et al. [20] proposed that trait-based functional diversity

should include three aspects: functional richness, functional

evenness and functional divergence. In ordinary Hill numbers,

zero-order diversity represents species richness, and Hill numbers

(or their transformations) of different orders can be used to

construct various functional evenness measures as those proposed

by Jost [89]. Jost used partitioning theory to derive Hill’s useful

class of evenness measures, the ratios of Hill numbers qD and

species richness, qD/S for q.0, and he showed that the ratio of the

logarithms of Hill numbers and logarithm of richness, log(qD)/

log(S), expresses the corresponding relative evenness. Applying this

idea to our framework, we can construct measures of functional

richness and functional evenness based on any of our three

functional diversity measures. For example, we can regard the

effective total distance between species of order q = 0 as a measure

of functional richness and use qFD(Q)/[0FD(Q)] and

log[qFD(Q)]/log[0FD(Q)] as measures of functional evenness.

Finally, we mention a potential application of our proposed

measures. In genetics, the nucleotide diversity [90] is based on a

nucleotide distance matrix. The elements of this distance matrix

are obtained as the nucleotide differences between any two DNA

sequences. Since our approach can be applied to any type of

symmetric distance matrix, we expect our proposed measures

would be useful in genetics. The nucleotide diversity in genetics is

equivalent to Rao’s quadratic entropy, and the corresponding

differentiation measure NST is identical to the traditional
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differentiation measure in Eq. 2c. We have shown in this paper by

hypothetical and real examples that the measure in Eq. 2c does

not provide legitimate measure of differentiation; see [36] for

theoretical discussion. We have proposed unified and rigorous

distance-overlap measures and their corresponding differentiation

measures (in Table 3), and thus those measures merit investigation

for applications to genetics.
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