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Abstract

Mycotoxin induced hepatoxocity has been linked to oxidative stress, resulting from either an increase in levels of reactive
oxygen species (ROS) above normal levels and/or the suppression of antioxidant protective pathways. However, few
detailed molecular studies of mycotoxicoses in animals have been carried out. This study use current RNA-seq based
approaches to investigate the effects of mycotoxin exposure in a ruminant model. Having first assembled a de novo
reference transcriptome, we use RNA-Seq technology to define in vivo hepatic gene expression changes resulting from
mycotoxin exposure in relationship to pathological effect. As expected, characteristic oxidative stress related gene
expression is markedly different in animals exhibiting poorer outcomes. However, expression of multiple genes critical for
detoxification, particularly members of the cytochrome P450 gene family, was significantly higher in animals exhibiting
mycotoxin tolerance (‘resistance’). Further, we present novel evidence for the amplification of Wnt signalling pathway
activity in ‘resistant’ animals, resulting from the marked suppression of multiple key Wnt inhibitor genes. Notably,
‘resistance’ may be determined primarily by the ability of an individual to detoxify secondary metabolites generated by the
metabolism of mycotoxins and the potentiation of Wnt signalling may be pivotal to achieving a favourable outcome upon
challenge.
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Introduction

Mycotoxicoses resulting from the inhalation or ingestion of

microfungal spores occurs commonly across the world [1] and

increasingly, mycotoxins are having an impact on global food

‘security’ [2]. Specifically, they represent a hazard in the

agricultural sector affecting the food supply chain of both human

and animals, particularly in areas where pasture and crops are

impacted by challenging growing conditions and/or suboptimal

food storage and handling practises [3]. Already significant, these

impacts are only predicted to increase further as a consequence of

global climate change [4]. In mammals, the cellular pathophys-

iology of many mycotoxins has often been associated cellular

damage caused by oxidative stress, a result of reactive oxygen

species (ROS) increasing to levels above normal and/or the

suppression of antioxidant mechanisms, leading to the oxidation of

DNA, protein and lipid. However, the production of damaging

superoxide and hydroxyl free radicals is not a universal

consequence of mycotoxin poisoning; indeed, the variable degree

to which ROS are generated has be used as a means to classify the

approximately 350 known mycotoxins as non-, moderate- or

highly-oxidant [5]. Thus, while the pathological mechanisms

underpinning the effects of non-oxidant mycotoxin exposure

remain poorly defined, it is clear that not all cases of mycotoxicities

would trigger the same enzymatic antioxidant defence mecha-

nisms. However, as a class of xenobiotic all mycotoxin exposures

would trigger detoxification mechanisms that have evolved to

modify the primary toxin, thereby nullifying damaging effects by

hastening their removal from the body.

A wide variety of mycotoxins are known to contaminate animal

forage, and thus to have a significant economic impact on

production in the agriculture sector [1]. If exposure is prolonged

and/or at high enough levels, the resulting pathology develops

‘clinical’ features, and almost invariably is fatal. The economic

impact of mycotoxicoses is however further exacerbated by

chronic exposure to ‘sub-clinical’ levels of toxin, resulting in a

marked reduction in food intake and feed conversion efficiencies.

Consequentially, animals suffer ill-thrift, failing to gain weight,

becoming more susceptible to disease and the loss of lactation and

reproduction capacity [6] [7] [8] [9], underpinning considerable

economic losses [10]. As a pastoral based economy, the New

Zealand agricultural sector is notably impacted by the mycotoxin

spordisemin produced by ryegrass endophyte. At times of high

spore counts (under summer stress) exposure to sporidesmin is

overtly hepatotoxic, a consequence of hydroxyl radical mediated

oxidative damage, progressing to secondary photosensitization of

skin regions not protected by fibre or fur, and the characteristic

and often fatal ‘facial excema’ (FE) pathological state [11].

Meanwhile, chronic exposure to lower spore levels and the

concomitant multi-seasonal accumulation of damage also results in

the typical animal production losses, which associate with

mycotoxin poisoning. To what extent oxidative stress damage

PLOS ONE | www.plosone.org 1 June 2014 | Volume 9 | Issue 6 | e99975

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0099975&domain=pdf


contributes to these longer lasting effects on animal production

traits is however yet to be determined.

Only a limited number of studies have utilized transcriptomics

based approaches to investigate the (1) molecular consequences of

xenobiotic challenges [12] [13], (2) mycotoxin exposure in

agricultural animals specifically [14] and in particular, (3) to the

identification of genes which impart tolerance (‘resistance’) to

exposure in organisms [15]. In the present study we have used

current RNA-Seq technology to explore transcriptomic based

differences and inform molecular pathways which may underpin

phenotypic outcomes and define exposure resistance, in a

ruminant-based model of sporidesmin mycotoxin exposure. Whilst

primarily of agricultural interest, our findings do suggest funda-

mental and novel mechanisms by which tolerance to xenobiotic

challenge is mediated and ‘resistance’ thus manifest. Notably, the

potential role and significance of Wnt signalling in the regulation

of detoxification gene expression is highlighted.

Materials and Methods

Sheep Trial and Tissue Collection
The whole animal study were approved by the Ruakura Animal

Ethics Committee established under the Animal Protection

Regulations Act (1987, New Zealand). A total of 27 Romney

Figure 1. Bioinformatics workflows for data analysis. Transcriptome de novo assembly (upper left), RNA-seqresult mapping and bioinformatic
analysis of the transcriptomic sequences.
doi:10.1371/journal.pone.0099975.g001
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cross bred sheep were challenged, in two independent ‘trials’

(n = 10 and n = 17 animals respectively) by a single oral

administration of purified sporidesmin (water solution, Agresearch,

NZ) at a dose rate of 0.25 mg/kg live weight [16]. Blood samples

collected weekly were assessed for serum gamma-glutamy-trans-

ferase (GGT) level, as a monitor of toxin exposure and indicator of

liver damage. Seven weeks after the challenge the animals were

sacrificed according to commercial best practise, tissues recovered

and to ‘standardize’ collection, sections of liver parenchyma

approximately 2067 mm6depth excised in each case from the left

lobe, close to the division between right and left hepatic lobes.

From this excision, 56565 mm sections of tissue were manual cut

and stored in cryotubes for immediate freezing in liquid nitrogen.

RNA Isolation, Purification and Library Preparation
RNA isolation from snap frozen liver tissue was optimised as

follows. Approximately 50–100 mg tissue was homogenized in

1 ml Trizol (Invitrogen) using a Qiagen TissueLyser II and

processed using a standard Trizol protocol. Briefly, RNA was

DNase treated using an Invitrogen ‘Purelink Kit’ and the quality

of total RNA recovered quantified using the RNA integrity

number (RIN) generated by Agilent Bioanalyzer 2100 analysis

using the ‘RNA 6000 Nano-Chip’ kit (Agilent Technologies). All

26 samples with RIN.6.5 were used for downstream RT-PCR

assay. Eight samples with RIN.7.5 were further processed for

RNA-Seq analysis. For transcriptomic comparisons among

resistant (n = 2), subclinical (n = 3) and clinical (n = 3) groups, a

sequencing library was developed according to the protocol of the

paired-end sample Preparation kit (Illumina, USA). Briefly, sample

mRNA was enriched by using oligo(dT) magnetic beads and

mRNA cleaved short fragments (about 200 bp) by adding

fragmentation buffer. The first strand cDNA was synthesized by

random hexamer-primer using the mRNA fragments as templates,

and the second strand cDNA was synthesized by adding buffer

dNTPs, RNaseH and DNA polymerase I. The short double-

Figure 2. Hierarchical clustering. Hierarchical clustering of the 2414 contigs among 3 groups (from left to right: resistant, subclinical, clinical)
using RPKM expression values from RNA-seq. We could identify 16 clusters vertically by visual inspection of the heat map.
doi:10.1371/journal.pone.0099975.g002
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stranded cDNA was then purified with QiaQuick PCR extraction

kit (Qiagen) and resolved with EB buffer for end repair and single

nucleotide A (adenine) tail addition, and then sequencing adaptors

were ligated to the fragments. The required fragments were

purified by agarose gel electrophoresis and enriched by PCR

amplification. At the same time, an independent pooled sequenc-

ing library was prepared following the same protocol as above, to

generate a sheep transcriptome de novo assembly.

Illumina Sequencing and Sequences Quality Control
The library products were then subject to sequencing analysis

via the Illumina sequencing platform (HiSeq 2000). The original

image data generated by the sequence providers was transferred

into nucleotide sequences data by base calling, defined as raw

reads and saved as ‘fastq’ files. Raw reads produced from

sequencing machines contain ‘dirty’ reads, from remaining trace

adapters, and unknown or low quality bases, all of which could

negatively affect bioinformatics analysis. Clean sequence reads

were generated filtering the raw reads using three separate criteria,

namely 1) removing reads with sequence adaptors, 2) removing

reads in which unknown bases represent more than 10%, and 3)

removing reads in which the percentage of low quality bases

(quality value#5) represents more than 50% in the read. All

subsequent analyses were performed on these high-quality clean

read data sets according to the bioinformatic analysis approach

summarized in Fig. 1.

De novo Transcriptome Assembly
The short read assembly program Trinity [17] was used to

generate a sheep transcriptome de novo assembly. Briefly, the

pair-end reads were combined according to length of overlap, to

form contigs which were longer fragments matching the reads.

Then the reads were mapped back to contigs to discriminate

contigs from the same transcript, as well as the distances between

these contigs, by using the information of pair-end reads. The

Trinity tools then connected the contigs, generating sequences that

cannot be extended on either and thus defining a set of Unigenes.

Finally, the Unigenes were clustered using TGI Clustering tools

(TGICL) [18] for obtaining the most distinct and longest non-

redundant Unigenes possible. After clustering, the Unigenes were

used for BLAST search and annotation against NCBI NR, NT

and Swiss-Prot database, and the best alignments used to decide

the sequence direction of the Unigenes. If a Unigene did not align

with any of the above databases, ESTScan software [19] was used

to decide sequence direction. The Blast2GO program [20] was

used for initial functional annotation via gene ontology terms (GO;

http://www.geneontology.org). Further annotation was then

performed by BLASTing all Unigenes against Cluster of

Table 1. Primers used for qPCR analysis. REF:reference; GOI:gene of interest.

Gene Forward Reverse Poppers

PPIA GCATACAGGTCCTGGCATCT TCTCCTGGGCTACAGAAGGA REF

SDHA GCAGAACCTGATGCTTTGTG CGTAGGAGAGCGTGTGCTT REF

YWHAZ GCATCCCACAGACTATTTCC GCAAAGACAATGACAGACCA REF

GPX1 ACATTGAAACCCTGCTGTCC TCATGAGGAGCTGTGGTCTG GOI

SOD1 AGAGGCATGTTGGAGACCTG CAGCGTTGCCAGTCTTTGTA GOI

SOD2 AGCCATCAAACGTGAC AGTGCCAACGATGACA GOI

CAT GATAATCGGGCCTGAC CCCATGCTGCACATAG GOI

CYP1A2 ACAACAAGGGATACAACAC CGCTTGCGAACTTATCA GOI

CYP2C8 TCACTGAGTTCCGTGCT GGTGGTGTCGATGTCC GOI

UGT2B10 TGGACGTGATTGGGTTT GTCACAAGAGGATGGGAA GOI

DKK3 GGGACCATCTGTGACAAT GCTTACACACGTACACCA GOI

SFRP1 AGTGCGACAAGTTTCC AAAGGAAAACGGCGAC GOI

WIF1 AGTGAACGTGATTGTCAT ACCGGGAGTAACACAT GOI

FABP5 AAGGCTTTGACGAATACAT CATACCACCACTAATTTCCC GOI

MMP14 CACTTTGACTCTGCCG CTGGTAAAAGGGTGCC GOI

ABCC1 GGATTTTTGCTATGGATCGT GCACACAGTAGGGCTATAA GOI

TOP2A TATTCCGGTCCCGAAGA CGCTTGTCATTCCGTT GOI

doi:10.1371/journal.pone.0099975.t001

Table 2. Average GGT(U/L) through sheep trial.

Group Week 0 Week 1 Week 2 Week 3 Week 4 Week 5

Resistant(n = 8) 35.6 49.4 49.9 44.4 43.8 44.5

Subclinical(n = 8) 56.0 92.8 828.8 1279.5 1286.9 1102.3

Clinical(n = 10) 44.1 96.5 972.6 1080.9 916.0 919.6

This table shows average blood GGT levels of resistant, subclinical and clinical sheep before treatment and first 5 weeks of trial.
doi:10.1371/journal.pone.0099975.t002
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Orthologous Groups (COG) database and Kyoto Encyclopedia of

Genes and Genomes (KEGG) database.

Mapping of the Samples Reads to the Transcriptome and
Analysis of Differentially Expressed Genes

Clean reads for resistant, subclinical and clinical experimental

samples were mapped to the sheep reference transcriptome

sequences using SOAPaligner/soap2 [21], allowing for no more

than two 2 mismatched bases in the alignment for each read.

Alignment statistical analysis was conducted to evaluate the

sequencing and mapping quality, and to quantify the abundance

of transcripts for each sample (Fig. S5–S6 in File S1). The level of

gene expression was then calculated by the numbers of reads

uniquely mapped to a reference sequences (Unigenes) using the

RPKM [22] method (reads per kb per million reads) according to

the formula below:

RPKM~
109C

NL

C = number of uniquely mappable reads that aligned to one

Unigene

N = total number of uniquely mappable reads for all Unigenes

L = number of bases on the Unigene

The coverage depth of each transcript was also determined (Fig.

S7 in File S1). If there was more than one alternative transcript for

a gene, the longest was used to calculate both its expression level

and coverage. We then identified differentially expressed genes

(DEGs) among resistant, subclinical and clinical samples [23] [24].

Fold changes for DEGs were calculated and FDR (false discovery

rate) used to determine the threshold of P value for judging the

significance of gene expression difference. The criterion for

screening of differentially expressed genes was arbitrarily set as

the following: FDR#0.001 and fold change $2.

Expression Pattern, Function Enrichment and Network
Analysis of DEGs

Genes with similar expression patterns may be functionally and

phenotypically correlated. We performed cluster analysis of gene

expression patterns with TIGR MultiExperiment Viewer software

version 4.9 [25] (Fig. 2). Each column represents an experimental

sample (from resistant, subclinical and clinical group), while each

row represents a DEG. Expression differences are shown in

different colours with blue representing mean low levels of gene

expression and yellow representing higher levels. To identify the

principle biological functions of the DEGs we then mapped them

to terms in KEGG database and GO database, looking for

significantly enriched terms compared to the genomic back-

ground. DEGs were functionally grouped into gene ontology

networks using the Cytoscape v2.8.3 software (http://cytoscape.

org/index.php) with the ClueGO plug-in v1.8 (http://www.ici.

upmc.fr/cluego/) [26]. ClueGO established a significant gene-

term matrix and biologically functional groupings for all DEGs at

different GO term levels. Pathway-based analysis further informed

the biological functions of the DEGs, suggesting significantly

enriched metabolic or signal transduction pathways associated to

the DEGs, compared to the whole genomic background. The

statistical significance of the terms analysed was calculated with

two-sided enrichment/depletion hypergeometric test and Bonfer-

roni P-value correction. In addition, we performed gene interac-

tion network analysis by using Cytoscape plug-in MiMI [27] to

connect to the MiMI database (http://mimi.ncibi.org) and view

the involved interactions.

Quantitative Real-Time PCR (qRT-PCR) Validation
A total of 1 ug DNase treated RNA was used for reverse

transcription (RT), following the Superscript III (Invitrogen)

manufacturer’s instructions. Samples were diluted 5 fold for Real

Time PCR (RT-PCR) carried out on a Corbett Rotorgene 6000

(Qiagen) with SYBR ExTaq Mix (Takara), using multiple primers

(Table 1) and a generic amplification sequence of 3 mins for initial

denaturation, followed by 40 cycles at 95uC for 10 sec and 60uC
for 25 sec. Transcripts were quantified relative to a geometric

mean using three reference genes while normalising for different

amplification efficiencies (denoted as ‘‘a’’) as follows: expression

level of gene of interest (GOI) = [aGOI‘(2CtGOI)]/([aREF1‘(2

CtREF1)6aREF2‘(2CtREF2)6aREF3‘(2CtREF3)]‘(1/3)) [28].

Each sample was measured in triplicate.

Results

Sheep Trial
Facial Eczema (FE) mycotoxicity arises in grazing ruminants

when the pasture contains toxic spores, and depending on

temperatures and humidity, exposure may persist for a period of

weeks or months [29]. In our study, liver samples were collected

following a single exposure at seven weeks, empirically deemed a

realistic time point to study the coping mechanisms of sheep.

Based on the combination of blood GGT level and visible

pathology, animals were grouped as ‘resistant’ (constant low GGT

levels through the trial) and ‘susceptible’ (significantly increasing

GGT levels), the latter group being further classified as ‘subclin-

ical’ and ‘clinical’ on the basis of visually evident skin

lesions(Table 2).

In any clinical cases of FE, identified by skin lesions, are also

manifest by seven weeks’ time. However, subclinical cases are not

readily discernible, remaining cryptic to gross detection. In both

clinical and sub clinical cases, liver damage is assumed to have

begun earlier at around three weeks after exposure. GGT blood

levels represent to first indicator exposure response [30], with a 20

fold increase in GGT level observed by the third week and

persisting throughout the trial in susceptible individuals (Table 2).

Skin lesions defining the clinical sub-group were not readily

Table 3. The output of sequenced data indicates the completion of transcriptome work.

Output
Statistics

Total Raw
Reads

Total Clean
Reads

Total Clean
Nucleotides
(nt)

Q20
percentage

N
percentage

GC
percentage

Reads 59,399,918 53,306,790 4,797,611,100 97.10% 0.00% 49.93%

Clean reads in each sample must contain a total base number of no less than the contractually required output. In this study, 2 reads are applied. Total Clean
Nucleotides = Total Clean Reads16Read1 size+Total Clean Reads26Read2 size.
doi:10.1371/journal.pone.0099975.t003
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apparent at the does we used until late in the trial during the

seventh week. Clinical phenotype individuals also showed a

marked loss in body weight compared to the sub-clinical and

resistant phenotype animals, which generally gained weight during

the course of the trial (data not shown).

De novo Reference Transcriptome Assembly and RNA-
seq Transcripts Alignment

To date, the use of the sheep to investigate the genetic

background for a certain disease model has been limited owing to

the lack of transcriptome sequences and well-annotated ovine

genome. Our purpose was therefore to generate an initial sheep

transcriptome using next-generation technologies and to detect

differentially expressed genes between resistant, subclinical and

clinical sheep. We developed a bioinformatics pipeline for both

de novo transcriptome assembly and the analysis of RNA-seq data

based on this transcriptome (Fig. 1). A summary of the output of

sequenced data, assembly quality and annotation results for the

transcriptome work is presented in Table 3–5, including a total of

5.33 million clean reads with 4797.61 million clean nucleotides, a

total of 84,243 Unigene with 71,302 distinct singletons for

assembling. A total of 35,316, 62,824, and 32,892 Unigene was

annotated to the public database NR, NT and SwissProt

respectively. The clean reads for 8 experimental samples by

RNA-seq were then mapped to the sheep reference, resulting in a

high quality alignment. On average, about 78.5% of the short

reads could be mapped (Table 6).

Clustering and Characteristic Expression Patterns
Hierarchical clustering was performed to identify individual

animals with similar phenotypes as well as individual genes with

similar expression profiles based on the RPKM expression values

(Fig. 2). The heat plot displayed the expression patterns for all

differentially expressed genes in all sheep. Horizontally, animals

were identified as 3 clusters based on the expression patterns of all

the annotated genes. The three derived clusters are completely

aligned to the three defined phenotype outcomes observed after

exposure. Vertically, genes identified from RNA-seq were

separated into sixteen clusters based on their enrichment in each

group.

Expression Shift Profiles of Total and Detoxification
Related Genes

Differential expression profile between sheep with different

phenotypes was evaluated using RPKM method on the mapped

reads as described above. There were a total of 2414 Unigenes

differentially expressed between clinical, subclinical and resistant

sheep. The basic types of aligned Unigenes are also listed in

Table 7. By re-blasting all the differentially expressed Unigenes to

public database NT, NR, and SwissProt especially for human,

bovine, mouse, swine, and ovine, 1371, 1469, 1312, 1089 and 231

differentially expressed sequences are well aligned and annotated

in the five species (Table 8). To identify the transcriptomic profile

changes particularly in the terms of detoxification, we chose the

genes that change between resistant and subclinical and genes that

change between resistant and clinical, then separated genes under

detoxification terms from the total differentially expressed genes

(Fig. 3). The total number of genes that changed between resistant

and subclinical is 367 with 117 expressed higher and 250

expressed lower in the resistant group. 1974 genes were changed

between resistant and clinical with 1001 higher and 873 lower

expressed in resistant group. There are 230 differentially expressed

genes related to xenobiotic response process. 32 genes changed
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between resistant and subclinical group while 215 changes

between resistant and clinical. Most of the expression changes

happened between resistant and clinical groups rather than

between resistant and subclinical groups.

Gene Ontology (GO) and Protein Interaction Analysis
Gene Ontology analysis including ‘biological processes’, ‘mo-

lecular functions’ and ‘cellular components’ was performed in all

differentially expressed genes (Fig. S8–S10 in File S1). It was found

the DEGs were significantly annotated to GO terms with well-

known roles in oxidative stress and antioxidant protective

processes, such as response to oxidative stress, omega-hydroxylase

P450 pathway, epoxygenase P450 pathway, exogenous drug

catabolic process, drug catabolic process, drug metabolic process,

xenobiotic metabolic process, cellular response to xenobiotic

stimulus, and response to xenobiotic stimulus. To specify each

comparison, we further analysed both resistant/subclinical and

resistant/clinical comparisons and listed top terms according to

the number of annotated genes in Fig. 4. Predictably, both

comparisons showed a shift in similar reference terms such as

cellular metabolic process, cell communication, and response to

stress. However, the number of involved genes that changed in the

clinical sub-group is much greater than for the subclinical group,

when compared to the resistant phenotype group.

Pathway Analysis of Differentially Expressed Genes to
Characterise the Transcriptomic Response of
Sporidesmin Mycotoxin

For all the genes that differently expressed among groups,

pathway enrichment analysis showed that a total number of 155

pathways were defined with at least one gene related to each

pathway (File S2). To define the most significantly changed

pathways, we primarily use the number of differentially expressed

genes involved in each pathway as a standard. Focal adhesion,

drug metabolism-cytochrome P450, and ECM-receptor interac-

tion pathways are the three most significantly different biological

roles thus identified. However, it is important to keep in mind that

numbers of genes in each pathway are different. We additionally

use the percentage change of known genes in each pathway as

criterion. Caffeine metabolism, drug metabolism, and metabolism

of xenobiotics by cytochrome P450 appear to be the top ones

(Fig. 5). As for our study, the pathways of principle interest, namely

detoxification and metabolism related pathways contain at least 4

differently expressed genes is listed in Table 9.

Quantitative RT-qPCR Validation of RNA-Seq Changes
RT-qPCR of a subset of protein coding genes was done to

confirm differential expression genes patterns derived from the

discovery phase RNA-Seqn analysis. We provide a comparison of

fold changes between RNA-Seq RPKM value and qRT-PCR for

each gene for both the samples used only for RNA-Seq and across

the entire trial population. The gene set includes antioxidant

enzymes (Fig. 6-A), detoxification enzymes (Fig. 6-B), Wnt

inhibitors (Fig. 6-C) and other randomly selected genes (Fig. 6-

D). Virtually all the genes show concordant direction of fold

change between RNA-Seq and qRT-PCR. The inconsistent seen

with the SOD1 gene is likely due to a very low and incomplete

RPKM value in RNA-seq.

Statistical Significance of Results
Although increasingly affordable, whole genome analysis

remains expensive in both assay cost and time for analysis by

highly skilled practitioners. The expected richness of data offered

by this approach has however encouraged its use, albeit on small

cohort sizes. In some instances, triplicate sets have been found

highly informative for sequencing analysis and have been widely

used for RNA-Seq-related biological studies [31], although even a

single sequencing run has been shown to be sufficient [32–34].

However, the importance of validating findings on biological

replicates from the same populations cannot be understated and is

an essential step in substantiating the readouts from RNA-seq

analysis. In the current study, we found a high degree of

consistency between the RNA-seq discovery platform and

extension by qRT-PCR based to population wide validation.

Critically, the fold changes in expression estimated from RNA-seq

(n = 8) was highly correlated with that observed with qRT-PCR

(n = 26) and the correlation coefficient reached 0.932993071

(p = 1.45948E-08), 0.783499202 (p = 0.000139968) and

0.454482048 (p = 0.064605227) for pairwise comparisons of NC

vs C, R vs C and R vs NC respectively. We report these

assessments of our replication success in support of the validity,

accuracy and statistical power of our data despite the relatively

small sample sizes being considered.

Discussion

Mycotoxicity is frequently, but not invariably, the consequence

of oxidative stress resulting from the generation of secondary

metabolites after ingestion [5,35]. It has long been appreciated

that exposure to the mycotoxin sporidesmin in ruminants leads to

tissue damage by free radicals [36] and there is a clear relationship

between sporidesmin-induced liver injury and serum activity of

Table 7. RNA type distribution of assembled sequences.

Type Miscellaneous RNA Protein coding Pseudo rRNA Unknow Total

Number 53 1379 39 1 908 2414

doi:10.1371/journal.pone.0099975.t007

Table 8. Species distribution of annotated sequences.

Species Human Bovine Mouse Swine Ovine Total annotated

Number 1371 1469 1312 1089 231 1570

doi:10.1371/journal.pone.0099975.t008
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gamma-glutamyltransferase in Romney lambs sired by both

disease resistant and susceptible rams. However, we found that

not all of the principal anti-oxidant enzymes were elevated as a

correlate to disease progression, indeed catalase and GPX

appearing to be refractory to toxin exposure. Furthermore, there

was a selective response from the SOD family of enzymes, the

expression of mitochondrial (type 2) and extracellular (type 3)

SOD isoenzymes paralleling pathological progression, while the

cytoplasmic (type 1) form of SOD was seen to be unchanged.

While the antioxidant activities of SOD1 and the Se-dependent

GPX1 are thought to be functionally coupled under some

circumstances, dual genetic knock-out of these genes in mice does

not lead to increased hepatic injury following endotoxin induced

oxidative stress [37]. Our findings suggest that the functional

coupling of SOD1 and GPX1 is similarly seemingly impartial to

the effects of mycotoxin exposure.

The highly conserved nature of antioxidant enzymes across

plant and animal taxa [38] has perhaps encouraged a tendency to

view them as a functional collective. There is however a

remarkable diversity in both the specific antioxidant mechanism

and functional pathways which have evolved to cope, presumably

in response to the manifold environmental triggers which are

capable of disrupting cellular oxidative homeostasis, and a growing

understanding of the specific contributions made by particular

antioxidant enzyme in response to any given challenge. For

example, the seasonal-long exposure of ruminants to a xenobiotic

such as sporidesmin represents a persistent challenge. It has

recently been demonstrated that chronic stress not only leads to a

differential response by hepatic antioxidant enzymes, but also that

the chronic stress response as a whole is a modification of, rather

than distinct from, the response elicited by an acute stress stimulus

[39].

Working in synergy with antioxidant mechanisms, a sophisti-

cated network of multi-phase detoxification pathways has evolved

to effectively neutralize and remove the toxic by-products of

coping with free radicals and the derivative metabolites of the

xenobiotic. A physiological level breed difference in detoxification

of sporidesmin was first observed thirty years ago, with Merino

Figure 3. Vein diagrams of differently expressed genes among resistant, subclinical and clinical groups. The number of total differently
expressed genes(upper) and detoxification related genes (lower) in two comparisons: resistant vs subclinical and resistant vs clinical. Number of
genes that expressed higher or lower in resistant group was labeled with arrows.
doi:10.1371/journal.pone.0099975.g003
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Figure 4. Top biological processes, molecular functions terms and cellular components that changed among groups. This figure
describes the top 20 biological processes terms, top 20 molecular functions terms and top 6 cellular components that changed in two comparisons:
A, resistant/subclinical and B, resistant/clinical from Go analysis.
doi:10.1371/journal.pone.0099975.g004

Figure 5. KEGG pathways and their function groups. The left lane shows the pathway name; the right lane shows the involved genes number
(right side of each column chart) and their percentage for all the associated genes in each pathway or term (upper of the figure). The different colours
for column charts represent different pathway functional grouping based on Kappa score.
doi:10.1371/journal.pone.0099975.g005
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sheep having a higher rate of metabolic turnover rate that

Romney breeds [40]. In addition, using ‘sleep-time’ and recovery

following sodium pentobarbital anaesthesia as an indicator of

hepatic Phase I enzyme activity, Smith et al. again reported better

detoxification of toxin in Merino than Romney breed rams. In

these same animals, Merinos were found to be more tolerant of

sporidesmin as indicated by the proxy measures of blood GGT,

bodyweight change or photosensitisation [41]. We observed that

several members of the cytochrome P450 (CYP) mono-oxygenase

gene families 1–3, which are central to the Phase I biotransfor-

mation of xenobiotics [42], are differentially expressed between

phenotypes following sporidesmin exposure. Unexpectedly, the

highest expression of these genes was seen in those sheep

exhibiting phenotypic ‘resistance’ to sporidesmin induced myco-

toxicity. While the regulation of CYP genes is thought to occur at

multiple levels, our knowledge of the particular mechanisms that

lead to the induction of expression in particular instances is

incomplete. Of the multiple CYPs we found to be elevated in the

resistant phenotype, two (CYP1A2 and 2E1) are known to be

subject to post-translational regulation and three (CYP1A2, 2B6

and 2C9) to transcriptional regulation [43]. The Ahr battery of

transcriptional regulators has been linked to CYP1A2, while

xenobiotic nuclear receptors, such as the constitutive androstane

receptor (CAR) and pregnane X receptor (PXR) which function as

ligand induced transcription factors to enhance biotransformation

[44], have been shown to induce CYP2B6 (CAR) and 2C9 (CAR

and PXR) [45]. Additionally, the beta-catenin intracellular

signalling pathway has been shown to regulate the expression of

multiple CYP genes, using in vitro human HepG2 hepatocytes

[46], murine in vivo expression [47] [48], and perhaps most

significantly to modulate in vivo the extent to which murine

hepatocyte CYP genes respond to xenobiotic challenges [49].

Beta-catenin is the central element of, and stabilized by the

canonical Wnt pathway leading to transcriptional activation of

genes by the transcription factor complex Tcf/LEF. Canonical

signalling by Wnt1 and 3a in particular, impacts on liver

physiology (particularly metabolism) and pathology [50]. In

prostate cancers, canonical Wnt signalling has been found to

activate Ahr activity [51] and may act as a co-stimulator of Ahr

target gens [49]. Meanwhile, the binding of non-canonical forms

of Wnt (such as Wnt4 and 5a) leads to other distinct intracellular

signalling pathways.

A shear panoply of extracellular and intracellular factors are

known to either positively or negatively regulate both canonical

and non-canonical Wnt signalling pathways, in both non-

mammalian and mammalian development, during tissue homeo-

stasis and in human diseases [52]. These include two classes of

secreted extracellular anatgonists which interfere with ligand-

receptor binding [53]. Members of the secreted Frizzled-receptor

protein (SFRP) family, Wnt inhibitory factor (WIF)-1 and cerberus

molecules bind directly to Wnt proteins in order to block binding

to the Wnt receptor complex and can inhibit both canonical and

non-canonical signalling. Meanwhile, members of the Dikkopf

(DKK) family of molecules antagonize by binding specifically to

components of the Wnt receptor complex and inhibit canonical

signalling. Strikingly, we found differential transcriptional sup-

pression of three key major Wnt antagonists, sRFP1, WIF-1 and

Dkk3, suggesting that multiple Wnt signalling pathways, and in

particular the amplification of CYP gene dependent detoxification,

may be occurring in hepatic tissue of sheep exhibiting a

sporidesmin ‘resistant’ phenotype. Of the multiple isoenzymes

found to be more highly expressed in these sheep, CYP1A2 and

CYP2E1 are both reliant on beta-catenin dependent transcription

[47,48].

In Phase II of metabolic detoxification, the original xenobiotic

compound or the intermediate metabolites modified during Phase

I are conjugated in preparation for excretion via the biliary duct.

Multiple families of enzymes, including glutathione S transferases

(GSTs) and UDP glycurosyltranferases (UGTs), contribute to

Phase II processing. In parallel with the CYP genes, we found

several hepatic GST and UGT family members to be differentially

expressed and correlated to phenotype following sporidesmin

exposure. Furthermore, for at least some of those which are

elevated after sporidesmin exposure there is already evidence that

beta-catenin is important in their regulation, genetic ablation of

the beta-catenin encoding gene Ctnnb1 in human and murine

leading to a loss of GSTM1, GSTA3 and GSTA4 expression

[49,50] while an activating mutation in beta-catenin in hepato-

cellular cancers leading to increased expression of GSTM and

GSTA4 [54].

The novel findings presented here suggest that potentiation of

Wnt dependent detoxification mechanisms may be a character-

istic feature that defines a favourable outcome following

sporidesmin challenge in ruminants, and significantly alters the

perception that effective treatment of mycotoxicoses needs always

to be predicated on a need to reverse oxidative stress induced

damage. Rather, enhancing detoxification may provide a more

successful pathway for remediation. Our findings suggest a new

perspective for potential diagnosis and treatment of mycotoxico-

ses in ruminants by identifying novel molecular pathways which

would seem to regulate the extent of hepatic response to

xenobiotic challenge.

Table 9. Detoxification, metabolism related athways with at least 4 differently expressed genes and signaling related pathway
with at least 4 differently expressed genes.

Pathways Gene number p-Value

Detoxification related pathways

Drug metabolism - cytochrome P450 26 1.79E-30

Metabolism of xenobiotics by cytochrome P450 25 3.30E-29

Drug metabolism - other enzymes 11 6.62E-11

Porphyrin and chlorophyll metabolism 6 1.69E-05

ABC transporters - General 4 0.002822

doi:10.1371/journal.pone.0099975.t009
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