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Abstract

Endothelial dysfunction is common in acute and chronic organ injury. Isoflurane is a widely used halogenated volatile
anesthetic during the perioperative period and protects against endothelial cell death and inflammation. In this study, we
tested whether isoflurane induces endothelial ecto-59-nucleotidase (CD73) and cytoprotective adenosine generation to
protect against endothelial cell injury. Clinically relevant concentrations of isoflurane induced CD73 activity and increased
adenosine generation in cultured human umbilical vein or mouse glomerular endothelial cells. Surprisingly, isoflurane-
mediated induction of endothelial CD73 activity occurred within 1 hr and without synthesizing new CD73. We determined
that isoflurane rapidly increased CD73 containing endothelial microparticles into the cell culture media. Indeed,
microparticles isolated from isoflurane-treated endothelial cells had significantly higher CD73 activity as well as increased
CD73 protein. In vivo, plasma from mice anesthetized with isoflurane had significantly higher endothelial cell-derived
CD144+ CD73+ microparticles and had increased microparticle CD73 activity compared to plasma from pentobarbital-
anesthetized mice. Supporting a critical role of CD73 in isoflurane-mediated endothelial protection, a selective CD73
inhibitor (APCP) prevented isoflurane-induced protection against human endothelial cell inflammation and apoptosis. In
addition, isoflurane activated endothelial cells Rho kinase evidenced by myosin phosphatase target subunit-1 and myosin
light chain phosphorylation. Furthermore, isoflurane-induced release of CD73 containing microparticles was significantly
attenuated by a selective Rho kinase inhibitor (Y27632). Taken together, we conclude that the volatile anesthetic isoflurane
causes Rho kinase-mediated release of endothelial microparticles containing preformed CD73 and increase adenosine
generation to protect against endothelial apoptosis and inflammation.
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Introduction

More than 1 trillion endothelial cells in human body cover the

entire circulatory system and play an integral role in maintaining

homeostasis of all organs [1]. Endothelial cells regulate vascular

tone, angiogenesis, coagulation and release several critically

important autocrine and paracrine compounds including sphin-

gosine 1-phosphate, adenosine, nitric oxide, and prostaglandins

[2,3]. Furthermore, endothelial cells release microparticles origi-

nating from plasma membrane and these microparticles contain

many biological active compounds including cell surface enzymes,

membrane receptors as well as lipoproteins, RNAs and micro-

RNAs [4]. Clinically, endothelial dysfunction contributes to acute

and chronic vascular and organ injury [2,3]. Indeed, endothelial

cell death occurs frequently after ischemia and reperfusion injury,

diabetes, coronary artery disease and sepsis [3,5,6].

Volatile anesthetic is administered to virtually all patients

subjected to general anesthesia making it one of the most

frequently used medications during the perioperative period [7].

Volatile anesthetics have non-anesthetic effects on the heart,

vasculature and respiratory system by regulating blood pressure,

heart rate, airway tone and systemic vascular resistance [8,9]. In

addition, volatile anesthetics have anti-necrotic and anti-inflam-

matory effects and protect against ischemia reperfusion injury of

the heart, kidney and intestine [9–11]. Furthermore, volatile

anesthetics attenuate the hyperactive systemic inflammatory

response during sepsis [12].

After inhalation, volatile anesthetics are first taken up by the

pulmonary circulatory system and all endothelial cells in the body

are rapidly exposed. We and others previously demonstrated that

volatile anesthetics protect against endothelial cell necrosis,

apoptosis and inflammation due to hypoxia, lipopolysaccharide

and cytokine exposure [13–17]. However, the detailed signaling

mechanisms of volatile anesthetic-mediated endothelial protection

remain incompletely understood. We recently demonstrated that

one of the most widely used volatile anesthetic isoflurane (2-chloro-

2-(difluoromethoxy)-1,1,1-trifluoro-ethane) induces the expression

of ecto-59-nucleotidase (CD73) in renal proximal tubular cells [18].

Isoflurane-mediated induction of CD73 activity with subsequently

increased synthesis of adenosine reduces proximal tubular

necrosis, apoptosis and inflammation after renal ischemia and

reperfusion injury. In this study, we tested whether isoflurane

stimulates endothelial CD73 activity and generates adenosine to
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protect against endothelial cell death and inflammation. To our

surprise, isoflurane did not induce new CD73 synthesis in

endothelial cells as observed in renal proximal tubular cells.

Instead, we determined that isoflurane activates endothelial cell

Rho kinase to release preformed CD73 contained within

endothelial microparticles to increase adenosine generation to

protect endothelial apoptosis and inflammation.

Methods and Materials

Ethics Statement
All animal work was approved by Columbia University

Institutional Animal Care and Use Committee.

Endothelial Cell Culture and Exposure to Isoflurane
Immortalized human umbilical vein endothelial cells

(EA.hy926, American Type Culture Collection, Manassas, VA)

cells were grown in high-glucose DMEM plus 10% FBS.

Immortalized mouse glomerular endothelial cells (GENC) were

obtained from Dr. M. Madaio (Georgia Regents University) and

grown in low glucose DMEM/Ham’s F12 medium plus 10% FBS,

2 mM l-glutamine, and 10 mM HEPES [19]. Cells were plated in

6-well plates when 80% confluent and used in the experiments

described below when confluent after 24 hr serum deprivation.

Endothelial cells were exposed to isoflurane (Abbott Laborato-

ries, Chicago, IL) as described previously [13]. In brief, endothelial

cells were placed in an air-tight, 37uC, humidified modular

incubator chamber (Billups-Rothenberg, Del Mar, CA) and

exposed to 0–2.5% (0–2 MAC) isoflurane (where 1 MAC is

defined as the percent concentration in the alveolus of an inhaled

anesthetic agent required to prevent 50% of subjects from moving

in response to a painful stimulus when used as the sole anesthetic)

mixed with 95% air+5% CO2 (carrier gas). Exposure to isoflurane

lasted between 0 to 16 hr. To inhibit CD73 or Rho kinase activity,

some endothelial cells were pretreated with 100 mM a,b-methy-

lene ADP (APCP, a selective CD73 inhibitor, Sigma, St Louis,

MO) or with 10 mM Y27632 (a selective Rho Kinase inhibitor,

Sigma, St Louis, MO) 30 min. before isoflurane treatment [20].

Microparticle Isolation and Flow Cytometry
After Columbia University Institutional Animal Care and Use

Committee approval, we anesthetized adult male C57BL/6

(Harlan, Indianapolis, IN) to 4 hr of equipotent doses of either

pentobarbital or isoflurane (1.2% or ,1 MAC) as described

previously [18]. The mice were placed on a heating pad under a

warming light to maintain body temperature ,36–38uC. After
4 hr, animals were killed and plasma isolated for microparticle

isolation.

Microparticles were isolated by differential centrifugation as

described by Amabile et al. [21]. Endothelial cell culture medium

or mouse plasma was centrifuged once at 1,0006g for 10 min to

remove the cell pellet and the resulting supernatant was

centrifuged at 20,0006g for 40 min. The resulting pellet

containing microparticles was analyzed for CD73 activity as well

as CD73 immunoblotting.

We also subjected isolated endothelial and mouse plasma

microparticles to flow cytometric analysis with a Quanta SC flow

cytometer (Beckman Coulter, Miami, FL). To determine the

relative expression of CD73, microparticles isolated from endo-

thelial cell culture media were stained with Annexin V (Beckman

Coulter, Miami, FL) and CD73 (BD Biosciences, San Jose, CA) for

5 min at room temperature. Mouse plasma microparticles were

stained with CD73 and CD144 (an endothelial cell marker, BD

Biosciences, San Jose, CA) to determine the CD73 expression in

endothelial microparticles.

Induction of Endothelial Cell Apoptosis and Inflammation
After exposure to 2.5% isoflurane or with carrier gas for 1 hr,

EA.hy9262 cells were exposed to tumor necrosis factor-alpha

(TNF-a, 20 ng/ml) plus cycloheximide (10 mg/ml) for 16 hr to

induce apoptosis or to TNF-a (20 ng/ml) for 6 hr to induce

inflammation as described previously [18]. Apoptosis was assessed

by detecting poly-(adensosine diphosphate-ribose)-polymerase

(PARP) and caspase 3 fragmentations as described [22,23].

Inflammation was assessed by measuring mRNAs encoding

markers of inflammation including TNF-a, ICAM-1 and

VCAM-1 (Table 1) with RT-PCR as described previously [18,24].

Detection of Endothelial CD73 mRNA and Protein
Expression
We measured mRNA encoding human CD73 after isoflurane

treatment as described [25] with primers listed in Table 1. In

addition, EA.hy9262 cell lysates were collected for immunoblot-

ting analyses of CD73 (Santa Cruz Biotechnologies, Santa Cruz,

CA) and b-actin (internal protein loading control, Sigma, St Louis,

MO) as described previously after isoflurane treatment [25].

HPLC to Measure Endothelial Cell Adenosine Generation
EA.hy9262 or mouse glomerular endothelial cell culture media

were collected after isoflurane treatment and assayed for adenosine

by HPLC as described [18]. Adenosine was quantified on a C18

reversed-phase column with a binary low-pressure gradient elution

system with a UV detector set to 254 nm as described [26].

Adenosine deaminase activity and adenosine uptake were inhib-

ited with 10 mM erythro-9-(2-hydroxy-3-nonly)adenine (EHNA)

and 10 mM dipyridamole, respectively.

Endothelial Cell Lysate or Microparticle CD73 Activity
Assay
CD73 activity was measured by tracking the conversion of AMP

to adenosine with or without 100 mM APCP using a modified

protocol according to Gelain et al. [27].

Rho Kinase Activity Assay and Phospho-myosin Light
Chain Immunoblotting
After 30 min treatment with 2.5% isoflurane or with carrier gas,

we measured EA.hy9262 cell Rho kinase activity with a

commercial assay that measures myosin phosphatase target

subunit-1 (MYPT-1) Threonine residue 696 phosphorylation

(Millipore, Billerica, MA). We also assessed Rho kinase activation

by detecting myosin light chain (MLC) Serine-19 phosphorylation.

EA.hy9262 cell lysates were probed with anti-phosphor-MLC 2

antibody as well as total-MLC 2 antibody (1:10,000 anti-MLC20

(:1000, Cell Signaling Technology, Danvers, MA) and subjected to

immunoblotting as described [18].

Statistical Analysis
The data were analyzed with Student’s t-test when comparing

means between 2 groups or with one way analysis of variance plus

TUKEY’s post hoc multiple comparison test to compare mean

values across multiple treatment groups. All data are expressed

throughout the text as means 6 SEM.

Isoflurane Releases Endothelial Microparticle CD73
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Results

Isoflurane Increases Adenosine Generation in Cultured
Endothelial Cells
We first determined whether isoflurane treatment increases

adenosine generation in endothelial cells. Human umbilical vein

(EA.hy9262) or mouse glomerular endothelial cells (GENC) were

treated with 0–2.5% isoflurane for 6 hr and we measured

adenosine levels in cell culture media with HPLC as described

previously [18]. We determined that isoflurane treatment signif-

icantly increased adenosine levels in human and mouse endothelial

cell culture media when compared with carrier gas-treated (room

air plus 5% CO2) cells (Figure 1A).

Isoflurane Transiently Increases CD73 Activity in Cultured
Endothelial Cells
The next set of experiments determined whether isoflurane

stimulates CD73 activity to increase adenosine generation in

cultured endothelial cells. EA.hy9262 cells had significantly

increased cell surface CD73 activity (conversion of AMP to

adenosine) 1 to 3 hr after treatment with 2.5% isoflurane

(Figure 2A). We also observed increased CD73 activity in

EA.hy9262 cells with 1.25–2.5% isoflurane treatment for 3 hr

(Figure 2B). Surprisingly, CD73 activity subsequently decreased

with longer duration of isoflurane treatment (Figure 2A). Further-

more, transient increase in CD73 activity in EA.hy9262 cells did

not require the induction of new CD73 synthesis as CD73 mRNA

(Figure 2C) and protein (Figure 2D) did not increase with

isoflurane treatment in these cells. Therefore, our studies show

that isoflurane transiently increases CD73 activity without

inducing new CD73 synthesis in cultured endothelial cells.

Table 1. Primers used to amplify cDNAs based on published GenBank sequences for human.

Primers Sequence (Sense/Antisense) Product Size (bp) Cycle Number Annealing Temp (uC)

TNF-a 59-CGGGACGTGGAGCTGGCCGAGGAG-39 355 24 68

59-CACCAGCTGGTTATCTCTCAGCTC-39

ICAM-1 59-GCAGACAGTGACCATCTACAGC-39 400 16 60

59-GCCATCCTTTAGACACTTGAGC-39

VCAM-1 59-TCTTGTTTGCCGAGCTAAATTA-39 364 22 55

59-TAAATGGTTTCTCTTGAACAA-39

CD73 59-CCA ATT CTG AGT GCA AAC AT-39 315 23 62

59-CCT CCC ACC ACG ACG TCC AC-39

GAPDH 59-ACCACAGTCCATGCCATCAC-39 450 15 65

59-CACCACCCTGTTGCTGTAGCC-39

bp, base pairs; GAPDH, glyceraldehyde 3-phosphate dehydrogenase; ICAM-1, intercellular adhesion molecule-1; TNF-a, tumor necrosis factor-alpha; VCAM-1, vascular
cell adhesion molecule-1; CD73, Ecto-59-nucleotidase. Respective anticipated PCR product size (bp, base pairs), PCR cycle number for linear amplification, and annealing
temperatures used for each primer are also provided.
doi:10.1371/journal.pone.0099950.t001

Figure 1. Isoflurane increases adenosine generation in cultured endothelial cells. Adenosine in media from human umbilical vein
endothelial cells (EA.hy926, A) or mouse glomerular endothelial cells (GENC, B) measured with high pressure liquid chromatography. Isoflurane
treatment (0–2.5%) for 6 hr increased adenosine concentrations when compared to carrier gas-treated controls (N= 5). Data are presented as means
6 SEM. *P,0.05 vs. carrier gas-treated controls. Error bars represent 1 SEM.
doi:10.1371/journal.pone.0099950.g001

Isoflurane Releases Endothelial Microparticle CD73
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Isoflurane Treatment Release Endothelial Cells
Microparticles Containing CD73
Since isoflurane transiently increases cell plasma membrane

CD73 activity without inducing new CD73 synthesis in cultured

endothelial cells, we tested whether isoflurane induces the release

of plasma membrane microparticles containing CD73. Indeed,

microparticles isolated from cell culture media of EA.hy9262 cells

treated with 1.25 or 2.5% isoflurane for 1 hr had significantly

increased CD73 activity compared to microparticles isolated from

carrier gas-treated cells (Figure 3A). Isoflurane (2.5%) treatment

for 1 hr also increased CD73 activity in microparticles isolated

from GENC media (Figure 3B). Finally, microparticles from

endothelial cells treated with 2.5% isoflurane had significantly

increased CD73 protein expression compared to microparticle

isolated from carrier gas-treated endothelial cells (Figure 3C and

3D). Flow cytometric analyses confirmed that endothelial cells

treated with 2.5% isoflurane for 1 hr had significantly (,50%)

higher CD73+ Annexin V+ microparticles compared to micro-

particles isolated from carrier gas-treated endothelial cells

(Figure 4).

Isoflurane Increases CD73 Containing Endothelial-derived
Microparticles in Mouse Plasma
We next determined whether isoflurane anesthesia increases

endothelial cell-derived CD73 containing microparticles in plasma

of mice anesthetized with isoflurane. Figure 5A shows that plasma

of mice anesthetized with 1.2% isoflurane for 3 hr had signifi-

cantly increased CD144 (an endothelial cell marker)+ CD73+
microparticles compared to microparticles isolated from mice

anesthetized with equi-anesthetic dose of pentobarbital. Further-

more, plasma microparticles isolated from mice anesthetized with

isoflurane had significantly higher CD73 activity when compared

to CD73 activity in plasma microparticles isolated from pento-

barbital-anesthetized mice (Figure 5B).

Isoflurane Reduces Endothelial Cell Apoptosis and
Inflammation via Induction of Endothelial Microparticle
CD73
We then tested whether CD73 is critical for isoflurane-mediated

protection against endothelial apoptosis and inflammation.

EA.hy9262 cells pretreated with carrier gas underwent apoptosis

with robust PARP and caspase-3 fragmentation (Figure 6A) after

TNF-a and cycloheximide treatment for 16 hr. In contrast,

EA.hy9262 cells pretreated with 2.5% isoflurane for 1 hr had

reduced apoptotic death indicated by decreased PARP and

caspase-3 fragmentation. Supporting a critical role of CD73

activation in isoflurane-mediated protection against endothelial

cell apoptosis, cells pretreated with a selective CD73 inhibitor

APCP (100 mM) were not protected against endothelial apoptosis

with isoflurane treatment (Figure 6A). Endothelial cells treated

with TNF-a for 6 hr showed induction of several pro-inflamma-

tory mRNAs including TNF-a, ICAM-1 and VCAM-1. Isoflurane

pretreatment reduced the upregulation of these pro-inflammatory

mRNAs. Again supporting a critical role of endothelial CD73 in

isoflurane-mediated reduction in inflammation, endothelial cells

pretreated with a selective CD73 inhibitor APCP (100 mM) were

not protected against endothelial inflammation with isoflurane

treatment (Figure 6B).

Figure 2. Isoflurane transiently increases CD73 activity without changing CD73 synthesis in cultured endothelial cells. A. Human
umbilical vein endothelial (EA.hy926) cells treated with 2.5% isoflurane showed a significant but transient induction of CD73 activity. CD73 activity
peaked at 3 hr and then decreased to near baseline at 6–16 hr after isoflurane treatment (N= 6–8). B. Isoflurane treatment for 3 hr caused dose-
dependent increase in CD73 activity in EA.hy926 cells compared to carrier gas-treated cells (N = 4–5). Data are presented as means 6 SEM. *P,0.05
vs. CD73 activity measured at baseline (A) or in cells treated with 0% isoflurane (B). C and D. Representative images for CD73 mRNA (RT-PCR) and
protein (immunoblotting) expression in EA.hy926 cells. EA.hy926 cells were treated with carrier gas or with 2.5% isoflurane for 6 hr (C) or for 16 hr (D).
Isoflurane treatment did not increase CD73 mRNA or protein expression in EA.hy926 cells. Representative of 3–4 experiments.
doi:10.1371/journal.pone.0099950.g002
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Isoflurane-mediated Activation of Rho Kinase Mediates
the Release of Endothelial Microparticles Containing
CD73
Since previous studies showed that Rho kinase activation

increases endothelial microparticle generation [28–30], we tested

the hypothesis that isoflurane activates endothelial Rho kinase to

release endothelial microparticles containing CD73. Figure 7A

shows a significant increase in Rho kinase activity (detected by

MYPT-1 phosphorylation) in EA.hy9262 cells treated with 2.5%

isoflurane for 30 min. compared to carrier gas. Furthermore,

Figure 7B shows increased p-MLC immunoreactivity in

EA.hy9262 cells treated with 2.5% isoflurane for 30 min. Total

MLC immunoreactivity did not change with isoflurane treatment.

In addition, we were able to block isoflurane-mediated MLC

phosphorylation with a selective inhibitor of Rho kinase (Y27632,

data not shown). Finally, Figure 8 shows that a selective Rho

kinase inhibitor Y27632 prevented isoflurane-mediated increases

in microparticle CD73 activity in EA.hy9262 cells supporting a

critical role for Rho kinase in isoflurane-mediated release of CD73

containing endothelial microparticles.

Discussion

Overactive inflammatory response is a detrimental complication

of surgery and perioperative surgical infections. Anti-inflammatory

and cytoprotective effects of volatile inhalational anesthetics are

well recognized [31,32]. However, the mechanisms mediating the

protective effects of volatile anesthetics have not been fully

elucidated. Our findings suggest that volatile anesthetics, at least

in part, attenuate endothelial inflammation and apoptosis by

releasing CD73 containing endothelial microparticles. We found

that clinically relevant concentrations of isoflurane (1.25–2.5%)

increased adenosine generation and rapidly increased endothelial

CD73 activity in cultured human umbilical vein endothelial and

mouse glomerular endothelial cells. We were surprised to discover

that isoflurane-mediated induction of CD73 activity was transient

and occurred without any changes in CD73 expression. We

determined that isoflurane-mediated induction of CD73 activity

was due to the release of preformed CD73 contained in

endothelial plasma membrane microparticles. CD73 activity was

critical for isoflurane-mediated protection against endothelial

apoptosis and inflammation. Finally, the mechanisms of isoflur-

ane-mediated release of CD73 containing microparticles are

mediated by activation of endothelial Rho kinase.

In addition to its analgesic and anesthetic properties, volatile

anesthetics have non-anesthetic effects in virtually every cell type.

Importantly, volatile anesthetics protect against cell death and

inflammation in several key organs including the heart, brain,

kidney and intestine. For example, several clinically utilized

volatile anesthetics including isoflurane precondition the heart

Figure 3. Isoflurane releases CD73 containing microparticles in cultured endothelial cells. A. Human umbilical vein endothelial (EA.hy926)
cells were treated with 0–2.5% isoflurane for 1 hr and endothelial cell culture media microparticles (MP) were isolated and assayed for CD73 activity.
Isoflurane caused a significant increase in human endothelial cell microparticle CD73 activity (N = 5–8). B. Microparticles isolated from mouse
glomerular endothelial cells (GENC) treated with 2.5% isoflurane for 1 hr also had higher CD73 activity compared to carrier gas-treated cells (N = 4–6).
C and D. Representative CD73 immunoblotting images (C) and band intensity quantifications (D) from microparticles isolated from EA.hy926 cells.
Beta-actin protein expression was also quantified to normalize lane loading. Isoflurane treatment (2.5% for 1 hr) significantly increased CD73 protein
expression in EA.hy926 cell microparticles compared to carrier gas-treated cells. *P,0.05 vs. carrier gas group. Error bars represent 1 SEM.
doi:10.1371/journal.pone.0099950.g003
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against ischemia and reperfusion injury [11]. We have previously

demonstrated that volatile anesthetics including isoflurane display

anti-necrotic and anti-inflammatory effects in renal proximal

tubule cells in vivo and in vitro [5,12,13]. Harnessing these non-

anesthetic properties of volatile anesthetics may have important

clinical implications for critically ill patients anesthetized in the

OR and sedated in the ICU.

Previous studies have shown that isoflurane anesthesia in mice

and rats attenuates lipopolysaccharide induced endothelial inflam-

mation [16,17]. Furthermore, isoflurane inhalation after LPS

injection in rats in vivo attenuates systemic cytokine (IL-1b and IL-

6) upregulation and well as lung injury [33,34]. We previously

showed that volatile anesthetic isoflurane protect against human

endothelial apoptosis and inflammation [13,35]. Consistent with

our findings, others have also shown that isoflurane treatment

attenuated lipopolysaccharide or TNF-a induced endothelial cell

inflammation and death in vitro [14,36]. Although the robust anti-

inflammatory and protective effects of isoflurane have been

demonstrated in vivo and in vitro, the detained cytoprotective

mechanisms remained elusive.

We recently showed that isoflurane protected against renal

tubular necrosis, apoptosis and inflammation by direct induction

of CD73 enzyme and activity leading to enhanced adenosine

generation [18]. CD73 is a well-known anti-inflammatory and

anti-ischemic enzyme. Mice deficient in CD73 have increased

tissue and vascular inflammation and have a higher mortality rate

after ischemia and reperfusion injury and sepsis [37,38] [39].

Moreover, enhanced CD73 activity protects against intestinal,

cardiac and renal ischemia reperfusion injury [37,38,40]. Cell

surface CD73 catalyzes the hydrolysis of AMP to adenosine and is

a critical step in extracellular adenosine generation [41].

Extracellular adenosine regulates diverse and important physio-

logical effects including cardiac inotropy and chronotropy,

vascular tone and kidney glomerular filtration rate. Furthermore,

adenosine protects against tissue injury and inflammation after

ischemia and reperfusion or sepsis. Adenosine acts via activation of

4 G-protein coupled purinergic receptors [A1, A2a, A2b and A3

adenosine receptors] [41,42]. In particular, activation of A1, A2a or

A2bARs protects against ischemia reperfusion injury in the kidney,

heart, liver and brain [43,44]. Unlike findings in renal proximal

tubular cells where CD73 synthesis was increased after isoflurane

treatment, isoflurane increases adenosine generation in endothelial

cells by releasing preformed CD73 contained in endothelial

plasma membrane microparticles without synthesizing new CD73

Figure 4. Flow cytometric analyses of endothelial cell culture media microparticles. A. Representative flow cytometric analyses of
microparticles isolated from EA.hy926 endothelial cell culture media. EA.hy926 cells were treated with 2.5% isoflurane or with carrier gas for 1 hr and
isolated microparticles were incubated with CD73 antibody and Annexin V. B. EA.hy926 cells treated with 2.5% isoflurane for 1 hr had significantly
higher CD73+ Annexin V+ microparticles compared to microparticles isolated from carrier gas-treated endothelial cells (N = 5). *P,0.05 vs. carrier gas
group. Error bars represent 1 SEM.
doi:10.1371/journal.pone.0099950.g004

Isoflurane Releases Endothelial Microparticle CD73
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enzyme [18]. The exact subtype(s) of adenosine receptor(s)

involved in endothelial protection by isoflurane-mediated adeno-

sine generation remains to be elucidated.

In this study, we demonstrate that isoflurane rapidly released

endothelial microparticles containing preformed CD73 in cultured

endothelial cells as well as in plasma of mice. Indeed, CD73 was

directly responsible for isoflurane-mediated endothelial cell

protection. Plasma membrane microparticles are phospholipid

microvesicles of submicron (0.1 to 1.0 mm) fragments that

originate from plasma membrane blebbing and are subsequently

shed [4,45]. Microparticles play an important role in the transfer

of materials between cells. Furthermore, they are critical in

transferring signaling information to cells close by or far away.

Plasma microparticles are elevated in several pathological

conditions including vascular thrombosis, hyperlipidemia, diabe-

tes, chronic renal dysfunction and cancer [4,28,46]. Here we show

that endothelial microparticles could also have a cytoprotective

and beneficial role. We propose that isoflurane treatment

propagates the systemic release of endothelial microparticles

containing active CD73 that function as cytoprotective messengers

by generating adenosine. Isoflurane-mediated endothelial micro-

particle generation may prevent damage and favor vascular repair

by preventing endothelial apoptosis and inflammation. Further-

more, microparticle-mediated delivery of CD73 allows adenosine

formation in different cell types (e.g., epithelial cell). Finally,

microparticle generation allows remote delivery of CD73 away

Figure 5. Isoflurane increases CD73 containing endothelial cell-
derived microparticles in mouse plasma. Mouse plasma micro-
particles (MP) were isolated after 1.2% isoflurane or equi-anesthetic
dose of pentobarbital anesthesia for 3 hr. A. Mice anesthetized with
isoflurane had significantly increased CD144 (endothelial cell marker)+
CD73+ plasma microparticles compared to mice anesthetized with
pentobarbital (N= 4). B. Plasma microparticles isolated from mice
anesthetized with isoflurane had significantly higher CD73 activity
when compared to CD73 activity in microparticles isolated from
pentobarbital-anesthetized mice (N= 5). *P,0.05 vs. carrier gas group.
Error bars represent 1 SEM.
doi:10.1371/journal.pone.0099950.g005

Figure 6. Isoflurane reduces endothelial cell apoptosis and
inflammation via CD73. A. Representative immunoblot of poly(-
adenosine diphosphate-ribose) polymerase (PARP) and caspase-3
fragmentation (N= 4) as indices of EA.hy926 endothelial cell apoptosis
induced by TNF-a (20 ng/ml) and cycloheximide (CHX; 10 mg/ml)
treatment for 16 hr. EA.hy926 cells treated with TNF-a and cyclohex-
imide for 16 hr had robust PARP and caspase-3 fragmentation. In
contrast, EA.hy926 cells treated with 2.5% isoflurane for 1 hr before the
induction of apoptosis isoflurane showed reduced apoptotic death
indicated by decreased PARP and caspase-3 fragmentation. Supporting
a critical role of CD73 in isoflurane-mediated protection against
EA.hy926 cell apoptosis, cells pretreated with a selective CD73 inhibitor
APCP (100 mM) were not protected against endothelial apoptosis with
isoflurane pretreatment. B. Representative gel images of pro-inflamma-
tory mRNA expression (VCAM-1, ICAM-2 and TNF-a) in EA.hy926
endothelial cells treated with TNF-a (20 ng/ml) for 6 hr. EA.hy926 cells
treated with TNF-a had increased mRNA encoding markers of
inflammation. In contrast, EA.hy926 cells treated with 2.5% isoflurane
for 1 hr before TNF-a treatment had reduced inflammatory mRNA
expression. Again, supporting a critical role of CD73 in isoflurane-
mediated protection against EA.hy926 cell inflammation, cells pretreat-
ed with a selective CD73 inhibitor APCP were not protected against
endothelial inflammation with isoflurane pretreatment.
doi:10.1371/journal.pone.0099950.g006
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from the originating endothelial cell. Our findings imply that

isoflurane-mediated generation of CD73 containing microparticles

in one organ (e.g., lung) may travel to distant locations (e.g.,

kidney, liver) to produce multi-organ anti-inflammatory effects

(Figure 9).

We also demonstrate an important role for Rho kinase

activation in isoflurane-mediated CD73 containing endothelial

microparticle release. We show in this study that isoflurane-

mediated endothelial microparticle release and induction of CD73

activity were significantly attenuated by a selective Rho kinase

inhibitor. In many cell types including endothelial cells, Rho

kinase regulates cytoskeleton architecture, migration and growth

[47,48]. Previous studies suggest that volatile anesthetics including

isoflurane activate Rho kinase and promote Rho A function. In

primary neuronal cultures as well as rat glioma C6 cell line, Rho A

was activated after exposure to ,1 MAC isoflurane [49,50].

Evidence for Rho kinase-mediated endothelial microparticle

formation and release also provided by Burger et al [28]. They

showed that angiotensin II-mediated microparticle formation is

mediated by Rho kinase pathways targeted to lipid rafts. In

addition, thrombin induces endothelial microparticle generation

via Rho kinase activation [29]. Finally, endothelial microparticles

released with TNF-a treatment in human coronary artery

endothelial cells are suppressed by a specific Rho kinase inhibitor

(Y-27632) [30].

In summary, we demonstrate that a commonly utilized volatile

anesthetic isoflurane rapidly increases endothelial cell adenosine

generation via releasing microparticles containing preformed

CD73. Release of CD73 and subsequent adenosine generation

may result in cellular protection in neighboring and remote

endothelial and epithelial cells via activation of adenosine

receptors. Our current findings in endothelial cells differ

considerably from findings in renal tubular epithelial cells as

increased adenosine generation occurred without the induction of

new CD73 synthesis. Taken together, our current study provides

additional mechanistic insight into the mechanism of isoflurane-

mediated endothelial cell protection.
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Figure 7. Isoflurane stimulates Rho kinase activity in human
endothelial cells. A. Rho kinase activity in human endothelial
(EA.hy9262) cells was measured by detecting myosin phosphatase
target protein-1 phosphorylation after treatment with 2.5% isoflurane
or with carrier gas for 30 min. Isoflurane significantly increased Rho
kinase activity in EA.hy9262 cells compared to carrier gas-treated cells
(N = 5). *P,0.05 vs. carrier gas group. Error bars represent 1 SEM. B.
EA.hy9262 endothelial Rho kinase activity was also assessed by
detecting myosin light chain (MLC) phosphorylation in EA.hy9262 cells
with immunoblotting. MLC phosphorylation increased in EA.hy9262
cells treated with 2.5% isoflurane for 30 min compared to carrier gas-
treated cells. Total MLC immunoreactivity did not change with
isoflurane treatment. Representative of 2 experiments performed in
triplicate.
doi:10.1371/journal.pone.0099950.g007

Figure 8. Isoflurane-mediated activation of Rho kinase medi-
ates the release of CD73 containing endothelial microparticles.
Human endothelial (EA.hy9262) cells were treated with 2.5% isoflurane
or with carrier gas for 1 hr. Some cells were pretreated with a selective
Rho kinase inhibitor Y27632 for 30 min. before isoflurane or carrier gas
treatment. Y27632 prevented the isoflurane-mediated increase in
microparticle CD73 activity in EA.hy9262 cells (N = 4). *P,0.05 vs.
carrier gas group treated with vehicle. #P,0.05 vs. isoflurane group
treated with vehicle. Error bars represent 1 SEM.
doi:10.1371/journal.pone.0099950.g008

Isoflurane Releases Endothelial Microparticle CD73

PLOS ONE | www.plosone.org 8 June 2014 | Volume 9 | Issue 6 | e99950



Author Contributions

Conceived and designed the experiments: MK AH HTL. Performed the

experiments: MK AH KB KYK. Analyzed the data: MK AH KB KYK

HTL. Wrote the paper: MK AH HTL.

References

1. Jaffe EA (1987) Cell biology of endothelial cells. Hum Pathol 18: 234–239.

2. Higashi Y, Kihara Y, Noma K (2012) Endothelial dysfunction and hypertension

in aging. Hypertens Res 35: 1039–1047.

3. Higashi Y, Noma K, Yoshizumi M, Kihara Y (2009) Endothelial function and

oxidative stress in cardiovascular diseases. Circ J 73: 411–418.

4. Burger D, Schock S, Thompson CS, Montezano AC, Hakim AM, et al. (2013)

Microparticles: biomarkers and beyond. Clin Sci (Lond) 124: 423–441.

5. Seal JB, Gewertz BL (2005) Vascular dysfunction in ischemia-reperfusion injury.

Ann Vasc Surg 19: 572–584.

6. Van Hoozen BE, Albertson TE (1999) Endothelial cell dysfunction: a potential

new approach for the treatment of sepsis. Crit Care Med 27: 2836–2838.

7. Cullen KA, Hall MJ, Golosinskiy A (2009) Ambulatory surgery in the United

States, 2006. Natl Health Stat Report 1–25.

8. Hofbauer R, Kaye AD, Kapiotis S, Frass M (1999) The immune system and the

effects of non-volatile anesthetics on neutrophil transmigration through

endothelial cell monolayers. Curr Pharm Des 5: 1015–1027.

9. Landoni G, Fochi O, Tritapepe L, Guarracino F, Belloni I, et al. (2009) Cardiac

protection by volatile anesthetics. A review. Minerva Anestesiol 75: 269–273.

10. Kim M, Kim M, Kim N, D’Agati VD, Emala CW, Sr., et al. (2007) Isoflurane

mediates protection from renal ischemia-reperfusion injury via sphingosine

kinase and sphingosine-1-phosphate-dependent pathways. Am J Physiol Renal

Physiol 293: F1827–F1835.

11. Kim M, Park SW, Kim M, D’Agati VD, Lee HT (2011) Isoflurane protects

against intestinal ischemia-reperfusion injury and multi-organ dysfunction via

transforming growth factor-beta1. Ann Surg In Press.

12. Lee HT, Emala CW, Joo JD, Kim M (2007) Isoflurane improves survival and

protects against renal and hepatic injury in murine septic peritonitis. Shock 27:

373–379.

13. Bakar AM, Park SW, Kim M, Lee HT (2012) Isoflurane Protects Against

Human Endothelial Cell Apoptosis by Inducing Sphingosine Kinase-1 via ERK

MAPK. Int J Mol Sci 13: 977–993.

14. de Klaver MJ, Buckingham MG, Rich GF (2003) Isoflurane pretreatment has

immediate and delayed protective effects against cytokine-induced injury in

endothelial and vascular smooth muscle cells. Anesthesiology 99: 896–903

15. Mobert J, Zahler S, Becker BF, Conzen PF (1999) Inhibition of neutrophil

activation by volatile anesthetics decreases adhesion to cultured human

endothelial cells. Anesthesiology 90: 1372–1381.

16. Hayes JK, Havaleshko DM, Plachinta RV, Rich GF (2004) Isoflurane

pretreatment supports hemodynamics and leukocyte rolling velocities in rat

mesentery during lipopolysaccharide-induced inflammation. Anesth Analg 98:

999–1006, table.

17. Plachinta RV, Hayes JK, Cerilli LA, Rich GF (2003) Isoflurane pretreatment

inhibits lipopolysaccharide-induced inflammation in rats. Anesthesiology 98: 89–

95.

18. Kim M, Ham A, Kim JY, Brown KM, D’Agati VD, et al. (2013) The volatile

anesthetic isoflurane induces ecto-59-nucleotidase (CD73) to protect against

renal ischemia and reperfusion injury. Kidney Int 84: 90–103.

19. Akis N, Madaio MP (2004) Isolation, culture, and characterization of endothelial

cells from mouse glomeruli. Kidney Int 65: 2223–2227.

20. Park SW, Kim M, Brown KM, D’Agati VD, Lee HT (2012) Inhibition of

sphingosine 1-phosphate receptor 2 protects against renal ischemia-reperfusion

injury. J Am Soc Nephrol 23: 266–280.

21. Amabile N, Guerin AP, Leroyer A, Mallat Z, Nguyen C, et al. (2005) Circulating

endothelial microparticles are associated with vascular dysfunction in patients

with end-stage renal failure. J Am Soc Nephrol 16: 3381–3388.

22. Kim M, Chen SW, Park SW, Kim M, D’Agati VD, et al. (2009) Kidney-specific

reconstitution of the A1 adenosine receptor in A1 adenosine receptor knockout

mice reduces renal ischemia-reperfusion injury. Kidney Int 75: 809–823.

23. Kim M, Park SW, Kim M, Chen SW, Gerthoffer WT, et al. (2010) Selective

Renal Over-Expression of Human Heat Shock Protein 27 Reduces Renal

Ischemia-Reperfusion Injury in Mice. Am J Physiol Renal Physiol.

Figure 9. Proposed mechanisms of isoflurane-mediated endothelial CD73 generation. We hypothesize that isoflurane via Rho kinase
activation releases endothelial microparticles containing CD73. Increased endothelial microparticle CD73 converts AMP to adenosine which produces
cytoprotective effects on neighboring endothelial cells or renal epithelial cells via activation of adenosine receptors. Furthermore, we hypothesize
that remote delivery of CD73 containing microparticles may provide systemic anti-inflammatory effects of isoflurane anesthesia. Abbreviations:
AMP= adenosine monophosphate, CD73= ecto-59-nucleotidase.
doi:10.1371/journal.pone.0099950.g009

Isoflurane Releases Endothelial Microparticle CD73

PLOS ONE | www.plosone.org 9 June 2014 | Volume 9 | Issue 6 | e99950



24. Lee HT, Kim M, Kim M, Kim N, Billings Iv FT, et al. (2007) Isoflurane protects

against renal ischemia and reperfusion injury and modulates leukocyte
infiltration in mice. Am J Physiol Renal Physiol 293: F713–F722.

25. Kim M, Kim M, Park SW, Pitson SM, Lee HT (2010) Isoflurane protects

human kidney proximal tubule cells against necrosis via sphingosine kinase and
sphingosine-1-phosphate generation. Am J Nephrol 31: 353–362.

26. Delabar U, Kloor D, Luippold G, Muhlbauer B (1999) Simultaneous
determination of adenosine, S-adenosylhomocysteine and S-adenosylmethionine

in biological samples using solid-phase extraction and high-performance liquid

chromatography. J Chromatogr B Biomed Sci Appl 724: 231–238.
27. Gelain DP, de Souza LF, Bernard EA (2003) Extracellular purines from cells of

seminiferous tubules. Mol Cell Biochem 245: 1–9.
28. Burger D, Montezano AC, Nishigaki N, He Y, Carter A, et al. (2011)

Endothelial microparticle formation by angiotensin II is mediated via Ang II
receptor type I/NADPH oxidase/Rho kinase pathways targeted to lipid rafts.

Arterioscler Thromb Vasc Biol 31: 1898–1907.

29. Sapet C, Simoncini S, Loriod B, Puthier D, Sampol J, et al. (2006) Thrombin-
induced endothelial microparticle generation: identification of a novel pathway

involving ROCK-II activation by caspase-2. Blood 108: 1868–1876.
30. Tramontano AF, O’Leary J, Black AD, Muniyappa R, Cutaia MV, et al. (2004)

Statin decreases endothelial microparticle release from human coronary artery

endothelial cells: implication for the Rho-kinase pathway. Biochem Biophys Res
Commun 320: 34–38.

31. Fuentes JM, Talamini MA, Fulton WB, Hanly EJ, Aurora AR, et al. (2006)
General anesthesia delays the inflammatory response and increases survival for

mice with endotoxic shock. Clin Vaccine Immunol 13: 281–288.
32. Reutershan J, Chang D, Hayes JK, Ley K (2006) Protective effects of isoflurane

pretreatment in endotoxin-induced lung injury. Anesthesiology 104: 511–517.

33. Hofstetter C, Flondor M, Boost KA, Koehler P, Bosmann M, et al Muhl H
(2005) A brief exposure to isoflurane (50 s) significantly impacts on plasma

cytokine levels in endotoxemic rats. Int Immunopharmacol 5: 1519–1522.
34. Flondor M, Hofstetter C, Boost KA, Betz C, Homann M, et al. (2008) Isoflurane

inhalation after induction of endotoxemia in rats attenuates the systemic

cytokine response. Eur Surg Res 40: 1–6.
35. Lee HT, Kim M, Jan M, Emala CW (2006) Anti-inflammatory and anti-necrotic

effects of the volatile anesthetic sevoflurane in kidney proximal tubule cells.
Am J Physiol Renal Physiol 291: F67–F78.

36. de Klaver MJ, Manning L, Palmer LA, Rich GF (2002) Isoflurane pretreatment
inhibits cytokine-induced cell death in cultured rat smooth muscle cells and

human endothelial cells. Anesthesiology 97: 24–32.

37. Grenz A, Zhang H, Eckle T, Mittelbronn M, Wehrmann M, et al. (2007)

Protective role of ecto-59-nucleotidase (CD73) in renal ischemia. J Am Soc

Nephrol 18: 833–845.

38. Eckle T, Krahn T, Grenz A, Kohler D, Mittelbronn M, et al. (2007)

Cardioprotection by ecto-59-nucleotidase (CD73) and A2B adenosine receptors.

Circulation 115: 1581–1590.

39. Hasko G, Csoka B, Koscso B, Chandra R, Pacher P, et al. (2011) Ecto-59-

nucleotidase (CD73) decreases mortality and organ injury in sepsis. J Immunol

187: 4256–4267.

40. Hart ML, Henn M, Kohler D, Kloor D, Mittelbronn M, et al. (2008) Role of

extracellular nucleotide phosphohydrolysis in intestinal ischemia-reperfusion

injury. FASEB J 22: 2784–2797.

41. Colgan SP, Eltzschig HK, Eckle T, Thompson LF (2006) Physiological roles for

ecto-59-nucleotidase (CD73). Purinergic Signal 2: 351–360.

42. Strohmeier GR, Lencer WI, Patapoff TW, Thompson LF, Carlson SL, et al.

(1997) Surface expression, polarization, and functional significance of CD73 in

human intestinal epithelia. J Clin Invest 99: 2588–2601.

43. Linden J (2006) New insights into the regulation of inflammation by adenosine.

J Clin Invest 116: 1835–1837.

44. Hasko G, Linden J, Cronstein B, Pacher P (2008) Adenosine receptors:

therapeutic aspects for inflammatory and immune diseases. Nat Rev Drug

Discov 7: 759–770.

45. gnat-George F, Boulanger CM (2011) The many faces of endothelial

microparticles. Arterioscler Thromb Vasc Biol 31: 27–33.

46. Rautou PE, Vion AC, Amabile N, Chironi G, Simon A, et al. (2011)

Microparticles, vascular function, and atherothrombosis. Circ Res 109: 593–

606.

47. Zhou Q, Liao JK (2009) Rho kinase: an important mediator of atherosclerosis

and vascular disease. Curr Pharm Des 15: 3108–3115.

48. Budzyn K, Sobey CG (2007) Vascular rho kinases and their potential

therapeutic applications. Curr Opin Drug Discov Devel 10: 590–596.

49. Lemkuil BP, Head BP, Pearn ML, Patel HH, Drummond JC, et al. (2011)

Isoflurane neurotoxicity is mediated by p75NTR-RhoA activation and actin

depolymerization. Anesthesiology 114: 49–57.

50. Tas PW, Gambaryan S, Roewer N (2007) Volatile anesthetics affect the

morphology of rat glioma C6 cells via RhoA, ERK, and Akt activation. J Cell

Biochem 102: 368–376.

Isoflurane Releases Endothelial Microparticle CD73

PLOS ONE | www.plosone.org 10 June 2014 | Volume 9 | Issue 6 | e99950


