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Abstract

Long non-coding ribonucleic acids (lncRNAs) have been proposed as biomarkers in prostate cancer. This paper proposes a
selection method which uses data from tiled microarrays to identify relatively long regions of moderate expression
independent of the microarray platform and probe design. The method is used to search for candidate long non-coding
ribonucleic acids (lncRNAs) at locus 8q24 and is run on three independent experiments which all use samples from prostate
cancer patients. The robustness of the method is tested by utilizing repeated copies of tiled probes. The method shows high
consistency between experiments that used the same samples, but different probe layout. There also is statistically
significant consistency when comparing experiments with different samples. The method selected the long non-coding
ribonucleic acid PCNCR1 in all three experiments.
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Introduction

It has been predicted that more than 30,000 non-protein coding

genes are associated with the human genome [1,2]. They can vary

considerably in length, as the shortest products, micro RNAs

(miRNA), are on average only 22 bp wheras long non-coding

RNA (lncRNAs) are at least 200 nucleotides. An excellent

overview of lncRNAs is given in Baker et al. [3].

Several publications indicate that lncRNAs might play an

important role in cancer development [4–10]. Non-coding RNAs

have been identified that distinguish between different prostate

tissue types and can predict clinical outcomes for primary tumors

[11]. LncRNAs are also thought to play a regulatory role in

cancer-associated pathways governing mechanisms such as cell

growth, invasion, and metastasis and have been seen to be

expressed differently in primary and metastatic cancer and to wire

up cancer growth [12,13]. LncRNAs originate mainly in long

stretches in the genome where no protein-coding genes have been

identified [3]. An example of such a chromosomal region is 8q24.2

[14] where the lncRNA PCNCR1 (AB458446) has been identified

[15]. Notably, multiple single nucleotide polymorphisms (SNPs) of

8q24 have been found to associate with increased risk of

developing prostate cancer [16–19]. LncRNAs might both serve

as new targets in cancer therapy, as well as serve as an extensive

source of new biomarkers [20–23]. Currently, at least 11 databases

which record lncRNAs [7,24–27].

Microarrays are one of the most commonly used technologies to

locate RNA genes. A typical microarray contains hundreds of

thousands of spots and each spot contains multiple copies of the

same DNA oligonucleotides, known as probes. The probes on the

microarray are hybridized to a labeled RNA sample and the array

is subsequently washed. Theoretically this will result in the labeled

sample only remaining at the spots where the sample hybridized to

probes. The signal intensities at the corresponding location on the

microarray are used as a measure of the relative abundance of

hybridization of each probe. Tiled microarrays contain probes that

overlap and cover a fairly large target part of the genome. They

have been successfully used to assess expression of non-coding

RNAs and transcription in ‘‘gene deserts’’ [28–30].

Gene-expression signals in microarrays are affected by several

sources of variation [31,32]. Further issues and different biases

arise when using tiled microarrays, as opposed to other analyses of

differential expression [33]. It is therefore important to take

technical variation into account when doing statistical analyses on

microarray data [33,34]. Various microarray platforms are

available and the importance of testing the same biological

samples on different platforms has been stressed [28]. Consistency

and repeatability of differential expression in microarray experi-

ments has also been widely studied [35,36], but less is known about

the repeatability of findings in tiled micorarray experiments.

Expression levels are generally lower for lncRNA than protein

coding genes, [7] and the reliability of detection of low expression

genes has been questioned [37,38].

Recent methods of detecting regions of activity include the use

of a wavelet transformation in order to target regions of activity

from noisy data, and the TileShuffle method, which has been

shown to detect differently expressed segments in tiling arrays with

lower false discovery rates under equal sensitivities than commonly

used methods [39,40]. The TileShuffle method has, however,

shown a serious lack of repeatability, even with the same samples
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in the same batch of experiments [42]. This could (partially) be

explained by the fact that, (monitored with enough accuracy),

expression levels measured by every single probe differ, so

searching for ‘‘expressed’’ regions is a somewhat futile exercise

[41].

The primary aim of this study is to design a method which

detects candidate regions for containing lncRNAs with good

consistency. The hypothesis is that locating fairly long regions

(approx 1,500 nt) with the highest ratio of probes expressed above

the median over the whole region will give more consistent results

than searching for shorter regions with the highest expression

levels as conventional methods do. This increased consistency will

presumably result in reduced sensitivity for detecting expressed

areas. The proposed selection method is therefore not targeted at

finding all expressed areas, but rather to identify which areas are

expressed and to do so in a highly consistent manner.

In the following, the method will be run on three different

experiments with Nimblegen microarrays, all of which contain

probes tiling a part of the 8q24.2 region. The three experiments

have different array design containing samples from prostate

cancer patients. Some of the samples vary from experiment to

experiment while others are used in repeated experiments. These

would ideally assist in locating lncRNA genes.

A secondary aim of the study is to identify regions on the 8q24

region that are candidates for containing the loci of lncRNA genes

correlated with prostate cancer development.

Materials and Methods

Ethics Statement
The tissue samples used in this study were collected in

conjunction with a study on the genetics of prostate cancer. The

study was approved by the National Bioethics Committee

(approval #00/103) and Data Protection Authority of Iceland

(approval#2001020228). All prostate cancer cases in Iceland were

invited to participate and written informed consent was obtained

from all participants. Personal identifiers were encrypted by a

third-party encryption system for which the Data Protection

Authority maintains the code.

Experimental Overview
The data used in this paper were RNA expression data from

three different sets of custom designed Nimblegen microarray,

exclusively for these three experiments. In each experiment the

array contained tiled probes from chr8:127,640,000–129,120,000

at locus 8q24. In this paper a selection method is proposed which

is fine-tuned in Experiment 1 and Experiment 2 and validated in

Experiment 3. A summary of the main settings of each experiment

is found in Table 1 and the array design and description of the

samples for each experiment is detailed below.

Samples
Each of the first two experiments consisted of seven arrays

containing the same seven samples, extracted from normal

prostate tissue of prostate cancer patients. In the third experiment,

one of these seven samples (sample number five) was used

repeatedly on three arrays and in addition three pairs of both

normal and tumor tissue from three prostate cancer patients were

used. The Gleason grading score of the tumors for these seven

samples is shown in Table 2 along with the age at diagnosis.

DNA was synthesized from Total RNA (Clonetech) using the

High capacity cDNA reverse transcriptase kit (Applied Biosystems

Inc) at the deCODE lab for all samples in all experiments.

Labeling and hybridization was performed by NimbleGen Systems

Inc., Madison, WI USA, following their standard operating

protocol.

Probe-set and Array-layout
In the first experiment, the whole area was tiled with 60 nt

probes at a 10 base interval. All probes with blat score greater than

5, [43] or blast score greater than 40, [44] were excluded from the

statistical analysis. These probes were excluded a priori from the

probe sets in Experiments 2 and 3, but a posteriori for Experiment

1. Excluded probes were 8,723 out of 147,009 or 5.9%.

Experiment two contained isothermal probes, which were not

evenly spaced over the area, whereas Experiment 3 contained

50 nt probes tiled at a 20 base interval.

Spatial artifacts in the expression signal were minimized in

Experiment 1 and 3 by aggregating the wells of the microarray

into non-overlapping logical ‘‘containers’’. Experiment 1 used 24

containers and each set of 24 consecutive tiled probes was

allocated to different containers, randomly allocated within each.

In Experiment 3 each probe was replicated 10 times, and each

replicate was allocated to a different container.

The data have been deposited in NCBI’s Gene Expression

Omnibus [46] and are accessible through GEO Series accession

number GSE45934 (http://www.ncbi.nlm.nih.gov/geo/query/

acc.cgi?acc =GSE45934). The exact probe layout on the arrays

in each experiment is listed at the GEO cite in the .ndf files.

Proposed Selection Method
The primary objective of this study was to develop a statistical

method to select a fixed number of smaller regions which

consistently show high expression levels in a tiled microarray

experiment. Thus the selection method should, with high

probability, select the same areas in repeated experiments.

The method proposed is as follows:

The region of interest (8q24) is split up into even-sized regions.

The proportion of probes with signal intensities above the median

(0) in each region is subsequently calculated and ranked over all

Table 1. Experimental settings.

Description: Experiment 1 Experiment 2 Experiment 3

Samples used: 7 independent 7 independent 3 repeated, 3 pairs

Number of arrays: 7 7 9

Number of repeated spots: none none 10

Number of containers: 24 none 10

Isothermal probes: no yes no

Overview of the experimental settings for the three experiments.
doi:10.1371/journal.pone.0099899.t001
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probes. The sum of the rank over all the arrays in the

corresponding experiment is then calculated and a fixed number

of regions with the highest rank sum are selected.

Some regions only contained few probes included in the

analysis. Therefore only regions containing at least one probe for

each 25 base interval on average are considered eligible for

selection.

Normalization and Monte-carlo Simulation
In order to avoid spurious correlations, the only normalization

applied was to take the logarithm of the data, subtract the median

within each container and divide by the median absolute deviation

(MAD). In the case of no containers (Experiment 2), the median

and MAD over the whole array were used.

The third experiment used 10 repeated spots for each probe,

evenly spread across the array. This permitted Monte-Carlo

Table 2. Tumor grading.

sample age at diagnosis Gleason score

array 1 68 8

array 2 66 6

array 3 59 7

array 4 59 6

array 5 55 7

array 6 66 6

array 7 66 6

Gleason grading score of the tumors for the samples used in Experiment 1 and Experiment 2. The sample on array 5 was used repeatedly on three arrays in Experiment
3.
doi:10.1371/journal.pone.0099899.t002

Figure 1. The proportion of regions that were selected in both Experiment 1 and Experiment 2. The underlying region was split up into
equally sized regions and a fixed number of regions with the highest ratio of probes, within the region, expressed above the median, was selected.
The proportion of regions that were selected in both Experiment 1 and Experiment 2 was calculated for varying length of each underlying region (y-
axis) and the total number of regions to be selected (x-axis). The numbers within each cell show the exact proportions for the corresponding criteria.
doi:10.1371/journal.pone.0099899.g001
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simulation of the expression signals, assisting in minimizing some

of the biases caused by technical variation. The Monte-Carlo

simulations also assist in estimating the robustness of the method

and sensitivity to the number of underlying samples used.

All statistical analyses were performed in the R statistical

package and graphics were generated with the ggplot2 library

[47,48].

Results

Determining the Optimal Region Length and Proportion
of Regions Selected
The proposed selection method requires both the length of each

region and the number of regions selected to be determined. In

order to estimate the optimal region length and the number of

regions to be selected, the method was run for the first two

experiments with these parameters varying and the agreement

between experiments investigated. Those experiments were run

independently, with different array design, but the same set of

seven samples was used in both experiments. The difference in

array design can result in some regions being eligible in one of the

experiment but not the other. It was therefore ensured that regions

were considered eligible if and only if they were eligible by the

above criteria in both experiments.

Figure 1 shows the agreement between the two experiments.

The number of regions selected ran from 5, 10, 15 and up to 50

regions, and their length varied from 100, 200, 300 and up to

2,000 bases. Selecting the 25 highest ranked regions (top 3%) of

length 1,300 bases was one of the options that gave the most

concordance between the two experiments, where 20 (80%) of the

25 regions selected in the first experiment were also selected in the

second experiment. That corresponds to choosing the top 2:5% of

expressed regions. The location of the first bp of the 1,300 bp

according to both hg18 and hg19 of the twenty regions that were

chosen in the first two experiments are listed in Table 3, along with

a brief description of the genes reported at these loci.

There were in total 1,006 regions of length 1,300 bases. The

probability of selecting 20 or more of the regions twice when

choosing randomly the 25 out of 1,006 regions with the maximum

expression is

X25
q~20

25

q

� �
: 981

25{q

� �

1006

25

� �2
~1:2976:10{82 ð1Þ

The concordance was tested for in total 200 combinations, so

with a Bonferroni correction, the multiplicity-adjusted P-value

becomes 3:93:10{80, still highly significant.

Agreement between Independent Experiments
Having chosen a selection method for finding regions of

elevated expression levels, based on the first two experiments, this

method was run again on the dataset obtained from the third

experiment. That experiment also contained probes from 8q24

and samples from prostate cancer patients, but the samples were

not the same as in experiments 1 and 2. The same parameters as

obtained from the analysis of the first two experiments were used,

i.e. 25 regions of length 1,300 bases with the highest rank sum of

the average expression levels over the whole region, were selected.

In this experiment, each probe was repeated 10 times on the array.

Therefore the median expression level of every 10 identical probes

Table 3. Regions selected in first two experiments.

Hg18 location Hg19 location genes

127,717,200 127,648,018 TCONS_00015165

128,094,200 128,025,018 PCAT1

128,167,000 128,097,818 PRNCR1

128,194,300 128,125,118 nothing yet

128,251,500 128,182,318 TCONS_00015169

128,338,600 128,269,418 nothing yet

128,819,600 128,750,418 MYC exon

128,876,800 128,807,618 MYC exon

128,882,000 128,812,818 MYC and Pvt1 introns

128,898,900 128,829,718 MYC and Pvt1 introns

128,911,900 128,842,718 MYC and Pvt1 introns

128,987,300 128,918,118 MYC and Pvt1 introns

128,989,900 128,920,718 Pvt1 intron

128,991,200 128,922,018 Pvt1 intron

129,008,100 128,938,918 Pvt1 intron

129,023,700 128,954,518 Pvt1 intron

129,025,000 128,955,818 Pvt1 intron

129,026,300 128,957,118 Pvt1 intron

129,027,600 128,958,418 TMEM75

129,028,900 128,959,718 TMEM75

The loci of the 20 regions selected in first and second experiments, according to hg18 and hg19 and the genes reported at these loci.
doi:10.1371/journal.pone.0099899.t003
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was used as the expression signal at the corresponding location.

Since the repetitions are distributed across the containers, this

automatically corrects for any spatial trends across the array.

All of the regions eligible according to the previously described

criteria were eligible in the third experiment, such that the set of

1,006 underlying regions remained the same as before. This time,

four of the 20 regions that were selected in the first two

experiments were reselected in the third experiment and five of

the 25 regions that were selected in either of the first two

experiments were also selected in the third experiment. The

normalized RNA expression levels of the four selected regions are

shown on Figure 2. The location of the first bp of the 1,300 bp

fragment according to hg18 is depicted above the corresponding

graph.

The probability of selecting 4 or more of the same 20 regions

when choosing randomly 25 out of 1,006 is

X220
q~4

20

q

� �
: 986

25{q

� �

1006

25

� � ~3:111873:10{12 ð2Þ

which also is statistically significant.

In the following, the top 25 regions selected in each experiment

will be called the experiment-wise selected regions.

Robustness Estimated by Monte Carlo Simulations
In Experiment 3, each probe is repeated 10 times. By randomly

selecting which one of those ten replications represent the signal at

every location a Monte Carlo simulation is produced to form

pseudo-replications of each region. The robustness of the selection

method was tested by creating 10,000 such simulations of the tiled

regions and applying the region-selection method on each

simulation.

Figure 3 shows a graph of the proportion of Monte Carlo

simulations for which each region was chosen among the top 25.

Figure 2. The signal intensities on the regions that were selected in all three experiments. On x-axis is the genomic location of the probes
on chromosome 8q24. On y-axis are the signal intensities of the probe at the corresponding location. One line is drawn for each array where the
colouring represents the sample used on the array. These are drawn separately for the results from Experiment 1 (top), Experiment 2 (middle) and
Experiment 3 (bottom). The tick-marks on the x-axis denote the locus of the probes at 8q24.
doi:10.1371/journal.pone.0099899.g002
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The colouring indicates whether the region was among the 25

experiment-wise selected regions for Experiments 1, 2 and 3. It is

seen that the majority of regions are never among the top 25,

whereas 14 regions are selected in at least 75% of the simulations.

The experiment-wise selected regions seem to be selected more

often in the Monte-Carlo simulation.

This hypothesis can be tested with Wilcoxon rank sum tests of

the null hypothesis of equality of median frequency of selection in

the Monte-Carlo simulation of these two groups of regions (those

selected in a particular experiment compared to those who were

not selected). The statistics for each experiment become

W1~5,434:5, P1~8:543:10{12,

W2~5,765:5, P2~8:136:10{11 and W3~27, P3v2:2:10{16.

The null was thus rejected in all three cases.

Robustness with the Same Sample on Fewer Arrays
The first two experiments contained the same seven samples,

whereas Experiment 3 contained seven samples of which one was

also used in experiments 1 and 2, but the other six were from three

pairs of normal vs tumor tissue. See Table 1. The sample also used

in the first two experiments was placed on three arrays in

Experiment 3.

An obvious question is whether the selection method would

show more agreement between the three experiments if it was only

applied to the sample that was used in all three experiments. Thus

the Monte-Carlo simulation was run again but now with only the

three arrays that contained the same sample. Figure 4 shows the

same type of figure as shown in Figure 3, but now the colouring

represents the results from applying the selection method and the

Monte-Carlo simulation to only the repeated sample.

Now the concordance is less than the one obtained by using all

available samples. Fewer regions are never selected and 12 regions

are selected in at least 75% of simulations. The hypothesis of

whether the experimental-wise selected regions were selected more

often in the Monte Carlo simulations was tested as before. The

statistics are: for Experiment 1 were W=5,795, p-value = 7.193
:10{8, for Experiment 2, W=6,043.5, p-value = 2.227:10{07, and

for Experiment 3, W=611.5, p-value v2:2:10{16. Thus, the null

hypothesis for the corresponding Wilcoxon rank sum tests was

rejected again in all three cases.

Further Details on the Four Selected Regions
The location of the first bp of the 1,300 bp according to both

hg18 and hg19 of the four regions that were chosen in all three

experiments are listed in Table 4, along with a brief description of

the gene reported at these loci. The regions correspond to the

oncogene Myc known to be over-expressed in prostate cancer

[49,50] along with the oncogene Pvt1 [51], a Myc protein target

Figure 3. The number of Monte Carlo simulations for which each region is chosen by the selection method using arrays with
different samples. The genomic location of the regions on 8q24 is on the x-axis. The proportion of Monte Carlo simulations for which the region
was chosen is on the y-axis. The graph is shown with two different colourings, representing whether the region was among the previously
experiment-wise selected regions (cyan) or not (pink). Those who were selected previously in Experiment 1 are shown at the top graph, Experiment 2
in the middle and Experiment 3 at the bottom. The simulations are done on the ten repeated spots for each probe for all nine arrays in Experiment 3.
doi:10.1371/journal.pone.0099899.g003
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which is over-expressed in transformed cells. The third region is at

the location of PRNCR1 a known lncRNA also associated with

prostate cancer [15]. Nothing has been reported yet at the fourth

location.

Discussion

In this paper a method for detecting elevated expression levels

for regions (*1,000 kb) of moderate RNA expression was

introduced. It is demonstrated how this can be used to locate

lncRNAs in humans (or other species). The method splits the

region of interest into equally sized regions, calculates the

proportion of probes with signal intensities above the median

within each region and selects the 2.5% of regions with highest

rank sum over arrays.

This method is fairly easy to implement and is independent of

various experimental specifics of the array layout and probe design

and the microarray platform used. It is therefore applicable e.g. for

metadata analyses of microarray data from different platforms.

The method was applied to two independent microarray

experiments, which had different array designs, but the same set

of samples. The method was set to select the 25 regions with the

Figure 4. The number of Monte Carlo simulations for which each region is chosen by the selection method using arrays with the
same sample. The genomic location of the regions on 8q24 is on the x-axis. The proportion of Monte Carlo simulations for which the region was
chosen is on the y-axis. The graph is shown with two different colourings, representing whether the region was among the previously experiment-
wise selected regions (cyan) or not (pink). Those who were selected previously in Experiment 1 are shown at the top graph, Experiment 2 in the
middle and Experiment 3 at the bottom. The simulations are done on the ten repeated spots for each probe for the three arrays in Experiment 3 that
contained the same sample.
doi:10.1371/journal.pone.0099899.g004

Table 4. Regions selected in all three experiments.

hg18 location hg19 location genes

128,819,600 128,750,418 MYC exon

128,911,900 128,842,718 Pvt1

128,167,000 128,097,818 PRNCR1

128,338,600 128,269,418 nothing yet

The loci of the selected regions according to hg18 and hg19 and the genes reported at these loci.
doi:10.1371/journal.pone.0099899.t004
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highest average expression levels for each experiment. This choice

is based on guaranteeing consistency in the selection. This resulted

in 20 regions being selected in both experiments. When compared

with a third experiment, where different samples were used, 4 out

of the regions selected in both of the first two experiments were

selected again. The analysis indicates that the different array

design has a small effect on the selection method.

The number of samples in all experiments considered here is

small. In general one would expect a larger sample size (i.e. more

than seven biological samples in experiments 1 and 2) to lead to a

more consistent selection of regions, as this is the usual effect of

increased sample size, at least when a fixed number of regions is

selected as is the case here.

The third experiment contained 10 repeated copies of each

probe on each array. Monte Carlo simulations of the signal

intensities of the regions were undertaken in order to estimate the

robustness of the selection method.

It is important to note that the method is more robust when

applied to all nine arrays in Experiment 3 than when only applied

to the three arrays containing the same sample. Although a larger

experiment is needed for verification, this would seem to imply

that a larger sample size implies greater consistency.

Sample preparation was done according to the same protocols

on the same labs for all three experiments so the variation due to

these factors should be minimal. This indicates that the signals

detected are prevalent in different subjects and also that there is

considerable variability in the signals from array to array, even

though the same sample is being used.

Four regions were consistently chosen in all three experiments.

Three of them correspond to genes associated with prostate

cancer, but no reports have been made on the fourth location. It

could thus be a candidate locus for a lncRNA, possibly correlated

with prostate cancer.

RNA sequencing is a rising alternative to tiled microarrays that

provides improved accuracy in several regards and has been used

successfully to discover novel non-coding RNAs [45]. However,

the development of methods for targeting ncRNAs with tiled

microarrays still remains of importance for at least two reasons.

First, tiled microarrays are still less expensive than RNA-

sequencing, although the cost of RNA-sequencing is continuously

decreasing. Second, much data from tiled microarray experiments

exist which can be further utilized with better statistical methods.

Finally, confirmation of novel findings still needs to be done, e.g.

by real-time PCR.

The proposed selection method may be useful as an add-on to

conventional data analysis pipelines to further identify the most

concordant and significantly expressed transcripts once basic data

analysis has been performed.

Conclusion

The proposed method locates regions with elevated expression

levels in RNA expression microarrays with good consistency. It is

particularly promising as an add-on to conventional data analysis

and succeeds in locating regions containing known lncRNAs on

locus 8q24 and proposes a candidate region where no lncRNAs

have been reported.
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