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Abstract

The climbing habit is an evolutionary key innovation in plants because it is associated with enhanced clade diversification.
We tested whether patterns of species divergence and variation of three ecophysiological traits that are fundamental for
plant adaptation to light environments (maximum photosynthetic rate [A,.y], dark respiration rate [Ry], and specific leaf
area [SLA]) are consistent with this key innovation. Using data reported from four tropical forests and three temperate
forests, we compared phylogenetic distance among species as well as the evolutionary rate, phylogenetic distance and
phylogenetic signal of those traits in lianas and trees. Estimates of evolutionary rates showed that R, evolved faster in lianas,
while SLA evolved faster in trees. The mean phylogenetic distance was 1.2 times greater among liana species than among
tree species. Likewise, estimates of phylogenetic distance indicated that lianas were less related than by chance alone
(phylogenetic evenness across 63 species), and trees were more related than expected by chance (phylogenetic clustering
across 71 species). Lianas showed evenness for Ry, while trees showed phylogenetic clustering for this trait. In contrast, for
SLA, lianas exhibited phylogenetic clustering and trees showed phylogenetic evenness. Lianas and trees showed patterns of
ecophysiological trait variation among species that were independent of phylogenetic relatedness. We found support for
the expected pattern of greater species divergence in lianas, but did not find consistent patterns regarding ecophysiological
trait evolution and divergence. Ry followed the species-level pattern, i.e., greater divergence/evolution in lianas compared
to trees, while the opposite occurred for SLA and no pattern was detected for A,.,. Ry may have driven lianas’ divergence
across forest environments, and might contribute to diversification in climber clades.
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Introduction

Climbing plants, in particular woody vines (lianas), are a
distinctive component of mature forests in both tropical and
temperate regions [1-3]. Data from long-term plots indicate that
the dominance of lianas relative to trees is increasing in tropical
forests [4,5]. Moreover, liana abundance is negatively associated
with tree carbon storage in tropical forests [6,7]. The climbing
habit has independently arisen numerous times throughout plant
evolution [1,8], and it seems to be a key innovation in
angiosperms: climbing plant lineages have greater species richness
than their non-climbing sister groups [9]. Thus, evidence from
both ecological and macroevolutionary patterns suggests a
performance advantage of lianas over trees.

Explanatory factors for the increased abundance and biomass of
lianas in tropical forests include increasing forest disturbance,
which increases local resource availability, and rising levels of
atmospheric COy [4]. Moreover, increased abundance of lianas in
seasonal forests during the dry season, as compared to trees, has
been related to their increased efficiency in water uptake and
transport, and higher photosynthetic rates ([10-12]; but see [13]).
Thus, data suggest that lianas are better than trees at exploiting
resource pulses. When providing functional arguments for the key
mnovation of the climbing habit (sensu [14]), Gianoli [9] suggested
that ecological specialization may arise as a consequence of an
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hypothetically expanded light niche of lianas in the forest, which
would result from the co-occurrence of unsupported (creeping) and
supported (climbing) individuals that go up and down the forest
canopy. This would maximize interactions with a wide array of
antagonistic and mutualistic species [15,16] that, in turn, might
promote diversification [17]. It is increasingly recognized that
purported evolutionary key innovations may be tested at an
ecological time scale [14,18-20].

Ecophysiological traits are fundamental components of plant
adaptation to the environment [21,22]. Specifically, Ay, (max-
imum photosynthetic rate), Ry (dark respiration rate) and SLA
(specific leaf area) play a key role in the phenotypic adjustment to
heterogeneous light environments in both lianas and trees [23-26].
Thus, they reflect the balance between carbon gain (A, and
carbon use (Ry), and the allocation of leaf biomass to light
interception (SLA), which together determine plant growth and
performance across light environments [27,28]. Importantly,
variation in plant functional traits observed at the population
level is likely to be paralleled by evolutionary divergences under
contrasting environments [29]. Moreover, the analysis of the
phylogenetic structure of communities can provide insights to our
understanding of trait evolution [30]. Recent studies have
addressed phylogenetic variation in ecophysiological traits in
climbing plants and trees [31-34], but their approach has been
either exploratory (aiming to report global patterns) or method-
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ological (testing new analytical tools); to our knowledge, a
hypothesis-driven analysis is wanting.

Using data reported for several liana and tree species coexisting
in tropical and temperate forests, and focusing on three key
ecophysiological traits involved in plant adaptation across forest
light gradients: Ay, Rq and SLA, we herein compare lianas and
trees in terms of trait evolutionary rates, phylogenetic diversity,
phylogenetic trait diversity, and the phylogenetic signal. Thus, we
compared the rate at which variance in the traits is accumulated
among species per unit time at the tips of the phylogenetic tree
[35,36]. We also evaluated how similar is the average pair of
species of lianas and trees both in terms of mean phylogenetic
distance and trait variation [37]. We finally evaluated in lianas and
trees the tendency for phylogenetically related species to resemble
cach other, ie., the phylogenetic signal [38]. We tested the
hypotheses that if the climbing habitat enhances clade diversifi-
cation [9], and ecological divergence is the process underlying this
pattern, then lianas should show higher trait evolutionary rates
and greater species and trait divergence than trees under common
environmental scenarios.

Materials and Methods

Data collection

We searched the literature for field studies in forest ecosystems
where lianas and trees were analyzed for at least one of three
ecophysiological traits: A, on an area basis, Ry, and SLA. We
only chose those studies carried out in mature forests, where light
heterogeneity across microsites is the greatest [3]. We only
included native species because they have a long history of
adaptation to the environment. We focused on angiosperms
because of the availability of tools to reconstruct their phylogenetic
history and estimate trait evolution (see below). The final data set
included a pool of 63 liana species and 71 tree species belonging to
four tropical forests (Gamboa, Panama; San Lorenzo, Panama;
Riberalta, Bolivia; Xishuangbanna, China) and three temperate
forests (Yakushidake, Japan; Beltsville, USA; Puyehue, Chile). We
pooled species from all sites into growth forms, thus we had one
liana “super-community” and one tree ‘‘super-community’.
Phylogenetic analyses were conducted on these super-communities
(see below). Detailed information, including study species, traits,
sites, and data sources, is available in Supporting Information S1.

Phylogeny reconstruction

We produced a phylogeny of all species using a backbone tree
based on the angiosperm megatree provided by the Phylodiversity
Network in cooperation with the Angiosperm Phylogeny Group
(APG; http://www.mobot.org/MOBOT/research/APweb/).
Our tree was generated using Phylomatic (http://www.
phylodiversity.net/phylomatic/phylomatic.html), a program that
returns a working phylogenetic tree after matching the genus and
family names of study species to those contained in the angiosperm
phylogeny [39]. Comparative inferences require branch lengths
for the tree, which were calculated based on the branch length
adjustment algorithm (BLAD]) implemented in Phylocom v. 4.2
(www.phylodiversity.net/phylocom) [40]. This algorithm fixes a
subset of nodes in the tree to specified ages and evenly distributes
the ages to the remaining nodes. Age estimates for major nodes in
our tree were taken from [41]. To avoid inaccuracies in tree
calibration and to have an updated version of our tree, we
corrected the ages file with age estimates in [41] included in
Phylocom. Corrections followed procedures suggested recently
[42]. We also checked and updated age estimates of internal order-
level clades according to a net diversification rate estimate of
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angiosperms [43]. The few polytomies in the working tree were
resolved randomly using the multi2di function in R. Values of
functional traits of closely related species resulting from such
random resolutions were very similar, so results of the final
comparative tests were highly robust to topological uncertainty.
These and all subsequent analyses were conducted using the R
statistical environment version 3.0.2 [44]. Reconstructed phylo-
genetic trees with associated trait variation are shown in Figures 1—

3.

Rate of trait evolution

To assess differences in ecophysiological trait evolution between
liana and tree species, we compared estimates of evolutionary rate
for Anae, Rg, and SLA. To this end, we first used stochastic
character mapping, a Bayesian method that uses Monte Carlo
simulations to sample the posterior probability distribution of
ancestral states and timings of transitions on phylogenetic
branches under a Markov process of evolution [45,46]. We built
stochastic character-mapped reconstructions for each trait/growth
form combination using the make.simmap function in the phytools
package of R [36]. We thus simulated character history evolution
of all three traits in relation to growth form as an initial step, as
suggested recently [35,47]. To test the hypothesis that a discrete
character state had influenced the rate of a continuous character,
one should first stochastically map the discrete trait (e.g., climbing
habit), and then test if one state of the discrete character has a
different evolutionary rate for the continuous trait of interest (e.g.,
ecophysiological trait) than the other discrete state [35,47].

The resulting reconstructions of trait states and phylogeny
represented a set of phylogenetic topologies, branch lengths and
growth forms sampled in proportion to their posterior probabil-
ities. Reconstructions were then used in subsequent analyses as a
way of integrating over uncertainty in phylogeny and ancestral
states. Finally, we fitted the evolutionary models of character
history on the trees to trait data using a likelihood method [35].
This is a maximum likelihood approach that estimates rates of
evolution (6%). The parameter 6> was calculated using the
function brownie.lite in the phytools package [36]. ¢ is interpreted
as the Brownian motion process most likely to have produced the
data at the tips of the tree, i.e., the rate at which variance is
accumulated among species per unit time. 95% confidence
intervals were calculated for each 6 to infer differences between
lianas and trees in ecophysiological trait evolution.

Trait and phylogenetic diversity

To compare the phylogenetic relatedness among liana species
against the phylogenetic relatedness among tree species we used
measures of phylogenetic structure. Specifically, we calculated,
based on a phylogenetic distance matrix, the mean phylogenetic
distance (MPD) and the standardized effect size of the mean
phylogenetic distance (SESypp [48]) between pairs of species for
each group. Interspecific phylogenetic distance matrices were
obtained from the reconstructed tree of phylogenetic relationships
among taxa using the cophenetic function in R and unweighted pair-
group average (UPGMA) as the clustering method.

Standardized effect sizes describe the difference between
average phylogenetic distances in the observed super communities
or groups (lianas and trees) compared to null distributions
generated for each group with randomization procedures,
standardized by the standard deviation of phylogenetic distances
in the null data [48]. We compared observed mean distances
(branch length) against a null model generated by calculating 999
times the mean phylogenetic distance between 8911 random pairs
of species (without replacement) drawn from the matrix of
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Figure 1. Phylogenetic relationships among tree and liana species and species values of dark respiration rate (Ry). Grey circle size
represents the proportional magnitude of the trait across species. Square tip symbols represent climbing habit (grey squares = liana, black squares

= tree). Timescale is in millions of years before present.
doi:10.1371/journal.pone.0099871.g001

phylogenetic distances between all liana and tree species. In all
cases 999 iterations were found to be suitable for our randomi-
zation procedures as they were sufficient to attain convergence.
The null model was constructed by reshuffling the distance of
species labels across the phylogenetic tree using the ses.mpd
function and the taxa.labels algorithm of the picante package of R.
Positive values of SESypp (mpd.obs.z) and high quantiles (p-values
>0.95) indicate significant phylogenetic evenness, while negative
values of SESypp and low quantiles (p-values <0.05) indicate
significant phylogenetic clustering [48]; these outcomes corre-
spond to scenarios where species are more distantly or more
closely related than expected by chance, respectively [48,49].
Authors often refer to (weak) evenness or clustering when p-values
are slightly lower than 0.95 or slightly higher than 0.05,
respectively (e.g., [50,51]). Finally, to assess how similar are the
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average pair of species within each group in terms of ecophysi-
ological traits; we used the SESypp as a trait diversity measure.
This was done by replacing the phylogenetic distance matrix in the
analysis with a trait distance matrix, and proceeding accordingly to
calculate standardized values of mean phylogenetic trait distance
(SESyTp)- These results are interpreted in the same way as those
of SESy\ipp with regard to phylogenetic evenness or clustering

[48].

Phylogenetic signal

To quantify the degree to which phylogenetic relatedness
predicts the similarity of species in functional traits for both trees
and lianas, we calculated separately phylogenetic signal for Ay,
R4, and SLA. Phylogenetic signal indicates to what extent
phenotypic expression is explained by the lineage to which a
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Figure 2. Phylogenetic relationships among tree and liana species and species values of maximum photosynthetic rate (A,.x). Grey
circle size represents the proportional magnitude of the trait across species. Square tip symbols represent climbing habit (grey squares = liana, black

squares = tree). Timescale is in millions of years before present.
doi:10.1371/journal.pone.0099871.g002

species belongs, and it can be compared among clades and among
traits [52]. We quantified phylogenetic signal using both Blom-
berg’s K [38] and Pagel’s 4 [53] statistics for quantitative traits. To
calculate these parameters, we first pruned two separate phylog-
enies, one for the group of lianas and one for the group of trees,
using the original tree as a base phylogeny. Then we pruned a tree
for each group-trait combination independently, removing taxa
for which trait information was not available. The number of
species included in each trait/plant growth habit analysis ranged
from 26 (Ry/lianas) to 67 (Ap../trees), thus meeting the N>20
threshold to achieve good statistical power [38].

Values of £’=1 imply that a trait shows exactly the amount of
phylogenetic signal expected under a null, stochastic model of
character evolution (Brownian motion evolution) [38]. A-values >
1 and <1 imply that close relatives are more similar and less
similar, respectively, than expected under a Brownian motion
model of trait evolution [38]. If A does not differ from zero it is
concluded that the trait has no phylogenetic signal. Statistical
significance of K [38] was assessed via permutation tests with 1000
randomizations. The significance of the phylogenetic signal was
based on the variance of phylogenetically independent contrasts
relative to tip shuffling randomization implemented by the
phylosignal function of the picante package in R [48]. P-values were
determined by comparing the variance of standardized indepen-
dent contrasts for the tip values against variances for randomized
data.

The parameter A scales tree structure in terms of expected
variances and covariances in trait change [54]. Thus, 4 is a
phylogenetic transformation that maximizes the likelihood of the
data given a Brownian motion model [54]. When A = 1, the trait is
consistent with a Brownian motion evolution based on branch
lengths represented by the variance-covariance in trait change.
Values between 0 and 1 indicate less phylogenetic signal than
expected under a Brownian motion model, while values >1
indicate more signal than expected, although A is not always
defined for values greater than one [54]. Values of A were
estimated using the fitContinuous function of the geiger package. To
determine the significance of A as an indicator of phylogenetic
signal, we compared the maximum likelihood estimate of 4 against
the maximum likelihood of models when A =1 using likelihood
ratio tests (LRT).

Results and Discussion

Rate of trait evolution

In general, lianas and trees presented homogenous evolution of
ecophysiological traits. In all cases evolutionary rates, as estimated
by 7, were not significantly different from a single-rate Brownian
motion process of evolution (Table 1). Parameter estimate values
of 6%, however, did differ between lianas and trees in two of the
three ecophysiological traits considered (Table 1). The evolution-
ary rate for dark respiration rate (Ry) in lianas was 1.8 times
greater than in trees. In the case of the biomass allocation trait
(specific leaf area, SLA), the evolutionary rate was 1.2 times
greater in trees than in lianas. Evolutionary rates for maximum
photosynthetic rate (Ay,,) did not differ between lianas and trees;
overall, this trait showed the lowest evolutionary rate among the
traits considered (Table 1).
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The patterns observed suggest that for all ecophysiological traits
a change along any given branch in the phylogeny is independent
of both previous changes and changes in other branches of the
reconstructed tree. Evolutionary rates in both lianas and trees did
not differ from a single-rate Brownian motion model of evolution,
which assumes that variance among species in the phylogenetic
tree accumulates as function of their time of independent evolution
[55]. Thus, it cannot be ruled out that ecophysiological traits
evolve at a constant rate over time. A Brownian motion process,
however, is not equal to a neutral model of evolution. Brownian
motion simply describes the distribution of observed trait changes
and may be consistent with adaptive models of evolution [35,56].
Therefore, natural selection could be a plausible force behind the
alteration in rate change of traits in relation to growth form
(climbers vs. non-climbers).

Evolutionary rates (6% differed between lianas and trees in two
of the three ecophysiological traits considered, but in opposite
trends. Thus, Ry evolved at a higher rate in lianas, while SLA
evolution occurred at a higher rate in trees. This suggests that the
outcome of modifications in the selective regime related to the
climbing habit depends on the particular plant traits that are
under selection (gas-exchange traits vs. biomass allocation traits).
Gas-exchange traits have been shown to be of selective value for
the exploitation of light availability in mature forests for trees [57],
vines [58] and ferns [59]. Our findings suggest that climbers are
more evolutionary responsive with regard to Rg4 than trees.
Assuming that (adaptive) ecological speciation is the process
behind species divergence in this trait [20], the next step would be
to address whether this results from a greater magnitude of
selection on Ry or from greater trait heritability [21,60].
Conversely, SLA showed a higher greater evolutionary rate across
tree species. This somewhat supports the view of SLA as an
essential attribute for tree performance and carbon gain [57,61].

Trait and phylogenetic diversity

We found that mean phylogenetic distance (MPD, non-
standardized values) was greater among liana species
(259.9 Myr) than among tree species (229.6 Myr). Moreover,
there was a clear-cut difference between lianas and trees in the
standardized mean phylogenetic distance species
(SES\pp). Whereas lianas showed greater distances between
species relative to the null model (SESypp=2.271; p-value
=0.99), ie., phylogenetic evenness, trees showed a pattern of
phylogenetic clustering (SESypp = —3.622; p-value =0.006).

Lianas and trees differed in their patterns of trait diversity. For
one of the gas-exchange traits (Ry), lianas showed phylogenetic
evenness (SESyrp =1.266, p-value =0.893), which means that
trait dissimilarity among liana species was higher than expected by
chance, while trees showed phylogenetic clustering (SESytp = —
1.863, p-value =0.039), indicating that tree species were more
phenotypically similar than expected by chance (Figure 1). In
contrast, for the biomass allocation trait (SLA), lianas exhibited
phylogenetic clustering (SESyrp = —1.194, p-value =0.122) and
trees showed phylogenetic evenness (SESyrp =1.193, p-value
=0.877) (Figure 2). Finally, the other gas-exchange trait, A,,,y, did
not show phylogenetic structure in both lianas (SESytp = 0.096,
p-value =0.536) and trees (SESyyrp = —0.598, p-value =0.277)
(Figure 3).

among
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Figure 3. Phylogenetic relationships among tree and liana species and species values of specific leaf area (SLA). Grey circle size
represents the proportional magnitude of the trait across species. Square tip symbols represent climbing habit (grey squares = liana, black squares

= tree). Timescale is in millions of years before present.
doi:10.1371/journal.pone.0099871.9g003

First, in agreement with the study hypotheses, we found greater
phylogenetic distance among species within the group of lianas (63
species) than within the group of trees (71 species). This agrees
with a recent study in Australian rainforests, where standardized
values of mean phylogenetic distance indicated that climbers show
weak evenness or no phylogenetic structure, while trees/shrubs
show weak to significant phylogenetic clustering [50]. Second, the
average phenotypic distance among species for one gas-exchange
trait (but not for the other two ecophysiological traits) was greater
in the phylogenetic tree of lianas than in that of trees. The
environmental gradient experienced by the study species was
roughly the same for lianas and trees because data were obtained
from sites where trees and lianas coexisted. Therefore, these
patterns of (partial) increased phenotypic distance and greater
phylogenetic divergence in lianas are consistent with the notion
that lianas have a greater differentiation potential than trees [9].
Several plant attributes have been associated with evolutionary
rates in angiosperms. For instance, it has been shown that trees
and shrubs have lower rates of molecular evolution than
herbaceous plants [62,63], and that taller plants have lower rates
of molecular evolution [64]; in both cases the outcome is thought
to be linked to differences in generation time, which in turn is
related to mutation rate. In our study all climbers were woody
species (lianas) so herbaceousness should not be a confounded
factor. However, there is no available information to reject the
possibility that there were longer generation times in the group of
trees (see General Conclusions). As to the plant height factor, it is a
rather problematic issue, because trees are usually taller than
lianas in terms of freestanding height, but if total length is
considered, then canopy lianas may be taller. Both issues deserve
further scrutiny.

In the realm of community phylogenetics, patterns of phyloge-
netic evenness in resource-use traits are often interpreted to reflect
niche differentiation processes [49]. If trait-based niche differen-
tiation facilitates evolutionary responses to divergent selection,
which in turn may lead to incipient speciation [65], then our
results of phylogenetic evenness in a liana ecophysiological trait
might be linked to the ecological/evolutionary processes that
underlie the key innovation of the climbing habit in plants [9].
Whereas results of trait phylogenetic distance suggest that R4 may
have played a role as driver of lianas’ adaptive divergence, SLA
showed greater phenotypic divergence among tree species, as was
shown for rates of trait evolution (see above). However, this trait
distribution pattern across the phylogenetic tree was not accom-
panied by an overall greater phylogenetic distance among tree
species. This might be interpreted as SLA contributing to tree
adaptation to environmental challenges at local scales but do not
driving taxonomic divergence across clades.

Phylogenetic signal

Opverall, lianas and trees presented mixed but comparable
patterns of phylogenetic signal (or lack thereof) in ecophysiological
traits (T'able 2). In lianas, A, showed no significant phylogenetic
signal, but values were lower than expected under a Brownian
model of evolution (with A<1 and A<1). R4 showed mixed results,
with significant phylogenetic signal indicated by £, and lower than
expected under a Brownian model of evolution, but no significant
signal as indicated by 4 (=1). There was no phylogenetic signal
detected for specific leaf area (SLA) using A but strong signal using
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/, and lower than expected under a Brownian model of evolution
(Table 2). In trees, whereas no phylogenetic signal was found for
both An.x and Ry as indicated by K and 4, a significant
phylogenetic signal was found for SLA when £'is considered (with
E<1) but no signal was detected by A, with values lower than
expected under a Brownian model of trait evolution (4=0)
(Table 2). Summarizing, in all cases both lianas and trees tended
to show patterns of ecophysiological trait variation among species
that were independent of phylogenetic relatedness.

Our results are consistent with the general pattern that
physiological traits tend to show low values of phylogenetic signal
[38]. A global analysis of trait variation in climbing plants reported
that SLA showed no phylogenetic signal [34], as found in the
present study. Likewise, in agreement with our results, a global-
scale study in Angiosperms reported that A, (on an area basis)
showed no consistent phylogenetic signal [32]. Conversely, a
genus-level study in trees [31] found that A, exhibited
significant phylogenetic signal, which seemingly opposes our
findings. However, this study used a metric other than Blomberg’s
K and Pagel’s 4, and given that different indices of phylogenetic
signal often lead to contrasting outcomes ([68]; and Table 2), these
results are not necessarily contrary to those reported here. Another
group of ecophysiological traits that could have been studied to
seck phylogenetic and evolutionary differences between trees and
lianas is that of hydraulic characters. Regarding hydraulic traits,
lianas have wider and longer vessels compared to trees, features
that enable them to supply a large leaf area with a relatively small
allocation to xylem tissue [33,66,67]. However, xylem vessel
length did not show significant phylogenetic signal in a recent
global analysis including lianas, shrubs and trees [33].

Results indicate that, in both lianas and trees, ecophysiological
traits related to light use and carbon economy have undergone
evolutionary trajectories different to those expected after phylo-
genetic relationships, assuming a Brownian motion model of trait
evolution [68]. These phylogenetic signal results do not match the
patterns of trait divergence and trait evolutionary rates found here.
Although under some circumstances (e.g., fluctuating selection in
related lineages) a negative association between A and evolutionary
rate may be found [52,55], it is generally considered that changes
in trait evolutionary rates —and ensuing phenotypic divergence—
does not influence phylogenetic signal for continuous characters

[52,55].

General conclusions

Lianas and trees differ in a number of anatomical, physiological,
morphological and life history traits [69-71]. Among the main
differences, trees show a greater allocation of biomass (and carbon)
to stems and lianas have lower costs of height gain and larger total
leaf area potential. Moreover, compared to shrubs and trees, lianas
have lower leaf mass per area (LMA, the inverse of SLA), higher
foliar N and higher mass-based photosynthetic rate, which is
consistent with the characterization of lianas as fast metabolism/
rapid turnover species [71]. This could be related to hypothetical
differences in generation time between lianas and trees that could
explain their differential evolutionary rates, as shown here.
Nonetheless, when it comes to explain species distribution across
the light gradient in forests [72], the life history trade-off between
juvenile growth and survival is observed alike in trees and lianas

[73].
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Phylogenetic information is increasingly used to test macroevo-
lutionary hypotheses of trait evolution [74-76]. The study
hypotheses, arising from the macroevolutionary pattern of
increased taxonomic diversification in lianas [9], received mixed
support. Overall, mean phylogenetic distance among liana species
was larger than that of trees. Lianas showed a higher evolutionary
rate for a gas-exchange trait (Rg), but the biomass allocation trait
(SLA) evolved at a higher rate in trees. Likewise, average trait
divergence across the phylogenetic tree was greater in lianas for Rq
but it was greater in trees for SLA. Therefore, although we have
found support for the expected pattern of increased species
divergence in lianas compared to trees, we did not find consistent
patterns regarding ecophysiological trait evolution and divergence.
R4 followed the species-level patterns, i.e., greater divergence/
evolution in lianas compared to trees, while the opposite was found
for SLA. R4 may have driven lianas’ divergence across forest
environments and, furthermore, might contribute to the pattern of
increased diversification in climber clades.
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