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1 Instituto de Investigaciones en Ingenierı́a Genética y Biologı́a Molecular (INGEBI-CONICET), Buenos Aires, Argentina, 2 Agua y Saneamientos Argentinos S.A. (AySA),

Buenos Aires, Argentina, 3 Departamento de Fisiologı́a, Biologı́a Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires,

Argentina

Abstract

The performance of two sets of primers targeting variable regions of the 16S rRNA gene V1–V3 and V4 was compared in
their ability to describe changes of bacterial diversity and temporal turnover in full-scale activated sludge. Duplicate sets of
high-throughput amplicon sequencing data of the two 16S rRNA regions shared a collection of core taxa that were
observed across a series of twelve monthly samples, although the relative abundance of each taxon was substantially
different between regions. A case in point was the changes in the relative abundance of filamentous bacteria Thiothrix,
which caused a large effect on diversity indices, but only in the V1–V3 data set. Yet the relative abundance of Thiothrix in the
amplicon sequencing data from both regions correlated with the estimation of its abundance determined using
fluorescence in situ hybridization. In nonmetric multidimensional analysis samples were distributed along the first
ordination axis according to the sequenced region rather than according to sample identities. The dynamics of microbial
communities indicated that V1–V3 and the V4 regions of the 16S rRNA gene yielded comparable patterns of: 1) the changes
occurring within the communities along fixed time intervals, 2) the slow turnover of activated sludge communities and 3)
the rate of species replacement calculated from the taxa–time relationships. The temperature was the only operational
variable that showed significant correlation with the composition of bacterial communities over time for the sets of data
obtained with both pairs of primers. In conclusion, we show that despite the bias introduced by amplicon sequencing, the
variable regions V1–V3 and V4 can be confidently used for the quantitative assessment of bacterial community dynamics,
and provide a proper qualitative account of general taxa in the community, especially when the data are obtained over a
convenient time window rather than at a single time point.
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Introduction

The knowledge of the extent of bacterial diversity has expanded

drastically since the introduction of culture-independent ap-

proaches based on molecular phylogenies of the small-subunit

ribosomal RNA gene (16S rRNA gene). Amplicon-based bacterial

community studies, in which a particular set of so-called universal

PCR primers targets conserved regions flanking one or more of the

nine variable regions (V1–V9) present in the 16S rRNA gene, have

been extensively used to characterize the microbial community

structures of several natural and engineered ecosystems. A

problem with surveys of diversity performed using high-through-

put amplicon sequencing is that the results are skewed by the bias

associated with multi-template PCR reactions, no matter the

sequencing depth [1]. Considerable attention has long been

dedicated to investigate and minimize the many pitfalls of PCR-

based estimates of microbial diversity [2,3]. Sources of bias in the

determination of ‘‘true’’ diversity include insufficient coverage of

primers [4,5], primer-template mismatches [6,7], unequal ampli-

fication [8,9,10], and differential efficiency of annealing [6].

The choice of primers remains ultimately the most challenging

issue for amplicon analysis [11,12,13], and there is still no

consensus for the use of a particular 16S rRNA region

[5,12,14,15,16]. Recent studies have provided valuable insight

into the bias introduced by primer selection for the estimation of

diversity using next generation sequencing in several ecosystems,

such as soil [17], subgingival plaques [18], termite hindgut [19],

human gut [20,21] and activated sludge (AS) [22,23]. These

studies were primarily designed to determine which primer set

could offer the most accurate taxonomic assignment of each

microbiome. However, the purpose of 16S rRNA gene high-

throughput surveys extends beyond the taxonomic profiling of
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microbial communities. It is also important to understand how

microbial communities are structured in space [24] and time [25].

In this study we focused on the activated sludge bacterial

populations dynamics. Activated sludge, which is used worldwide

for wastewater treatment, comprises a diverse self-assembled and

self-sustained microbial community. It has been suggested that

patterns of bacterial community dynamics are likely regulated in

part by operational parameters [26]. We asked whether different

primer sets would be equally suitable for the characterization of

the bacterial dynamics of a full-scale municipal wastewater

treatment plant (WWTP).

The primary aims of this work were two-fold: First, to evaluate

two of the most frequently used primers sets in high-throughput

bacterial surveys for the estimation of the diversity metrics and

taxonomic assignment of bacterial communities in temporally

spaced samples of activated sludge, and secondly to assess how the

bias introduced by the use of primer sets targeting different 16S

rRNA gene regions affected the characterization of the dynamics

of bacterial communities.

We hypothesized that even though the amplification of each

region of the 16S rRNA gene produces a biased estimate of the

community composition, they may still provide an accurate

account of the population dynamics. To test this hypothesis, we

performed high-throughput amplicon sequencing of the V1–V3

and the V4 variable regions of the 16S rRNA gene on activated

sludge samples from a time series spanning one year of full-scale

operation, and compared the performance of both pairs of data

sets in describing the changes in the diversity and the temporal

turnover of taxa.

Materials and Methods

Ethics statement
AySA is a state-owned company that provides drinking water

and sewage services to the city of Buenos Aires and several districts

of the Province of Buenos Aires. The permission for the collection

and analysis of activated sludge samples of the AySA WWTP is

included in the cooperation agreement between AySA and the

Argentine National Research Council (CONICET), Res. 3816/

11.

Wastewater treatment plant description
The full-scale municipal WWTP is located in San Fernando, a

suburban area of the city of Buenos Aires. The plant provides

preliminary, primary and secondary treatment to remove organic

matter and suspended solids for a population of 270,000 residents.

Wastewater from primary clarifiers (0.9 m3/s) flows into three

aerobic tanks that operate in parallel, each with a volume of

3350 m3. The mixed liquor from the aeration basins is combined

before entering four secondary clarifiers. Main features of the

treatment facility and influent wastewater are given on table S1 in

File S1. Operational parameters of the WWTP were obtained

from the staff members.

Samples from one of the aeration basins were taken on a

monthly basis over a period of one year, starting on May 2012.

Sludge samples were transported within 2 h to the laboratory in

plastic flasks at room temperature with a large air chamber in

order to avoid anaerobic conditions. Aliquots of 300 ml were fixed

with 4 % paraformaldehyde for fluorescence in situ hybridyzation

(FISH) analysis, and 2 ml were stored at 220uC.

DNA isolation
DNA was extracted by a procedure involving physical

disruption of cells and purified by the CTAB method. Shortly,

pellets from 1.5 ml sludge were resuspended in 500 ml of TENP

buffer (pH 7.6) and transferred to 2-ml screw-capped tubes with

200 ml of 0.5 mm zirconia/silica beads (BioSpec Products, Inc.).

50 ml of 10 % sodium dodecyl sulfate (SDS), 1 ml of RNAse A (100

mg/ml) and 3 ml proteinase K (20 mg/ml) were added, and

incubated at 37uC for 2 h. After incubation, cells were physically

disrupted and DNA extraction protocol was continued as

described [27].

PCR and sequencing
Variable V1–V3 and V4 regions of the 16S rRNA gene were

amplified in duplicate from total DNA of all samples in the time

series with universal primers F8 (59-AGAGTTTGATC-

CTGGCTCAG-39) and R534 (59-WTTACCGCGGCTGCTG-

G-39), and F563 (59-AYTGGGYDTAAAGNG-39) and R907 (59-

CCGTCAATTCMTTTRAGT-39). The resulting 48 PCR am-

plicons (12 time points 62 16S rRNA gene regions 62 technical

replicates) were tagged prior to sequencing using a 10 base pair

multiplex identifier (MID), and sequenced in a Roche 454 GS

FLX instrument at the Microbiome Core Facility (North Carolina,

US). A total of 281,102 raw reads with an average length of

451 bp was generated for V1–V3 region, and 255,145 raw reads

with an average length of 364 bp for V4 region. After the filtering

procedure, these numbers were reduced to 161,822 and 140,753

reads, respectively (Table S2 in File S1).

Raw reads were submitted to the NCBI Sequence Read Archive

under accession number SRP035875.

Data analysis
Mothur v.1.31.2 was used to denoise, trim, filter and align

sequences, find chimeras, assign sequences to operational taxo-

nomic units (at 97 % similarity), and describe a-diversity [28],

following the standard operating procedure suggested by the

program’s author. After extracting the flow files from the raw

Standard Flowgram Format (sff) files, we applied the Amplicon-

Noise algorithm [29] to denoise the data. Sequences were quality-

filtered (minimum length 200 bp, with no ambiguous bases and no

more than 1 and 2 mismatches to the barcode and primer,

respectively, and homopolymers of 8 bp as a maximum), separated

by tag and trimmed. Sequences were aligned to the SILVA-

database reference alignment v 102. Sequences not aligning in the

targeted region were removed using the ‘screen.seqs’ command in

mothur. Chimeras identified with the ‘uchime’ algorithm were also

removed. The remaining sequences were alternatively (a) classified

against 16S rRNA RDP database (training set 9) [30] with a

bootstrap cutoff of 80 %, or (b) clustered into OTUs (97 %

similarity) by average neighbor linkage, or (c) used to build a de novo

tree using the program ‘clearcut’ implemented in mothur. In order

to avoid the bias caused by differences in sequencing depth in the

estimation of alpha- and beta-diversity, a subset of 2125 sequences

were randomly subsampled from each replicate using mothur’s

‘sub.sample’ function.

OTUs defined at 97 % similarity had to be present in all twelve

time points to be considered part of the core community. In order

to allow comparison between the core populations detected by the

two variable 16S rRNA regions, OTUs were classified against the

RDP database. Because not all OTUs could be classified at the

taxonomic level of genus, OTUs belonging to V1–V3 and V4

region with significant correlations between them (p , 0.01) were

analyzed jointly through blastn, and queries with 100 % identity

were added to the shared core. Ultimately, the shared core was

established at the taxonomic level of order.

On the basis of the defined OTUs, we built rarefaction curves

with a sampling iteration of 1000, and calculated Shannon index
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and observed OTUs for all samples. Diversity estimations from the

different 16S rRNA regions were compared using linear mixed

models with time as random factor, and a significance level of p ,

0.05. Additionally, we obtained the Bray-Curtis dissimilarity

matrix. Finally, we prepared de novo trees for each 16S rRNA

region, which were analyzed separately to calculate weighted and

unweighted UniFrac distances between samples [31].

Temporal shifts in bacterial community structure were evalu-

ated from the distances or dissimilarities between successive dates

along the temporal scale, a method known as a ‘moving-window’

analysis [32].

Species-time relationship (S = cTw) was estimated by adding

either new genera or new OTUs at each time point to the

respective initial count, and this was plotted against time on a log-

log space. The bacterial replacement rate w was obtained from the

slope of the linear regressions. OTUs represented by a single

sequence in the whole data set were removed. Temporal similarity

decay was analyzed as in [25]. Distances or dissimilarities were

converted to similarity and then log-transformed. We performed

independent linear regressions on the duplicate sets of data,

obtaining two slope values for each region and each of three

measures: Bray-Curtis dissimilarity, weighted and unweighted

UniFrac distances. Slopes were compared using unpaired two-

tailed Student’s t test, with a significance level of p , 0.05.

Nonmetric Multidimensional Scaling (NMDS), Canonical

Analysis of Principal Coordinates (CAP), Procrustes analysis and

Mantel test were performed with the ‘vegan’ package version 2.0–

10 (Department of Statistics, Iowa State University, Ames, IA,

USA) in R 3.0.2, using default parameters.

CAP is a constrained ordination method that enables the use of

non-Euclidean distances [33]. It was applied to assess the

relationship between process variables and bacterial community

dynamics, using V1–V3 and V4 average weighted UniFrac

distances matrices as input. An ANOVA-like permutation test

was used to assess the significance of constraints. The following

explanatory variables were considered: mixed liquor suspended

solids (MLSS), sludge volumetric index (SVI) and temperature (T)

of the aeration basin, and biological oxygen demand (BOD) of the

primary clarifier effluent (influent of the aeration basin).

Fluorescence in situ hybridization
DAPI (4,6-diamidino-2-phenylindole) staining and in situ

hybridization were performed in gelatin-treated glass slides, using

a specific Cy3-labeled probe for Thiothrix, G123T (59-

CCTTCCGATCTCTATGCA-39), in the presence of the com-

petitor oligonucleotide 59-CCTTCCGATCTCTACGCA-39, in

40 % formamide [34]. After coating slides, a volume of

paraformaldehyde-fixed sample (5 ml) was applied three times on

the microscope slide and covered with agarose [35]. Negative

controls were performed using the probe NONEUB (59-ACTCC-

TACGGGAGGCAGC-39) to monitor nonspecific binding [36].

Image acquisition and analysis
Slides were examined with a Confocal Laser Scanning

Microscope (CLSM) Olympus Fluoview FV1000, using an

objective lens with a magnification of 600X (UPLSAPO 60X W

NA:1.20), coupled to a CCD camera. We acquired digital images

(5126512 Pixel) of 30 fields of view (FOV) at randomly chosen

positions. For each randomly chosen FOV, we captured one

image of the population-specific FISH probe signal (Cy3) and one

image of the DAPI signal. The ratio between Cy3 and DAPI

signals was determined on every FOV, and the average value was

considered as an estimate of the volume that the detected taxon

occupied in the sludge sample (biovolume). Image analysis and

biovolume calculation were carried out with Daime 2.0 [35],

downloaded from http://www.microbial-ecology.net/daime/.

Results

Taxonomic composition analysis
Temporally spaced AS samples, collected from a full-scale

municipal wastewater treatment plant, were subjected to amplicon

sequencing using different pairs of primers targeting, respectively,

the variable regions V1–V3 and V4 of the 16S rRNA gene, each

in duplicate. Bacterial community profiles showed that both

regions detected Proteobacteria as the dominant phylum, but differed

in the relative abundance of Actinobacteria, Bacteroidetes, Firmicutes and

Acidobacteria (Fig. 1). The former two were more abundant in the

V1–V3 region and the latter two were more represented in the V4

region. Bacteria belonging to Chloroflexi were found as minor

members of the community in the two sets of data. A minor

phylum, the candidate phylum SR1, was only detected in the V1–

V3 reads, whereas sequences affiliated with phylum Deinococcus-

Thermus were found exclusively in amplicons from the V4 region

(Table S3 in File S1). Nonmetric multidimensional analysis

showed a clear distribution of samples along the first ordination

axis according to the sequenced region rather than according to

sample identities (Stress = 0.13, Fig. 2). The majority of the most

abundant RDP-assigned genera were detected by both sets of

primers, albeit they make up different proportions in each data set,

resulting in biased community structures (Fig. S1 in File S1)

Alpha-diversity
Rarefactions curves for 2125 randomly subsampled pyrose-

quencing reads did not reach saturation for V1–V3 nor for V4

amplicons (Fig. S2 in File S1). Richness derived from observed

Figure 1. Distribution of bacterial phyla and classes of
Proteobacteria according to the 16S rRNA gene region. Data of
each 16S rRNA region correspond to the average of 12 duplicate
monthly samples. Sequences were classified against RDP database at a
confidence threshold of 80%. Phyla with average percentage of
abundances lower than 1% were included in ‘‘other Phyla’’ (Spiro-
chaetes, Armatimonadetes, Epsilonproteobacteria, SR1, Deinococcus-
Thermus, Synergistetes, Fusobacteria, Verrucomicrobia, Gemmatimona-
detes, TM7 and Planctomycetes).
doi:10.1371/journal.pone.0099722.g001
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OTUs for the V1–V3 region was significantly higher than for the

V4 region (355655 and 284636, respectively; p , 0.0001; Fig.

S3A in File S1). Shannon index of V1–V3 region was also higher,

although differences were not significant (4.3160.48 and

4.2360.25; p = 0.27; Fig. S3B in File S1).

There were two samples (2nd and 11th), in which Shannon

index of region V1–V3 was lower than that of region V4. Those

samples were characterized by high abundance of Thiothrix-related

sequences, especially in the V1–V3 dataset. As a matter of fact,

both primers pairs were able to amplify 16S rRNA fragments

belonging to the genus Thiothrix, but exhibited a striking difference

in the proportion of reads. Lack of amplification of Thiothrix species

due to primer mismatch in the V4 region can be discarded on the

basis that V4-forward F563 and V4-reverse R907 primers match

98.5 % and 97 %, respectively, of the sequences . 1200 bp of

Thiothrix in the RDP database. Since the relative abundance of

Thiothrix introduced a large weight on the diversity metrics, we

decided to compare the relative abundance of Thiothrix in the

pyrosequencing datasets of both regions with a quantitative

estimation obtained using fluorescence in situ hybridization

(Fig. 3A). The biovolume fraction of Thiothrix in the 12 samples

of the time series ranged between 0.4–10.6 %, in closer agreement

with the values obtained by sequencing the amplicons of the V4

region (Fig. 3B). Yet the biovolumes occupied by Thiothrix

determined by FISH were not only correlated with the relative

abundance of Thiothrix estimated from the sequencing of the V4

region (r = 0.81), but also with the one corresponding to V1–V3

region (r = 0.87).

Temporal core microbiome
We noted that both sets of data contained a collection of OTUs

that were observed across all sampling dates, suggesting the

existence a temporal ‘‘core’’ microbiome within the WWTP. We

compared the taxonomic affiliation of the OTUs in the core

community detected by each of the sequenced regions, classified at

the taxonomic level of order (Fig. 4). Almost two thirds of the

OTUs total abundance corresponded to core OTUs shared by

both regions. However, each of those OTUs was represented in

the core community with different average relative abundance.

Fig. S4A in File S1 shows the changes over time of members of the

core using V1–V3 and V4 regions. A moving-window analysis

followed by a Pearson correlation indicated that the fluctuations of

taxa within the core were not significantly correlated (r = 0.57,

p = 0.07; Fig. S4B in File S1).

Beta-diversity
The matrices describing the dissimilarity (distance) between all

pair of bacterial communities in each time series were highly

correlated for the V1–V3 and V4 regions. That was true using a

taxonomic dissimilarity index (Bray Curtis, Mantel test, r = 0.85,

p , 0.001) and phylogenetic metrics (weighted UniFrac, r = 0.82,

p , 0.001, and unweighted UniFrac, r = 0.82, p , 0.001).

Coincidently, Procrustes analysis indicated that NMDS ordina-

tions based on V1–V3 and V4 regions were highly correlated

(corr. = 0.90, p , 0.001; Fig. S5 in File S1).

Average distances (and dissimilarities) were significantly lower

for V4 region compared to those of V1–V3 region (p , 0.001).

Because communities obtained using V1–V3 amplicons had

higher richness, it was necessary to rule out the possibility that

the differences in beta diversity were due to random sampling

variability. Fig. 5 shows that the average weighted UniFrac

distances and Bray-Curtis dissimilarities of all pair of replicates

were approximately the same for both 16S regions. Only the

unweighted UniFrac metric, which is more influenced by the

larger number of rare or unique species, was significantly higher

for the V1–V3 region (p , 0.001).

Bacterial community dynamics
We explored the influence of primer choice on the character-

ization of bacterial community dynamics. For that purpose, we

used the matrices of Bray-Curtis dissimilarities (with OTUs

defined at 97% similarity) or UniFrac distances of all pair of

samples within V1–V3 or V4 datasets. Three types of analyses

were performed: moving-window, similarity decay and species-

time relationship.

Moving-window analysis
The dynamics of microbial communities in the activated sludge

community was initially monitored by measuring month-to-month

variations in bacterial community dissimilarity (Fig. 6). Even

though V1–V3 exhibited higher values of taxonomic and

phylogenetic metrics, both 16S rRNA gene regions yielded

comparable patterns of the changes occurring within the

communities along the fixed time interval. This was valid for

both Bray-Curtis dissimilarity and weighted UniFrac distance

(Pearson coefficients, r = 0.86, r = 0.84, respectively).

Similarity decay
To evaluate how the similarity between communities changed

with increasing time, pairwise UniFrac distances and Bray-Curtis

dissimilarities were converted to similarity values and plotted on a

log scale against all time intervals between sampling. Linear

regressions had slightly negative slopes (p , 0.05 in all cases). The

differences in slopes between both regions were not significant for

any of the similarity metrics, indicating that the two 16S rRNA

regions can depict equally well the relatively slow turnover of AS

communities (Fig. 7).

Figure 2. Nonmetric multidimensional scaling based on
classified sequences at the genus level. Symbols represent each
of the time points corresponding to V1–V3 region (n) and to V4 region
(#). Technical replicates are represented with the same symbols, but
different filling (white and gray). The adjoining numbers identify the
samples. Stress = 0.13.
doi:10.1371/journal.pone.0099722.g002
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Figure 3. Quantification of Thiothrix sp. in activated sludge. (A) Representative images of fluorescence in situ hybridization of activated sludge
at times 1 to 12. Two images of the same microscopic field are shown for each time point. Right panels: cells binding to Thiothrix-specific Cy3-labeled
G123T probe. Left panels: corresponding views of DAPI stained cells. Photomicrographs were acquired in a CSLM at a magnification of 600X. Scale
bar = 50 mm, applies to all panels. (B) Biovolume fraction of Thiothrix relative to total bacteria determined by FISH (X). Relative abundances of
Thiothrix sp determined by amplicon sequencing using the V1–V3 region (n) and the V4 region (#).
doi:10.1371/journal.pone.0099722.g003
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Species-time relationship
Community dynamics was ultimately analyzed through the

species-time relationship, which describes by the power law

equation S = cTw how the number of species rises with increasing

time of observation. The bacterial taxa–time relationships were

displayed in a log–log space plot (Fig. 8). The average of exponent

w of the V1–V3 region calculated using classified sequences

(0.4160.06) was very close to the average exponent calculated

from that of the V4 region (0.4460.02, p = 0.49). The OTU-

based analysis yielded for the V1–V3 region a slightly higher

exponent w (0.4560.02) than the one calculated from the data of

the V4 region (0.37760.004, p = 0.04).

Community structure and WWTP operation
A Canonical Analysis of Principal Coordinates (CAP) was

applied to examine the influence of targeting different regions on a

constrained ordination (Fig. 9). There is no clear pattern in terms

of the distribution of samples along the principal coordinate axes

in the constrained analyses. The temperature was the only

operational variable that showed significant correlation with

bacterial communities over time (p = 0.01 for both regions).

Discussion

Our results show that despite giving a biased estimation of

bacterial diversity, different 16S rRNA gene primer sets used for

high-throughput amplicon sequencing provide a similar quantita-

tive measure of activated sludge bacterial population dynamics.

This is important because in diverse and dynamic microbial

ecosystems detecting and understanding temporal patterns may be

more informative than knowing the identity of the individual

populations.

It is well known that in PCR-based metagenomic analyses the

selection of the 16S rRNA gene region that is amplified carries a

potential source of bias for the estimation of diversity

[1,11,17,18,19,20,21,22,23]. In most studies, comparison between

samples is appropriately validated by the fact that all samples are

subjected to the same biases. We have detected consistently higher

richness estimations for V1–V3 data, likely based on the fact that

V4 has a lower coverage due to the reduced conservation at

flanking sites [37]. However, the matrices describing the dissim-

ilarity between all pair of bacterial communities in each time series

were highly correlated for both the V1–V3 and V4 regions

Bacterial population dynamics in wastewater treatment
Still, the question remains as to whether the skewed represen-

tation of microbial diversity may lead to inaccurate reflections of

the temporal scaling. Based on a growing body of literature on

microbial community dynamics, it has been suggested that the

variations through time exhibited by microbial communities are,

as in plant and animal communities, likely influenced by a variety

of abiotic and biotic factors [25,38]. The temporal patterns could

Figure 4. Composition of the temporal core of activated sludge samples. Distribution of bacterial orders within the core microbiome. Data
of each 16S rRNA region correspond to the average of 12 duplicate monthly samples.
doi:10.1371/journal.pone.0099722.g004
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therefore be used to address ecological questions about mecha-

nisms and processes [39,40]. In the particular case of biological

wastewater treatment, it has long been recognized that highly

variable community structures can sustain stable process perfor-

mance, most likely on the basis of the turnover of functionally

equivalent species [26,41,42,43,44,45,46,47]. Therefore, it is

challenging to discriminate between shifts in community structure

due to the natural, unperturbed dynamics from those caused by

biotic and environmental variations [38,40]. Important steps have

been taken to advance our understanding of how the variability in

community composition is shaped by key ecological factors in

wastewater treatment, e.g. through the work performed in lab

scale activated sludge bioreactors, which led to the discovery of a

positive correlation between population dynamics and perfor-

mance efficiency in full-scale bioreactors treating brewery waste-

water [48], and also through the finding of the dependency of the

turnover of bacterial species on the organic loading rate [49], and

on the metacommunity size [50].

We show in this work that despite the differences in a-diversity

metrics, amplicon abundance of both V1–V3 and V4 regions

provide quantitatively equivalent measures of bacterial turnover.

The exponent w of the power law STR, which characterizes the

increase in the observed number of species with increasing time

[39] was very similar for both regions, and falls within the range of

previous surveys of other microbial, animal and plant communities

[25]. Only the exponent calculated from the OTU-based analysis

was slightly higher for the V1–V3 region, compared to the one

calculated for the V4 region.

As pointed out by [51], several mechanisms can influence the

slope of STR, including the fact that longer time periods allow the

sampling of more individuals and incorporate increased environ-

mental heterogeneity. Additionally species co-occurrence can be

influenced by dispersal limitations or biotic interactions [51].

Figure 5. Pairwise comparisons between all samples in each
dataset. Boxplot of median, range and interquartile range of (A) Bray-
Curtis dissimilarity, (B) weighted UniFrac distance and (C) unweighted
UniFrac distance.
doi:10.1371/journal.pone.0099722.g005

Figure 6. Moving-window analysis. Symbols indicate the mean of
(A) Bray-Curtis dissimilarities or (B) weighted UniFrac distances between
consecutive sampling points within the V1–V3 (n) and the V4 (#)
datasets. Error bars represent SEM.
doi:10.1371/journal.pone.0099722.g006
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Therefore, although inferring causal explanation of STR curves

will remain difficult, a suitable description of microbial population

dynamics could help to disentangle the contribution of each of the

individual factors.

The change between community profiles of consecutive time

samples (moving-window analysis) appeared to follow a seasonal

pattern, with higher variability occurring during the warm

months. Directional changes in community composition in

response to environmental conditions have not been universally

observed in all microbial assemblages, but have been detected in

several aquatic ecosystems [52,53,54]. Although longer time-series

observations will be needed to confirm this trend, this result is

consistent with the fact that temperature is the environmental

variable that best explained the temporal changes in activated

sludge bacterial community structure, a finding that has been

reported before [26,55,56]. We note that although the correlation

Figure 7. Impact of primer choice on the similarity decay. (A, B) Bray-Curtis dissimilarities, (C, D) weighted UniFrac, and (E, F) unweighted
UniFrac distances, were converted to similarities and fitted to a log-linear model. Symbols represent each of the pairwise comparisons according to
V1–V3 region (n) and to V4 region (#). Technical replicates are represented with the same symbols, but different filling (white and gray). Linear
regressions were calculated independently for each replicate and plotted with continuous and dashed lines. Slopes derived from V1–V3 and V4 data
sets were not significantly different.
doi:10.1371/journal.pone.0099722.g007
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may be artificial because the samples are related by time, samples

were not ordinated according a temporal gradient, but the

maximum separation occurred along the first axis between winter

samples, which had temperatures below 18uC and summer

samples, with temperatures above 26uC.

Yet the very low rate of similarity decay across time intervals

detected equivalently by both 16S rRNA regions indicated that the

dynamic changes in the bacterial community did not continue to

diverge with increasing time. This can be understood by the fact

that approximately two third of the abundance in the community

was constituted by a temporally stable ‘‘core’’, whereas only rarer

taxa exhibited higher variability. A similar pattern has already

been observed in microbial communities involved in wastewater

treatment, both aerobic [55] and anaerobic [48]. This is also

consistent with the conclusions derived from a recent meta-

analysis that included 76 bacterial and archaeal time series

assessed via high-throughput sequencing of the 16S rRNA gene

[25], which showed that microbial communities of brewery

wastewater treatment [48] were less variable than most microbial

assemblages. These observations have been interpreted in terms of

the potentially important influence of deterministic processes that

may lead to species sorting within wastewater treatment commu-

nities [25]. We agree with this hypothesis, based on the results

presented in this work and on previous data from our and other

laboratories, which suggest an important role for niche selection in

the assembly of bacterial communities in biological wastewater

treatment. In a survey of industrial and domestic activated sludge

systems, we have shown that samples from geographically

distributed WWTP clustered according to the type of treated

wastewater rather than by geographic distance or operational

conditions [57]. Additionally, a recent meta-analysis of 50

activated sludge samples from globally distributed full-scale

WWTPs confirmed that bacterial assembly in AS was shaped by

taxonomic relatedness and that bacterial co-occurrence at high

taxonomic ranks was higher than expected by chance [58]. A

different meta-analysis of 78 anaerobic digester samples originat-

Figure 8. Impact of primer choice on bacterial turnover. The rate
of species replacement (w) was calculated on the basis of (A) the
classified sequences and (B) OTUs with a cutoff of 97% similarity.
Symbols represent the average values for each time point according to
V1–V3 region (n) and to V4 region (#). Error bars in the log-log space
represent SEM of log values.
doi:10.1371/journal.pone.0099722.g008

Figure 9. Constrained Analysis of Principal Coordinates (CAP).
CAP was performed using the average weighted UniFrac distances and
four measured operational parameters: temperature, mixed liquor
suspended solids (MLSS), sludge volume index (SVI) and influent
biochemical oxygen demand (BOD). (A) V1–V3 region; (B) V4 region.
doi:10.1371/journal.pone.0099722.g009
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ing from 28 different studies also found that digester microbiomes

clustered by substrate type [59].

Bias in the representation of the core community
Thus, the environmental filter leads to the recruitment of a core

of bacterial populations, which are likely associated to the function

of the community. Although the communities profiled by each of

the 16S rRNA gene region were distinct from each other, both

regions provided a qualitatively equivalent representation of the

core constituents, whereas just minor OTUs were detected only by

a single pair of primers. This is why it was still possible to find

patterns of relatedness even in datasets that incorporated

sequences covering different regions of the 16S rRNA [57,59].

However, because of the different amplification efficiencies of

particular species for each region [15], there were large differences

in the proportional abundance of the core species, as well as in the

detection of rare members of the community. As in previous

studies of in vitro-simulated communities [15], we detected the

presence of few sequences likely prone to PCR bias (Thiothrix for

the V1–V3 region, Thermomonas and Comamonas for the V4 region),

which can drastically skew the observed relative abundances of

other members of the community. Additionally, clustering

methods and taxonomic assignments can also affect the outcome

of community structure analyses. Together, these differences are

responsible for the separation of communities according to the

amplicon region rather to the sample identity (Fig. 2, see also [17]).

Further pros and cons of using amplicon sequencing to quantify

critical bacterial populations are illustrated by the case of Thiothrix.

The activated sludge process is sensitive to the outgrowth of

particular populations, which can be detrimental to the process

performance. Thiothrix is a colorless sulfur-oxidizing filamentous

bacteria that may cause bulking, one of the most common

operational problem affecting activated sludge systems [60]. Data

sets from both regions showed indeed large differences in the

relative abundance of Thiothrix. In some of the samples the OTU

assigned to Thiothrix had a disproportionately large effect on the

Shannon index, but only in the V1–V3 data set. This case serves to

illustrate how the preferential amplification of particular sequences

may render the determination of diversity indices inaccurate.

Nevertheless, the relative abundance of Thiothrix in the amplicon

sequencing data from both regions correlated with the estimation

of Thiothrix abundance obtained using fluorescence in situ

hybridization. Thus, even though amplicon sequencing does not

provide a fully quantitative description of Thiothrix abundance,

either region can still provide a suitable qualitative picture of their

relative content. Future studies should aim to address whether this

correlation holds beyond the organism studied here by analyzing a

larger number of bacterial populations.

Concluding remarks
In spite of the considerable effort already made to minimize the

bias introduced in PCR-mediated determination of microbial

diversity, there is broad consensus about the practical impossibility

of completely achieving this goal. We show that despite this bias,

amplicon sequencing can be confidently used for the quantitative

assessment of bacterial community dynamics, and provides a

proper qualitative account of general taxa in the community,

especially when the data are obtained over a convenient time

window rather than at a single time point. This is significant

because it allows direct comparison between studies performed

using different 16S rRNA regions. On the other hand, because of

the distortion caused by the preferential amplification of particular

sequences, it is recommended that quantitative characterization of

critical bacterial populations rely on a truly quantitative method,

such as FISH.

Supporting Information

File S1 Supporting Information file. Table S1. Operational

parameters of the wastewater treatment plant. Table S2. Numbers

of reads obtained throughout the bioinformatic workflow. Table

S3. Distribution of classified 16S rRNA sequences at the phylum

level for 12 activated sludge samples (two technical replicates for

each of the two variable regions). Figure S1. Heatmap of bacterial

genera abundance in each time point, based on the analysis of the

two 16S rRNA regions. The 25 most abundant genera are shown.

Color scale refers to the square root of the abundance of each

genus relative to all bacterial sequences. Figure S2. Estimates for

bacterial richness are affected by the choice of primers.

Rarefaction curves built for OTUs defined at 97% similarity.

Each plot corresponds to a time point (month) for V1–V3 (n) and

V4 (#). Error bars show the 95% confidence interval derived

from the 1000-time iterative sampling. Figure S3. Effect of the

different primer sets on the estimation of alpha-diversity. (A)

Observed richness and (B) Shannon index were calculated on the

normalized samples as average between the two technical

replicates. Gray bars represent the values obtained with primers

F8-R534 (V1–V3) and white bars, with primers F563-R907 (V4).

Error bars show SEM. Figure S4. Changes in the relative sequence

abundance of bacterial core members. A) Time series of the

relative abundances of core members for each 16S rRNA variable

region data set. OTUs considered part of the core were detected in

all twelve sampling points in at least one 16S rRNA region; all

other OTUs were grouped as ‘‘not core’’. Replicates within each

16S rRNA region were averaged for clarity of presentation. B)

Moving-window analysis. Symbols indicate the mean of Bray-

Curtis dissimilarities between consecutive sampling points within

the V1–V3 (n) and the V4 (#) core datasets. Error bars represent

standard error. Figure S5. Comparison of beta diversity results

based on V1–V3 and V4 16r RNA regions. Procrustes analysis of

NMDS ordination plots based on V1–V3 and V4 datasets.

Replicates within each 16S rRNA region were averaged for clarity

of presentation. Blue lines connect paired samples on the target

configuration indicated by circles (V1–V3 region), and the

reference configuration (end of arrow, V4 region). Correlation

r = 0.90, p , 0.001.

(PDF)

Acknowledgments

We are grateful to staff members of the wastewater treatment plant for

making available for us the samples and the operational data. F.M.I. is a

fellow, and E.L.M.F. and L.E. are investigators from the Consejo Nacional

de Investigaciones Cientı́ficas y Técnicas of Argentina (CONICET).

Author Contributions

Conceived and designed the experiments: FMI MVP ELMF LE.

Performed the experiments: FMI MVP. Analyzed the data: FMI MVP

ELMF LE. Wrote the paper: FMI MVP LE.

References

1. Pinto AJ, Raskin L (2012) PCR biases distort bacterial and archaeal community

structure in pyrosequencing datasets. PLoS One 7: e43093.

2. Forney LJ, Zhou X, Brown CJ (2004) Molecular microbial ecology: land of the

one-eyed king. Curr Opin Microbiol 7: 210–220.

Amplicon Sequencing Bias and Bacterial Community Dynamics

PLOS ONE | www.plosone.org 10 June 2014 | Volume 9 | Issue 6 | e99722



3. von Wintzingerode F, Gobel UB, Stackebrandt E (1997) Determination of

microbial diversity in environmental samples: pitfalls of PCR-based rRNA

analysis. FEMS Microbiol Rev 21: 213–229.

4. Hong S, Bunge J, Leslin C, Jeon S, Epstein SS (2009) Polymerase chain reaction

primers miss half of rRNA microbial diversity. ISME J 3: 1365–1373.

5. Mao DP, Zhou Q, Chen CY, Quan ZX (2012) Coverage evaluation of universal

bacterial primers using the metagenomic datasets. BMC Microbiol 12: 66.

6. Sipos R, Szekely AJ, Palatinszky M, Revesz S, Marialigeti K, et al. (2007) Effect

of primer mismatch, annealing temperature and PCR cycle number on 16S

rRNA gene-targetting bacterial community analysis. FEMS Microbiol Ecol 60:

341–350.

7. Smith S, Vigilant L, Morin PA (2002) The effects of sequence length and

oligonucleotide mismatches on 59 exonuclease assay efficiency. Nucleic Acids

Res 30: e111.

8. Polz MF, Cavanaugh CM (1998) Bias in template-to-product ratios in

multitemplate PCR. Appl Environ Microbiol 64: 3724–3730.

9. Reysenbach AL, Giver LJ, Wickham GS, Pace NR (1992) Differential

amplification of rRNA genes by polymerase chain reaction. Appl Environ

Microbiol 58: 3417–3418.

10. Suzuki M, Rappe MS, Giovannoni SJ (1998) Kinetic bias in estimates of coastal

picoplankton community structure obtained by measurements of small-subunit

rRNA gene PCR amplicon length heterogeneity. Appl Environ Microbiol 64:

4522–4529.

11. Baker GC, Smith JJ, Cowan DA (2003) Review and re-analysis of domain-

specific 16S primers. J Microbiol Meth 55: 541–555.

12. Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, et al. (2013) Evaluation

of general 16S ribosomal RNA gene PCR primers for classical and next-

generation sequencing-based diversity studies. Nucleic Acids Res 41: e1.

13. Youssef N, Sheik CS, Krumholz LR, Najar FZ, Roe BA, et al. (2009)

Comparison of species richness estimates obtained using nearly complete

fragments and simulated pyrosequencing-generated fragments in 16S rRNA

gene-based environmental surveys. Appl Environ Microbiol 75: 5227–5236.

14. Fredriksson NJ, Hermansson M, Wilen BM (2013) The choice of PCR primers

has great impact on assessments of bacterial community diversity and dynamics

in a wastewater treatment plant. PLoS One 8: e76431.

15. Lee CK, Herbold CW, Polson SW, Wommack KE, Williamson SJ, et al. (2012)

Groundtruthing next-gen sequencing for microbial ecology-biases and errors in

community structure estimates from PCR amplicon pyrosequencing. PLoS One

7: e44224.

16. Schloss PD, Gevers D, Westcott SL (2011) Reducing the effects of PCR

amplification and sequencing artifacts on 16S rRNA-based studies. PLoS One 6:

e27310.

17. Peiffer JA, Spor A, Koren O, Jin Z, Tringe SG, et al. (2013) Diversity and

heritability of the maize rhizosphere microbiome under field conditions. Proc

Natl Acad Sci U S A 110: 6548–6553.

18. Kumar PS, Brooker MR, Dowd SE, Camerlengo T (2011) Target region

selection is a critical determinant of community fingerprints generated by 16S

pyrosequencing. PLoS One 6: e20956.

19. Engelbrektson A, Kunin V, Wrighton KC, Zvenigorodsky N, Chen F, et al.

(2010) Experimental factors affecting PCR-based estimates of microbial species

richness and evenness. ISME J 4: 642–647.

20. Claesson MJ, O’Sullivan O, Wang Q, Nikkila J, Marchesi JR, et al. (2009)

Comparative analysis of pyrosequencing and a phylogenetic microarray for

exploring microbial community structures in the human distal intestine. PLoS

One 4: e6669.

21. Claesson MJ, Wang Q, O’Sullivan O, Greene-Diniz R, Cole JR, et al. (2010)

Comparison of two next-generation sequencing technologies for resolving highly

complex microbiota composition using tandem variable 16S rRNA gene regions.

Nucleic Acids Res 38: e200.

22. Cai L, Ye L, Tong AH, Lok S, Zhang T (2013) Biased diversity metrics revealed

by bacterial 16S pyrotags derived from different primer sets. PLoS One 8:

e53649.

23. Guo F, Zhang T (2013) Biases during DNA extraction of activated sludge

samples revealed by high throughput sequencing. Appl Microbiol Biotechnol 97:

4607–4616.

24. Gonzalez A, King A, Robeson II MS, Song S, Shade A, et al. (2012)

Characterizing microbial communities through space and time. Curr Opin

Biotechnol 23: 431–436.

25. Shade A, Caporaso JG, Handelsman J, Knight R, Fierer N (2013) A meta-

analysis of changes in bacterial and archaeal communities with time. ISME J 7:

1493–1506.

26. Wells GF, Park HD, Eggleston B, Francis CA, Criddle CS (2011) Fine-scale

bacterial community dynamics and the taxa-time relationship within a full-scale

activated sludge bioreactor. Water Res 45: 5476–5488.

27. Eichner CA, Erb RW, Timmis KN, Wagner-Dobler I (1999) Thermal gradient

gel electrophoresis analysis of bioprotection from pollutant shocks in the

activated sludge microbial community. Appl Environ Microbiol 65: 102–109.

28. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, et al. (2009)

Introducing mothur: open-source, platform-independent, community-supported

software for describing and comparing microbial communities. Appl Environ

Microbiol 75: 7537–7541.

29. Quince C, Lanzen A, Davenport RJ, Turnbaugh PJ (2011) Removing noise

from pyrosequenced amplicons. BMC Bioinformatics 12: 38.

30. Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM, et al. (2014) Ribosomal

Database Project: data and tools for high throughput rRNA analysis. Nucleic

Acids Res 42: D633–D642.

31. Lozupone C, Knight R (2005) UniFrac: a new phylogenetic method for

comparing microbial communities. Appl Environ Microbiol 71: 8228–

8235.

32. Marzorati M, Wittebolle L, Boon N, Daffonchio D, Verstraete W (2008) How to

get more out of molecular fingerprints: practical tools for microbial ecology.

Environ Microbiol 10: 1571–1581.

33. Anderson MJ, Willis TJ (2003) Canonical analysis of principal coordinates: a

useful method of constrained ordination for ecology. Ecology 84: 511–

525.

34. Kanagawa T, Kamagata Y, Aruga S, Kohno T, Horn M, et al. (2000)

Phylogenetic analysis of and oligonucleotide probe development for eikelboom

type 021N filamentous bacteria isolated from bulking activated sludge. Appl

Environ Microbiol 66: 5043–5052.

35. Daims H (2009) Use of fluorescence in situ hybridization and the daime image

analysis program for the cultivation-independent quantification of microorgan-

isms in environmental and medical samples. Cold Spring Harb Protoc 2009: pdb

prot5253.

36. Wallner G, Amann R, Beisker W (1993) Optimizing fluorescent in situ

hybridization with rRNA-targeted oligonucleotide probes for flow cytometric

identification of microorganisms. Cytometry 14: 136–143.

37. Vasileiadis S, Puglisi E, Arena M, Cappa F, Cocconcelli PS, et al. (2012) Soil

bacterial diversity screening using single 16S rRNA gene V regions coupled with

multi-million read generating sequencing technologies. PLoS One 7:

e42671.

38. Oliver A, Lilley AK, van der Gast CJ (2011) Species-time relationships for

bacteria. In: Hirsch PR, Ogilvie LA, editors. Microbial Ecological Theory: From

Individuals to Ecosystems. Norwich, UK: Horizon Scientific Press.

39. Adler PB, White EP, Lauenroth WK, Kaufman DM, Rassweiler A, et al. (2005)

Evidence for a general species-time-area relationship. Ecology 86: 2032–2039.

40. Magurran AE, Henderson PA (2010) Temporal turnover and the maintenance

of diversity in ecological assemblages. Philos Trans R Soc Lond B Biol Sci 365:

3611–3620.

41. Ayarza JM, Guerrero LD, Erijman L (2010) Nonrandom assembly of bacterial

populations in activated sludge flocs. Microb Ecol 59: 436–444.

42. Falk MW, Song KG, Matiasek MG, Wuertz S (2009) Microbial community

dynamics in replicate membrane bioreactors—natural reproducible fluctuations.

Water Res 43: 842–852.

43. Fernandez A, Huang S, Seston S, Xing J, Hickey R, et al. (1999) How stable is

stable? Function versus community composition. Appl Environ Microbiol 65:

3697–3704.

44. Kaewpipat K, Grady CP Jr (2002) Microbial population dynamics in laboratory-

scale activated sludge reactors. Water Sci Technol 46: 19–27.

45. LaPara TM, Nakatsu CH, Pantea LM, Alleman JE (2002) Stability of the

bacterial communities supported by a seven-stage biological process treating

pharmaceutical wastewater as revealed by PCR-DGGE. Water Res 36: 638–

646.

46. Wang X, Wen X, Criddle C, Yan H, Zhang Y, et al. (2010) Bacterial community

dynamics in two full-scale wastewater treatment systems with functional stability.

J Appl Microbiol 109: 1218–1226.

47. Wells GF, Park HD, Yeung CH, Eggleston B, Francis CA, et al. (2009)

Ammonia-oxidizing communities in a highly aerated full-scale activated sludge

bioreactor: betaproteobacterial dynamics and low relative abundance of

Crenarchaea. Environ Microbiol 11: 2310–2328.

48. Werner JJ, Knights D, Garcia ML, Scalfone NB, Smith S, et al. (2011) Bacterial

community structures are unique and resilient in full-scale bioenergy systems.

Proc Natl Acad Sci U S A 108: 4158–4163.

49. van der Gast CJ, Ager D, Lilley AK (2008) Temporal scaling of bacterial taxa is

influenced by both stochastic and deterministic ecological factors. Environ

Microbiol 10: 1411–1418.

50. Ayarza JM, Erijman L (2011) Balance of neutral and deterministic components

in the dynamics of activated sludge floc assembly. Microb Ecol 61: 486–495.

51. Scheiner SM, Chiarucci A, Fox GA, Helmus MR, McGlinn DJ, et al. (2011)

The underpinnings of the relationship of species richness with space and time.

Ecol Monogr 81: 195–213.

52. Fuhrman JA, Hewson I, Schwalbach MS, Steele JA, Brown MV, et al. (2006)

Annually reoccurring bacterial communities are predictable from ocean

conditions. Proc Natl Acad Sci U S A 103: 13104–13109.

53. Heinrich F, Eiler A, Bertilsson S (2013) Seasonality and environmental control of

freshwater SAR11 (LD12) in a temperate lake (Lake Erken, Sweden). Aq Microb

Ecol 70: 33–44.

54. Shade A, Chiu C-Y, McMahon KD (2010) Seasonal and episodic lake mixing

stimulate differential planktonic bacterial dynamics. Microb Ecol 59: 546–554.

55. Kim TS, Jeong JY, Wells GF, Park HD (2012) General and rare bacterial taxa

demonstrating different temporal dynamic patterns in an activated sludge

bioreactor. Appl Microbiol Biotechnol 97: 1755–1765.

56. Werker AG (2006) An evaluation of full-scale activated sludge dynamics using

microbial fatty acid analysis. Water Sci Technol 54: 11–19.

57. Ibarbalz FM, Figuerola EL, Erijman L (2013) Industrial activated sludge exhibit

unique bacterial community composition at high taxonomic ranks. Water Res

47: 3854–3864.

Amplicon Sequencing Bias and Bacterial Community Dynamics

PLOS ONE | www.plosone.org 11 June 2014 | Volume 9 | Issue 6 | e99722



58. Ju F, Xia Y, Guo F, Wang Z, Zhang T (2014) Taxonomic relatedness shapes

bacterial assembly in activated sludge of globally distributed wastewater
treatment plants. Environ Microbiol doi:10.1111/1462–2920.12355

59. Zhang W, Werner JJ, Agler MT, Angenent LT (2013) Substrate type drives

variation in reactor microbiomes of anaerobic digesters. Bioresour Technol 151:
397–401.

60. Jenkins D, Richard MG, Daigger GT (2004) Manual on the causes and control

of activated sludge bulking, foaming, and other solids separation problems: IWA

publishing.

Amplicon Sequencing Bias and Bacterial Community Dynamics

PLOS ONE | www.plosone.org 12 June 2014 | Volume 9 | Issue 6 | e99722


