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Abstract

Increases in atmospheric carbon dioxide are leading to physical changes in marine environments including parallel
decreases in ocean pH and increases in seawater temperature. This study examined the impacts of a six month exposure to
combined decreased pH and increased temperature on the immune response and disease status in the blue mussel, Mytilus
edulis L. Results provide the first confirmation that exposure to future acidification and warming conditions via aquarium-
based simulation may have parallel implications for bivalve health. Collectively, the data suggests that temperature more
than pH may be the key driver affecting immune response in M. edulis. Data also suggests that both increases in
temperature and/or lowered pH conditions may lead to changes in parasite abundance and diversity, pathological
conditions, and bacterial incidence in M. edulis. These results have implications for future management of shellfish under a
predicted climate change scenario and future sustainability of shellfisheries. Examination of the combined effects of two
stressors over an extended exposure period provides key preliminary data and thus, this work represents a unique and vital
contribution to current research efforts towards a collective understanding of expected near-future impacts of climate
change on marine environments.
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Introduction

Increases in atmospheric carbon dioxide are leading to physical

changes in marine environments. Under the IPCC IS92a CO2

emission scenario, ocean pH is expected to decrease by 0.2–0.4

units by the year 2100 [1,2]. In addition to changes in ocean pH,

organisms will also have to contend with simultaneous increases in

seawater temperature with the current average sea surface

temperature of 19.7uC predicted to rise to 22.7uC by the end of

the century [2,3].

The ability of marine organisms to adjust to future climate

change conditions will be critical to their health and ultimate

survival. Bivalves are unable to thermo-regulate and are consid-

ered poor regulators of haemolymph acid-base balance [4,5].

Consequently, pH and temperature changes in the environment

will likely have direct influence on bivalve haemolymph pH and

temperature. Additionally, any physiological mechanism associat-

ed with the bivalve circulatory system is liable to be affected under

hypercapnic conditions. The bivalve immune system, for example,

exists as an integrative part of the circulation system [6,7]. The

circulating cells, or haemocytes, represent the major cellular

component of the animal’s immune response and are responsible

for a number of defence activities including phagocytosis or

encapsulation of foreign or diseased cells, release of reactive

oxygen metabolites and enzymes, and secretion of cytotoxic

molecules [6,8,9,10].

While prior investigations of the consequences of near-future

changes in ocean pH and temperature have demonstrated a

number of effects on marine organism physiology including

impacts on growth, calcification and acid-base status [4,11–18],

less confirmed is how coinciding stressors might influence immune

response in organisms [19]. Changes to single environmental

factors, particularly temperature [20–24] but also salinity [25], pH

[26] and dissolved oxygen [27] have demonstrated impacts on

various immunological parameters including haemocyte numbers,

phagocytosis and oxidative burst response.

The immune system is a major physiological mechanism

ensuring host survival in the battle with pathogenic or parasitic

organisms [28]. As stress impacts immune function and such

mechanisms are the primary line of defence against pathogens,

there is likely a strong link between immune response and the

outbreak of disease in shellfish culture [29,30]. Thus, climate

change impacts on immunological aspects of physiology may be

paralleled by associated changes in bivalve disease status.

Global climate change has increased pathogen development

and survival, disease transmission and host susceptibility in the last
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thirty years [31–40]. Increased disease development in certain

ecosystems can contribute to species decline and even extinction.

Disease dynamics in the marine environment are being influenced

by physical, chemical and biological alterations driven by climate

change and such impacts will affect the sustainability of the

shellfish industry. Multiple climate drivers such as ocean

acidification and warming ocean temperatures have the potential

to promote pathogen range expansion, infected host invasions and

native host decline [41,42] and tropical pathogen range contrac-

tions may also occur [43]. Additionally, it is possible that certain

pathogens will be detrimentally affected by climate change

conditions via changes to their required conditions thus allowing

a relatively small number of emergent pathogens to infect new

hosts with little or no tolerance [31].

Previous studies have shown associations between parasites and

changing ocean temperatures, with a warmer environment being

more favourable to the parasite [44–49]. Higher temperatures

resulting in lower oxygen levels may stress organisms thus

increasing their susceptibility to disease [50,51,52]. In the

temperate zone, shorter milder winters are expected to increase

the frequency and intensity of transmission of diseases [31].

Certain parasites also have higher growth rates, higher reproduc-

tive ability and decreased generation time with higher tempera-

tures [53,54].

Prior investigation also indicates that ocean acidification and

associated stressors will be negative for calcifying organisms with

more energy being required to build shells, which will reduce the

amount of energy available to find food, reproduce or resist

parasites and disease [26,55,56,57]. It is possible that ocean

acidification will also have a regulatory effect on certain parasite

populations especially those with free-living developmental stages

[58,59]. However it is also possible that increased pathogenicity

will occur if certain parasites are less affected by an acidified

environment than their respective hosts [60].

This research aimed to examine the impacts of exposure to

future ocean warming and acidification on the immune response

and disease status of a commercially important bivalve species,

Mytilus edulis (Linnaeus). The impacts of six months exposure to

lowered pH and increased temperature on immunological

responses, including haemocyte counts, phagocytosis, and nitro-

blue tetrazolium (NBT) reduction, and the health status of the

mussels by histological and molecular examination were investi-

gated.

Materials and Methods

Ethics statement
No specific permits were required for the study, which complied

with all relevant regulations. The species collected in this study is

not endangered or protected.

Study organisms
Mytilus edulis (mean shell length = 50.51 mm, SD = 3.68 mm)

were collected from a sub-tidal population in the Menai Strait,

North Wales, UK on May 3rd, 2011 and acclimatised in large

(200 L) flow-through holding tanks (12.5uC6SD 0.26uC,

pH 8.016SD 0.08, Salinity 346 SD 1 psu, 12L:12D light regime)

at the School of Ocean Sciences, Bangor for a 3 week time period.

During this time, mussels were drip-fed concentrated algal feed

(Instant Algae Shellfish Diet 1800, Reed Mariculture, Campbell,

CA, USA; 40% Isochrysis sp., 15% Pavlova sp., 25% Tetraselmis sp.

and 20% Thalassiosira weissglogii (Grunow); 52% protein, 16.1%

lipid, 22.0% carbohydrate and 9.9% ash) at a ration of 27 mg dry

mass mussel21 day21.

Experimental set-up
Experimental set-up and conditions for this study are described

in detail in Mackenzie et al. [61]. Briefly, M. edulis were exposed to

current (,400 matm) and future (,1000 matm) pCO2 levels in an

aquarium-based CO2 system. Current and future seawater

conditions were simulated with seawater held at two temperatures

(ambient, ambient +4uC) and two pH levels (ambient, ambient -

0.4 pH units) as predicted under the IPCC IS92a CO2 emission

scenario [62]. This set-up allowed for examination of the

interactive effects of varying pH and temperature conditions and

included four treatments: ambient pH at ambient temperature

(ambient), ambient pH at ambient temperature +4uC (warming),

reduced pH at ambient temperature (acidified) and reduced pH at

ambient temperature +4uC (acidified+warming).

Following input of seawater from the Menai Strait to an internal

settling tank, sea water was filtered and UV treated before delivery

to each of four header tanks (150 L) representative of the four

experimental treatments. In-line heaters (Elecro Titanium Digital

Heater) and cooling units (Aqua Medic TITAN 200) were used to

maintain experimental temperatures. A pH controller (Walchem

dual input pH controller) regulated addition of CO2 (g) to achieve

acidified treatments.

Experimental header tanks gravity-fed (flow rate ,5 ml

second21) seawater to 20 replicate 1.5 L tanks per treatment with

overflows running to waste. Eight individual mussels were assigned

to each tank per treatment. Mussels were acclimated to

temperature treatments at an increase of 0.5uC day21. Mussel

tanks were cleaned three times per week and mussels were fed

according to amounts and rates described for the acclimatisation

period.

Seawater parameters
Collection, storage and analyses of seawater carbonate samples

are described in detail in Mackenzie et al. [61]. Briefly, 60 mL total

alkalinity and dissolved inorganic carbon (DIC) seawater samples

were collected fortnightly and sent to the Carbonate System

Facility (LIMS) at the National Oceanography Centre, South-

ampton for total alkalinity and DIC analysis. Temperature

(Mettler Toledo SG2 SevenGO, MT Ltd., Leicester) and salinity

(TMC V2 ATC) of samples were also recorded at time of

collection. Additionally, 30 mL nutrient samples were collected,

filtered and frozen for analysis of phosphate and silicate

concentrations at the Scottish Marine Institute. All values were

entered into the CO2SYS model [63] to determine seawater

carbonate parameters (i.e. pH, pCO2, HCO3, CO3
22, VAr, VCa)

using the thermodynamic constants of Mehrbach et al. [64] refitted

by Dickson and Millero [65]. Carbonate chemistry values for the

four experimental treatments are provided in Table 1. Values

represent the mean 6SD of bimonthly measures taken over the six

months exposure period (n = 12 for each treatment).

Immunological response
Mussels. An initial group of adult M. edulis (n = 5) were

sampled to determine baseline immune status. Following six

months of exposure, five mussels were randomly selected from five

experimental tanks (i.e. replicates) within each treatment (n = 5).

Haemolymph samples of 0.3–0.6 mL were withdrawn from the

sinus of the posterior adductor muscle of each mussel using 2 mL

syringes and 25 G K needles. Five mussels were bled consecutively

so that total haemocyte counts, phagocytosis counts, and NBT

analysis could be carried out concurrently.

Total haemocyte counts. A 20 mL haemolymph subsample

from each mussel was used to determine total haemocytes ml21,

counted using an improved Neubauer haemocytometer [7].
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Phagocytosis. Phagocytosis assay was performed as previ-

ously described [29,66] with some modifications. Briefly, a 20 mL

subsample of haemolymph was placed onto a glass slide and

allowed to adhere for 20 min in a moist incubation chamber

before the addition of 20 mL of fluorescein 5-isothiocyanate Isomer

1 (FITC) labelled E. coli (Sigma). Glass slides were then incubated

for a further 20 min after which all were rinsed with Tris-HCl

buffer solution containing 2% NaCl (pH 7.6). Unphagocytosed

bacteria were counterstained with ethidium bromide (Sigma) and

then rinsed clear with Tris-HCL. Triplicate counts of 200 cells

were immediately carried out using a 488 nm emission filter on a

Zeiss microscope.

Nitroblue tetrazolium (NBT) reduction. A modified ver-

sion of the nitroblue tetrazolium (NBT) assay, as described by Pipe

[67] and Bussell et al. [25] was applied. Twenty mL of haemocyte

suspension were added to 96 well plates (Fisherbrand) in triplicate

for each sample. Negative and positive controls were incorporated.

Following incubation for 20 min, 20 mL of nitroblue tetrazolium

(NBT) (Sigma) (2 mg/ml in Tris–HCl buffer containing 2% NaCl

(pH 7.6)) were added to one set of triplicate wells for each sample.

Twenty mL Tris buffer were added to corresponding negative

control wells. The well plates were then incubated for a further

20 min before centrifugation (1000 g at 10uC for 10 min). All

wells were then washed with Tris-HCl buffer solution before

another centrifugation (x2) (1000 g) after which 20 uL of methanol

(50%) were added before a final centrifugation. The plates were air

dried before the addition of 240 uL potassium hydroxide (KOH)

and 280 uL dimethylsulphoxide (DMSO) to all plate wells. Optical

density (OD) values were measured on a Dynex MRX-II

spectrophotometer (l= 620 nm).

Disease status
Mussels. An initial sample of adult M. edulis (n = 30) was

screened from the Menai Strait in May 2011 to determine the

health status of the mussels in the field. Following six months of

exposure, twelve mussels were randomly selected from twelve

experimental tanks (i.e. replicates) within each treatment for

determination of health status by histological and molecular

examination (n = 12).

DNA extraction. DNA was extracted from the initial mussel

sample (n = 30) (gill tissue stored in 95% ethanol) using 10%

Chelex 100 resin [68,69]. DNA was extracted from the

corresponding paraffin-embedded tissue of each mussel from the

laboratory trial consisting of twelve mussels per treatment (n = 12).

Deparaffinization of the tissue was carried out [70] and DNA

extractions were undertaken using protein precipitate and cell lysis

using the QIAamp DNA Mini Kit (Qiagen).

Standard polymerase chain reaction (PCR). Several

PCRs were carried out to determine (1) which Mytilus species

was being screened, (2) general bacterial screening, (3) general

microbial screening, (4) presence or absence of Marteilia refringens

(Grizel et al) and general haplosporidian spp. screening.

(1) PCR for species identification: Initially a PCR was carried

out to detect the nuclear DNA markers Me15/Me16 [71] to

confirm that M. edulis was being screened as hybrid zones

consisting of M. edulis, Mytilus galloprovincialis (Lamarck) and

hybrids of both parent species are known to occur on the

southwest coast of the UK. The PCR mastermix was modified

slightly to include 56 green buffer. Amplification was conducted

in 25 ml of the reaction mixture containing 14 ml ddH2O, 5 ml 56
green buffer (Promega), 2.5 ml of each of the four deoxyribonu-

cleotide triphosphates dNTPs (dATP, dCTP, dGTP, dTTP)

(0.2 mM), 1.5 ml MgCl2 (25 mM stock), 0.5 ml of the primer

Me15 (59-CCAGTATACAAACCTGTGAAGA-39), 0.5 ml of the
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primer Me16 (59-TGTTGTCTTAATGGTTTGTAAGA-39)

(100 pmol/mL stock), 1 ml of Go Taq DNA polymerase (0.03 U)

and 1 ml of total DNA. Negative controls consisting of ddH20 were

used. The following conditions were used for the PCR in a

thermocycler: 94uC for 30 s, 55uC for 45 s and 70uC for 90 s (40

cycles). The expected product size for M. galloprovincialis is 126 bp

while in M. edulis it is 180 bp. In hybrids both bands occur

simultaneously at 126 bp and 180 bp.

(2) Bacterial screening: PCR was carried out to screen for

general bacterial species that might be present using the universal

primers EUBB and EUBA [72], which amplify the entire

16srRNA region. The PCR mastermix was modified to include

5 ml 56 green buffer, 5 ml dNTP (0.2 mM), 0.5 ml of MgCl2
(25 mM stock), 0.25 ml of each primer (EUBB and EUBA)

(100 pmol/mL stock) and 0.1 ml GoTaq DNA polymerase (0.03 U)

per PCR reaction. The PCR reaction mix was made up to a

volume of 20 ml using ddH20 and 5 ml of undiluted genomic

DNA. The following conditions were used for the PCR in a

thermocycler: 95uC for 5 min, 35 cycles of 95uC for 30 s, 55uC for

30 s and 72uC for 30 s with a final extension at 72uC for 10 min.

The expected product size is 1.5 Kbp. A second pair of primers,

UNIV16s EUB f933/UNIV16s EUB r 1387 [73] which are

specific for universally conserved bacterial 16s rDNA region were

used for the bacterial screening. The PCR mastermix and

thermocycling conditions were modified. The PCR mastermix

was made up to a volume of 49 ml for each PCR reaction: 37.75 ml

ddH20, 10 ml 56green buffer, 1 ml dNTPs (0.2 mM), 3 ml MgCl2
(25 mM stock), 1 ml of each primer (100 pmol/mL stock) and

0.25 ml GoTaq DNA polymerase (0.03 U). 1 ml of undiluted

genomic DNA was screened. The PCR was carried out in a

thermocycler as follows: 95uC for 1 min, 35 cycles at 94uC for

20 s, 56uC for 30 s, 72uC for 30 s and a final extension at 72uC for

7 min.

(3) Microbial screening: Universal primers 18ScomF1/

18ScomR1 [74], which amplify the 18Scom region, were used

for a general health screen to assess if any other foreign DNA in

mussel tissue could be detected.

(4) Screening for potential mussel parasites: A PCR protocol

targeting the ITS1 was carried out to detect M. refringens [75].

Several generic haplosporidian PCRs were carried out using the

HAP-F1 and HAP-R3 primers [76] and the ssu980 and HAP-R1

primers [76,77]. Electrophoresis of the amplification products

from all PCRs was conducted in a 2% agarose gel. Fifteen mL of

ethidium bromide, EtBr, (10 mg/ml stock) was added to the

agarose gel and the gel was run at 110 V for 60 min.

Sequencing. Direct sequencing was carried out on products

amplified by eurofins MWG using ABI 3730xl 96-capillary DNA

Analyzers. DNA from pooled PCR products (n = 3/n = 4) from

multiple individuals in each sample were isolated and purified

using the Qiaquick gel extraction kit (Qiagen) prior to direct

sequencing Both the forward and reverse strands of DNA samples

were sequenced commercially (MWG eurofins). Each sequence

was matched against the National Centre for Biotechnology

Information (NCBI) nucleotide database with BLASTn (Basic

Local Alignment Search Tool) to identify the species present.

Histology. A transverse section of mussel tissue (,1 cm2)

containing mantle, gill, digestive gland and gonad tissue was

excised and fixed in 96% ethanol initially and tissue sections were

subsequently transferred to Davidson’s fixative at 4uC for 48 hrs

[78] before being processed. The fixed tissue was dehydrated

through an ascending ethanol series and embedded in paraffin.

5 mm tissue sections were stained using haematoxylin and eosin.

Tissue slides were scanned for any pathological or morphological

observations and macro- or microparasites at a magnification of

406and under oil at 100x. The location and intensity of each type

of parasite were recorded and the prevalence and intensity of

infection were calculated where possible.

Statistical analyses
All statistical analyses were carried out in SPSS 14.0 for

Windows (2005). Two-way ANOVAs were applied to determine

the effect of pH, temperature and their interaction on immuno-

logical parameters (p,0.05). Data was tested for normality and

homogeneity of variances (Levene’s Test). One-way ANOVA were

used to directly compare treatments. If necessary, data was log-

transformed to meet assumptions. Significant difference in the

diversity and prevalence of each parasite group and pathological

condition, with varying pH and temperature, was calculated using

chi-square (x2) analysis with significance determined at p,0.05.

Results

Immunological response
Total haemocyte counts. Two-way ANOVA identified a

significant negative effect of increased temperature on haemocyte

counts but neither an influence of pH nor interaction between pH

and temperature (Table 2). Haemocyte counts varied significantly

between groups (F = 24.336; p,0.001) with post-hoc tests revealing

that baseline animals had significantly lower haemocyte counts

than any experimental treatments (ambient (p,0.001), warming

(p = 0.001), acidified (p,0.001), acidified+warming (p = 0.001)).

Animals held at either ambient temperature treatment (ambient,

acidified) had significantly higher haemocyte counts than those

under increased temperature treatments at either pH (warming

(p = 0.005, p,0.001, respectively), acidified+warming (p = 0.004,

p,0.001, respectively)) (Fig. 1).

Phagocytosis. Two-way ANOVA showed a significant pos-

itive effect of increased temperature on percentage of phagocy-

tosed cells as well as a significant interaction between pH and

temperature but no effect of pH (Table 2). The percentage of

phagocytosed cells varied significantly between all groups

(F = 3.846; p = 0.020) but failed assumptions of homogeneity of

variances even after transformed. Post-hoc tests identified a

significantly higher percentage of phagocytosed cells in haemo-

lymph of mussels held at decreased pH and warming conditions

(acidified+warming) than in baseline animals (p = 0.047) or at

ambient temperature treatments at either pH (ambient (p = 0.016),

acidified (p = 0.001)). Additionally, animals held at increased

temperature and ambient pH (warming) had a significantly higher

percentage of phagocytosed cell than those under ambient

temperature and decreased pH (acidified) (p = 0.044) (Fig. 2).

Nitroblue tetrazolium (NBT) reduction. Two-way AN-

OVA identified a significant positive effect of both decreased pH

and increased temperature on NBT reduction but no interaction

between the two factors (Table 2). NBT reduction varied

significantly between treatments (F = 6.349; p = 0.002) with post-

hoc tests revealing that mussels reared under ambient temperature

and pH conditions (ambient) had significantly lowered reduction

than all other experimental treatments (warming (p = 0.004),

acidified (p = 0.022), acidified+warming (p,0.001)) Animals held

under warming conditions at either pH (warming, acidified+
warming) had significantly increased reduction than baseline

animals (p = 0.012 and p = 0.002, respectively) (Fig. 3).

Disease status
PCR and direct sequencing. (1) A product of 180 bp was

amplified in the Me15/Me16 PCR confirming the mussel species

Future Oceanic Conditions Impact Shellfish
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to be M. edulis (Table 3). Direct sequencing confirmed the mussel

species to be M. edulis.

(2) In the PCR using the universal primers for bacteria

screening, EUBB and EUBA [72], multiple products were

amplified at 800 bp, 900 bp and 1000 bp. The second PCR used

to screen for bacteria using the Univ16s EUBf and Univ16s EUBr

primers amplified a product at ,500 bp (Table 3). Several

bacterial species were detected in the initial sample and in the

mussels from all four treatments. The highest prevalence was

observed in mussels from the initial sample (92%), ambient

treatment (92%) and acidified+warming treatment (92%) followed

by the acidified treatment (83%) and warming treatment (67%). In

the bacterial screening, no DNA sequences were recovered for the

products amplified in the EUBA and EUBB PCR. Five forward

and five reverse sequences were obtained from the products

amplified in the Univ16sEUBf and Univ16s EUBr PCR from a

subsample of infected individuals (n = 6). Bacterial species detected

included a Gammaproteobacterium sp. (99% Query coverage,

98% Maximum identity), Pseudomonas sp. (98% Query coverage,

95% Maximum identity), Pectobacterium carotovorium (Jones) (100%

Query coverage, 97% Maximum identity), Xanthomonadaceae sp.

(99% Query coverage, 98% Maximum identity) and Serratia sp.

(99% Query coverage, 97% Maximum identity).

(3) A product (,350 bp) was amplified in the 18Scom region

using the Zhang et al. [74] modified PCR. This product was

amplified in mussels from the initial sample, warming and ambient

treatments but was absent in mussels from the acidified and

acidified+warming treatments. The free-living amoebae Hartman-

nella vermiformis (Page) (85% Query coverage, 99% Maximum

identity) was identified using the 18Scom PCR.

(4) No products were amplified in the ITS region using the M.

refringens PCR (Table 3). A product was amplified (350 bp) using

the generic haplosporidian primers [76] in eighteen individuals in

the initial sample (60% prevalence), however, no products were

amplified in mussels from any of the experimental treatments.

Direct sequencing of the products to confirm haplosporidian

identification in the initial sample using the generic haplosporidian

primers was unsuccessful. Using the second pair of haplosporidian

primers (ssu980 and HAP-R1), a product was amplified at 430 bp

in a single individual in the initial sample, which also amplified a

Figure 1. Effects of temperature and pH on haemocyte count (106 mL21) (±1 SE) in Mytilus edulis (n = 5) following a six month
exposure period to varying temperature and pH conditions. Baseline value shown in grey scale. Lowercase letters indicate significant
differences.
doi:10.1371/journal.pone.0099712.g001

Table 2. Two-way ANOVA results comparing the effects of pH and temperature on immunology (a. haemocyte counts, b.
phagocytosis, c. NBT) in Mytilus edulis following a 6 month exposure period.

Source of variation df SS MS F-ratio P-value

a. Haemocyte Counts

pH 1 0.435 0.435 0.923 0.351

Temperature 1 11.476 11.476 24.343 ,0.001

pH*Temperature 1 0.528 0.528 1.120 0.306

b. Phagocytosis

pH 1 30.854 30.854 0.271 0.610

Temperature 1 1720.224 1720.224 15.133 0.001

pH*Temperature 1 649.686 649.686 5.715 0.030

c. NBT

pH 1 0.186 0.186 4.740 0.045

Temperature 1 0.419 0.419 10.668 0.005

pH*Temperature 1 0.045 0.045 1.137 0.302

Significant values shown in bold (p,0.05).
doi:10.1371/journal.pone.0099712.t002
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product using the HAP-F1 and HAP-R3 primers. No products

were amplified in the mussels from the experimental treatments

(Table 3). In the direct sequencing, two forward and two reverse

DNA sequences were obtained from the replicate PCR products

amplified by the single mussel in the ssu980 and Hap-R1 PCR

[76,77]. Blastn analysis of the DNA isolated from M. edulis

confirmed the DNA to be that from a previously undescribed

haplosporidian (Accession no. KC852876 and KC852877) most

similar to Minchinia chitonis (Lankester) (Accession no. AY449711.1,

95–100% Query coverage, 92–93% Maximum identity) and a

haplosporidian of the Florida marsh clam Cyrenoida floridana (Dall)

(Accession no. AY449712.1, 90–98% Query coverage, 93–95%

Maximum identity). A phylogenetic tree was generated based on

the majority rule jackknife consensus parsimony analysis with 1000

pseudo replicates with 75% character deletion using a heuristic

search with 1000 random sequence additions each.

Histology. In total, seven parasite groups were detected in M.

edulis. Haplosporidian like organisms (HLOs) were observed in the

tissues of ten mussels (33% prevalence) from the initial sample

(Table 4) but were not observed or detected in the final sample of

mussels screened from any treatment group of the laboratory trial.

The HLOs consisted of a cluster of cells of varying sizes

(approximately 10 to 30 microns) each with an eccentric nucleus.

No single parasite species was detected across the initial sample

and all four mussel treatment groups. However, the copepod

Mytilicola intestinalis (Steuer) and the amoeba Hartmannella sp. were

observed in the initial sample and three of the experimental

treatment groups, being absent only in mussels from the warming

treatment. The highest parasite diversity was observed in the initial

sample (6 species) followed by the acidified treatment (4 species),

the ambient and acidified+warming treatments (3 species) and

warming treatment (2 species). A significant decrease in parasite

diversity from the initial sample was observed in three of the

experimental treatments (ambient (p = 0.046), warming

(p = 0.014), acidified+warming (p = 0.046). All other diversity

comparisons were not significant.

Most prevalence comparisons were significantly different for

each parasite and treatment, with the parasite being either absent

or the prevalence increasing or decreasing compared to the initial

sample. However, some comparisons did have a similar preva-

lence. Comparing parasite prevalence within each treatment, in

the initial sample most comparisons were significantly different

except for ciliates and Nematopsis sp. (p = 1) and M. intestinalis and

trematodes (p = 0.411). In the warming treatment, a similar

prevalence was observed for ciliates and trematodes, the only

parasite groups present (p = 1). Of the three parasite groups

Figure 2. Effects of temperature and pH on phagocytosis (% phagocytosed haemocytes) (±1 SE) in haemocytes from Mytilus edulis
(n = 5) following a six month exposure period to varying temperature and pH conditions. Baseline value shown in grey scale. Lowercase
letters indicate significant differences.
doi:10.1371/journal.pone.0099712.g002

Figure 3. Effect of temperature and pH on the reduction of Nitroblue tetrazolium (NBT) (±1 SE) in haemocytes from Mytilus edulis
(n = 5) following a six month exposure period to varying temperature and pH conditions (OD = optical density at l = 620 nm).
Baseline value shown in grey scale. Lowercase letters indicate significant differences.
doi:10.1371/journal.pone.0099712.g003
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present in the ambient treatment, a significant difference in

prevalence was observed between M. intestinalis and prokaryote

inclusions (p = 0.0003) and Hartmannella sp. and prokaryote

inclusions (p = 0.024). No significant difference was observed

between M. intestinalis and Hartmannella sp. (p = 0.189). In the four

parasite groups present in the acidified treatment mussels, most

prevalence comparisons were significantly different (p,0.0001)

except for M. intestinalis and Hartmannella sp. (p = 1). In the

acidified+warming treatment, no significant difference (p = 1) was

observed between trematodes and Hartmannella sp.

Ciliates were only present in mussels from the initial sample and

the warming treatment, with prevalence quadrupled in the latter

showing a significant difference in prevalence between both

samples (p = 0.0002). An increase in the prevalence of M. intestinalis

was observed in three of the four treatments (ambient, acidified,

acidified+warming,) compared to the initial sample, with the

prevalence increasing significantly (p = 0.026) in the acidified+
warming treatment but was not significantly different in the

ambient and acidified treatments (p = 0.3). A slight increase in the

prevalence of trematodes from the initial sample was observed in

the warming treatment, which was not significant (p = 0.6),

whereas a significant decrease (p = 0.0056) in trematode preva-

lence was observed in the only other treatment (acidified+
warming) in which trematodes were observed. Across all

treatments, Nematopsis sp. was only present in one individual of

the acidified treatment. Prokaryote inclusions were observed in a

high proportion of mussels from the ambient and acidified

treatments (58% and 83%, respectively), with a significant

difference being observed between both treatments (p = 0.0001)

(Table 4, Fig. 4).

Pathological conditions. In total, three pathological condi-

tions were observed in the M. edulis. These conditions included

melanin aggregates in the mantle tissue, lipofuscin within the

kidney epithelium [79] and focal haemocyte infiltration in the

vascular connective tissue (Table 5, Fig. 5). All three conditions

were observed in the four treatments however, melanin aggregates

were not observed in the initial sample nor haemocyte infiltration

in the acidified treatment. Mussels with the highest prevalence of

melanin aggregates and lipofuscin, within the kidney epithelium,

were observed in the acidified+warming treatment while the

highest prevalence of haemocyte infiltration was observed in the

warming treatment. No significant difference was calculated for

the number of pathological conditions observed between samples.

Discussion

This is the first confirmation that coinciding exposure to future

acidification and warming conditions has parallel implications for

immune and disease status in M. edulis. Collectively, the data

suggests that temperature more than pH may be the key driver

affecting immune response in M. edulis. Haemocyte counts were

lower under 16uC temperature conditions and phagocytosis

activity increased under such conditions. Conversely, NBT

reduction increased under 16uC conditions and/or pH 7.68

conditions, and therefore the effect of pH to immune function

should not be discounted. Likewise, data suggests that both

increases in temperature and/or lowered pH conditions may lead

to changes in parasite diversity and prevalence, pathological

conditions, and bacterial incidence in M. edulis. These changes

may result in the removal or emergence of a parasite and an

increase or decrease in parasite prevalence. No significant

parasites such as M. refringens for example, were detected in this

study, however, the detection of a previously undescribed HLO in

the initial sample and its impact on that mussel stock, which has

yet to be determined, is significant.

Previous research has shown that increased stress increases total

haemocyte counts (THC) in bivalves [23,80,81]. However,

investigation into the specific effect of temperature stress on

THC has demonstrated both decreases [82,83,84] and increases

[23] in marine bivalves. Our results suggest that temperature

negatively influences THC as warming resulted in a decrease in

circulating haemocytes.

Any metabolic adaptations to warming and/or acidification

stressors could result in a transfer of energy resources to other

physiological systems [85], potentially at the expense of maintain-

ing haemocyte abundance. Therefore, the observed decline in

THC may be indicative of an overall reduced energy state of M.

edulis under stress conditions as been seen previously in marine

bivalves under stress conditions [86]. Similarly, such declines may

be representative of an overall depletion of energy reserves due to

the extended exposure period (which included the species’ natural

spawning windows). Any immunological response mounted by the

species to deal with stressors may also incur energetic costs

including altered energy metabolism, altered fatty acid composi-

tion and reduced reproductive investment [86] and thus, an

animal that has to sustain such a response over time will inevitably

incur reduced energy stores. These in turn may lead to a decreased

ability to mount an effective immunological response particularly if

parallel shifts in pathology and parasite loads coincide. Consistent

Figure 4. Prevalence of parasites in Mytilus edulis.
doi:10.1371/journal.pone.0099712.g004
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increases in THC in all treatments from baseline values could be a

result of either proliferation of cells, or transfer of cells from tissues

into circulation [8] in response to stress conditions. Acidification

conditions did not appear to affect THC. Examination of the sole

effect of acidified seawater conditions by Bibby et al. [26] also

found no effect on THC.

Phagocytosis is considered a good measure of immune

competency in bivalves [87]. Previous studies have demonstrated

that phagocytic activity of haemocytes is affected by changes in

both temperature [28] and acidification [26]. Stress conditions

predominantly cause decreases in phagocytic activity

[23,26,30,88], Conversely, the current study observed significant

increased phagocytosis in M. edulis under increased temperature

with potentially some effect of lowered pH. Such changes were

paralleled by an increase in oxidative burst (NBT). Reduced

oxidative burst has been shown to decline in other bivalve species

under conditions of temperature stress [20]. Increases in both

immunological parameters may be indications of the general

decline in condition of the animal and could also represent a

higher ‘‘immunological load’’ as presented by changing pathogen

and parasite condition induced by temperature and/or pH

stressors.

A reduction in parasite diversity in the treatments compared to

the initial sample may have been due to the artificial holding

conditions in the laboratory or it may have been due to the altered

pH, temperature and ecology of the parasite, such as the removal

of other hosts. The HLOs observed in the initial sample were not

observed in the mussels from the different treatments at the end of

the trial. This is likely due to the removal of mortalities during the

trial, which may have been been infected with the HLOs, while

the survivors were uninfected giving a negative result in the final

sample at the end of the trial.

Prokaryote inclusion bodies, which are bacterial cellular reserve

material used during periods of special growth phases or under

special environmental conditions [89], were not detected in the

initial sample but were observed in both treatments held at 12uC
and were most prevalent in the reduced pH treatment. A high

prevalence of bacteria detected using PCR in all treatment

samples would be expected due to the laboratory holding

conditions.

The prevalence of M. intestinalis, which causes ‘red worm

disease’, almost doubled in the acidified+warming treatment,

when compared to the initial sample. Increasing temperature has

been shown to be a factor influencing infestation rates [90],

however, M. intestinalis was not detected in mussels from the

Figure 5. Prevalence of morphological changes in Mytilus edulis.
doi:10.1371/journal.pone.0099712.g005

Table 5. Prevalence of morphological changes in Mytilus edulis by histology.

Treatment Brown mantle Lipofuscin Haemocyte infiltration

(Melanin aggregates)

Initial sample 0% 3% 3%

(1/30) (1/30)

Ambient 17% 33% 17%

(2/12) (4/12) (2/12)

Warming 42% 25% 58%

(5/12) (3/12) (7/12)

Acidified 42% 17% 0%

(5/12) (2/12)

Acidified+Warming 75% 42% 33%

(9/12) (5/12) (4/12)

Initial prevalence and prevalence following 6 month exposure to ambient, warming, acidified or acidified+warming seawater conditions are presented.
doi:10.1371/journal.pone.0099712.t005
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warming treatment in this study but was present in all other three

treatments which might indicate that this copepod prefers an

environment with a reduced pH when seawater temperatures are

elevated. Hartmannella sp., a free-living amoeba, was observed in

most samples but was absent (warming) or significantly reduced

(acidified+warming) in warming treatments indicating that this

species may be sensitive to elevated seawater temperatures.

Ciliates were only detected in the warming treatment but were

absent in the acidified+warming treatment, which might indicate

that they are sensitive to a reduced pH environment.

Trematodes were only observed in the two treatments held at

16uC, however, a prevalence reduction of almost a third was

observed in the acidified-warming treatment. These results may

indicate that the trematodes are sensitive to a more acidic and

cooler environment, due to their absence in treatments held at

12uC.

In this study, all pathological conditions observed in the initial

sample increased significantly in the four treatments, with an

additional condition (melanin aggregates), which is part of a

general inflammatory-like response in invertebrates [91], being

observed in the laboratory trial mussels. Lipofuscin, lipid-

containing residues of lysosomal digestion, is considered one of

the ageing or ‘‘wear and tear’’ pigments and may be symptomatic

of membrane damage or damage to mitochondria and is thus

associated with the break down and absorption of damaged blood

cells [92,93]. In this study, all mussel samples had lipofuscin within

the kidney epithelium with the acidified+warming treatment

having the highest prevalence. Haemocyte infiltration had a

significantly higher prevalence in mussels in the warming

treatment but was absent in mussels in the acidified treatment.

A positive correlation between haemocyte number and increasing

seawater temperature has been recorded in the Mediterranean

mussel, M. galloprovincialis [94] and in clams, Ruditapes philippinarum

(Adams & Reeve) [95]. Monari et al. [23] suggested that the

increased number of haemocytes found in the clam Chamelea gallina

(Linnaeus) under elevated seawater temperatures, might have been

a consequence of a mobilisation of cells from tissues to

haemolymph, in order to respond to bacteria.

Intrinsic factors such as host immunity and pathogen virulence

will be more difficult to predict in climate change studies [96].

Knowledge of the rate of pathogen evolution and host evolution-

ary response is critical in predicting disease spread and subsequent

effects on biodiversity [31,97]. Certain climate change driven

stressors may also have a more negative impact on the parasite

than on hosts [98]. Consequently, it is apparent that climate

change-disease interactions are complex [38,43,96,99,100] and

that an interdisciplinary approach should be taken [101].

Conclusions

Ocean warming and acidification pose substantial threat to

marine bivalves and similar thermo-conforming species with

limited ability to regulate haemolymph pH. The immune system

of marine bivalves such as M. edulis may become comprised under

such conditions. Furthermore, the reduced immune capacity of M.

edulis to cope with climate-induced stressors such as ocean

warming and acidification while dealing with co-occurring

changes in parasite loads and pathogen incidence poses advanced

threat to the health of the species. As such, parallel impacts to the

immune status and pathology of M. edulis could have serious

implications for global fisheries that subsist on the production and

export of this commercially valuable species [102]. In addition,

any ecosystem services provided by M. edulis (e.g. uptake and

recycling of energy and nutrients, bioturbation and bioirrigation of

marine sediments, sediment/shoreline stabilization and habitat

formation [103]) could also be threatened. We therefore highlight

the need for further investigation into the long-term effects of

collective climate-induced stressors to combined aspects of bivalve

health and physiology so as to provide a comprehensive illustration

of impacts, which could inform management and protection of M.

edulis as well as other marine species of high global ecological and

economic value.
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